You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

sgemv_t.c 15 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483
  1. /***************************************************************************
  2. Copyright (c) 2019, The OpenBLAS Project
  3. All rights reserved.
  4. Redistribution and use in source and binary forms, with or without
  5. modification, are permitted provided that the following conditions are
  6. met:
  7. 1. Redistributions of source code must retain the above copyright
  8. notice, this list of conditions and the following disclaimer.
  9. 2. Redistributions in binary form must reproduce the above copyright
  10. notice, this list of conditions and the following disclaimer in
  11. the documentation and/or other materials provided with the
  12. distribution.
  13. 3. Neither the name of the OpenBLAS project nor the names of
  14. its contributors may be used to endorse or promote products
  15. derived from this software without specific prior written permission.
  16. THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
  17. AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
  18. IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
  19. ARE DISCLAIMED. IN NO EVENT SHALL THE OPENBLAS PROJECT OR CONTRIBUTORS BE
  20. LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
  21. CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE
  22. GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
  23. HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
  24. LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF
  25. THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
  26. *****************************************************************************/
  27. #if !defined(__VEC__) || !defined(__ALTIVEC__)
  28. #include "../arm/gemv_t.c"
  29. #else
  30. #include "common.h"
  31. #define NBMAX 2048
  32. #include <altivec.h>
  33. static void sgemv_kernel_4x8(BLASLONG n, BLASLONG lda, FLOAT *ap, FLOAT *x,
  34. FLOAT *y, FLOAT alpha) {
  35. BLASLONG i;
  36. FLOAT *a0, *a1, *a2, *a3, *a4, *a5, *a6, *a7;
  37. register __vector float temp0 = {0, 0, 0, 0};
  38. register __vector float temp1 = {0, 0, 0, 0};
  39. register __vector float temp2 = {0, 0, 0, 0};
  40. register __vector float temp3 = {0, 0, 0, 0};
  41. register __vector float temp4 = {0, 0, 0, 0};
  42. register __vector float temp5 = {0, 0, 0, 0};
  43. register __vector float temp6 = {0, 0, 0, 0};
  44. register __vector float temp7 = {0, 0, 0, 0};
  45. a0 = ap;
  46. a1 = ap + lda;
  47. a2 = a1 + lda;
  48. a3 = a2 + lda;
  49. a4 = a3 + lda;
  50. a5 = a4 + lda;
  51. a6 = a5 + lda;
  52. a7 = a6 + lda;
  53. for (i = 0; i < n; i += 4) {
  54. __vector float vx = vec_vsx_ld(0, &x[i]);
  55. __vector float vva0 = vec_vsx_ld(0, &a0[i]);
  56. __vector float vva1 = vec_vsx_ld(0, &a1[i]);
  57. __vector float vva2 = vec_vsx_ld(0, &a2[i]);
  58. __vector float vva3 = vec_vsx_ld(0, &a3[i]);
  59. __vector float vva4 = vec_vsx_ld(0, &a4[i]);
  60. __vector float vva5 = vec_vsx_ld(0, &a5[i]);
  61. __vector float vva6 = vec_vsx_ld(0, &a6[i]);
  62. __vector float vva7 = vec_vsx_ld(0, &a7[i]);
  63. temp0 += vx * vva0;
  64. temp1 += vx * vva1;
  65. temp2 += vx * vva2;
  66. temp3 += vx * vva3;
  67. temp4 += vx * vva4;
  68. temp5 += vx * vva5;
  69. temp6 += vx * vva6;
  70. temp7 += vx * vva7;
  71. }
  72. register __vector float t0, t1, t2, t3;
  73. register __vector float a = {alpha, alpha, alpha, alpha};
  74. __vector float vy0 = vec_vsx_ld(0, y);
  75. __vector float vy1 = vec_vsx_ld(0, &(y[4]));
  76. t0 = vec_mergeh(temp0, temp2);
  77. t1 = vec_mergel(temp0, temp2);
  78. t2 = vec_mergeh(temp1, temp3);
  79. t3 = vec_mergel(temp1, temp3);
  80. temp0 = vec_mergeh(t0, t2);
  81. temp1 = vec_mergel(t0, t2);
  82. temp2 = vec_mergeh(t1, t3);
  83. temp3 = vec_mergel(t1, t3);
  84. temp0 += temp1 + temp2 + temp3;
  85. t0 = vec_mergeh(temp4, temp6);
  86. t1 = vec_mergel(temp4, temp6);
  87. t2 = vec_mergeh(temp5, temp7);
  88. t3 = vec_mergel(temp5, temp7);
  89. temp4 = vec_mergeh(t0, t2);
  90. temp5 = vec_mergel(t0, t2);
  91. temp6 = vec_mergeh(t1, t3);
  92. temp7 = vec_mergel(t1, t3);
  93. temp4 += temp5 + temp6 + temp7;
  94. vy0 += a * temp0;
  95. vy1 += a * temp4;
  96. vec_vsx_st(vy0, 0, y);
  97. vec_vsx_st(vy1, 0, &(y[4]));
  98. }
  99. static void sgemv_kernel_4x4(BLASLONG n, BLASLONG lda, FLOAT *ap, FLOAT *x,
  100. FLOAT *y, FLOAT alpha) {
  101. BLASLONG i = 0;
  102. FLOAT *a0, *a1, *a2, *a3;
  103. a0 = ap;
  104. a1 = ap + lda;
  105. a2 = a1 + lda;
  106. a3 = a2 + lda;
  107. register __vector float temp0 = {0, 0, 0, 0};
  108. register __vector float temp1 = {0, 0, 0, 0};
  109. register __vector float temp2 = {0, 0, 0, 0};
  110. register __vector float temp3 = {0, 0, 0, 0};
  111. for (i = 0; i < n; i += 4) {
  112. __vector float vx = vec_vsx_ld(0, &x[i]);
  113. __vector float vva0 = vec_vsx_ld(0, &a0[i]);
  114. __vector float vva1 = vec_vsx_ld(0, &a1[i]);
  115. __vector float vva2 = vec_vsx_ld(0, &a2[i]);
  116. __vector float vva3 = vec_vsx_ld(0, &a3[i]);
  117. temp0 += vx * vva0;
  118. temp1 += vx * vva1;
  119. temp2 += vx * vva2;
  120. temp3 += vx * vva3;
  121. }
  122. register __vector float t0, t1, t2, t3;
  123. register __vector float a = {alpha, alpha, alpha, alpha};
  124. __vector float vy0 = vec_vsx_ld(0, y);
  125. t0 = vec_mergeh(temp0, temp2);
  126. t1 = vec_mergel(temp0, temp2);
  127. t2 = vec_mergeh(temp1, temp3);
  128. t3 = vec_mergel(temp1, temp3);
  129. temp0 = vec_mergeh(t0, t2);
  130. temp1 = vec_mergel(t0, t2);
  131. temp2 = vec_mergeh(t1, t3);
  132. temp3 = vec_mergel(t1, t3);
  133. temp0 += temp1 + temp2 + temp3;
  134. vy0 += a * temp0;
  135. vec_vsx_st(vy0, 0, y);
  136. }
  137. static void sgemv_kernel_4x2(BLASLONG n, BLASLONG lda, FLOAT *ap, FLOAT *x,
  138. FLOAT *y, FLOAT alpha, BLASLONG inc_y) {
  139. BLASLONG i;
  140. FLOAT *a0, *a1;
  141. a0 = ap;
  142. a1 = ap + lda;
  143. __vector float temp0 = {0, 0, 0, 0};
  144. __vector float temp1 = {0, 0, 0, 0};
  145. for (i = 0; i < n; i += 4) {
  146. __vector float vx = vec_vsx_ld(0, &x[i]);
  147. __vector float vva0 = vec_vsx_ld(0, &a0[i]);
  148. __vector float vva1 = vec_vsx_ld(0, &a1[i]);
  149. temp0 += vx * vva0;
  150. temp1 += vx * vva1;
  151. }
  152. y[0] += alpha * (temp0[0] + temp0[1] + temp0[2] + temp0[3]);
  153. y[inc_y] += alpha * (temp1[0] + temp1[1] + temp1[2] + temp1[3]);
  154. }
  155. static void sgemv_kernel_4x1(BLASLONG n, FLOAT *ap, FLOAT *x, FLOAT *y,
  156. FLOAT alpha) {
  157. BLASLONG i;
  158. __vector float temp0 = {0, 0, 0, 0};
  159. for (i = 0; i < n; i += 4) {
  160. __vector float vx = vec_vsx_ld(0, &x[i]);
  161. __vector float vva0 = vec_vsx_ld(0, &ap[i]);
  162. temp0 += vx * vva0;
  163. }
  164. y[0] += alpha * (temp0[0] + temp0[1] + temp0[2] + temp0[3]);
  165. }
  166. static void copy_x(BLASLONG n, FLOAT *src, FLOAT *dest, BLASLONG inc_src) {
  167. BLASLONG i;
  168. for (i = 0; i < n; i++) {
  169. *dest++ = *src;
  170. src += inc_src;
  171. }
  172. }
  173. int CNAME(BLASLONG m, BLASLONG n, BLASLONG dummy1, FLOAT alpha, FLOAT *a,
  174. BLASLONG lda, FLOAT *x, BLASLONG inc_x, FLOAT *y, BLASLONG inc_y,
  175. FLOAT *buffer) {
  176. BLASLONG i, j, n1, m1, m2, m3, n2;
  177. FLOAT *a_ptr, *x_ptr, *y_ptr;
  178. FLOAT ybuffer[8] __attribute__((aligned(16)));
  179. FLOAT *xbuffer;
  180. if (m < 1) return (0);
  181. if (n < 1) return (0);
  182. xbuffer = buffer;
  183. n1 = n >> 3;
  184. n2 = n & 7;
  185. m3 = m & 3;
  186. m1 = m - m3;
  187. m2 = (m & (NBMAX - 1)) - m3;
  188. BLASLONG NB = NBMAX;
  189. while (NB == NBMAX) {
  190. m1 -= NB;
  191. if (m1 < 0) {
  192. if (m2 == 0) break;
  193. NB = m2;
  194. }
  195. y_ptr = y;
  196. a_ptr = a;
  197. x_ptr = x;
  198. if (inc_x != 1)
  199. copy_x(NB, x_ptr, xbuffer, inc_x);
  200. else
  201. xbuffer = x_ptr;
  202. BLASLONG lda8 = lda << 3;
  203. if (inc_y == 1) {
  204. for (i = 0; i < n1; i++) {
  205. sgemv_kernel_4x8(NB, lda, a_ptr, xbuffer, y_ptr, alpha);
  206. y_ptr += 8;
  207. a_ptr += lda8;
  208. }
  209. } else {
  210. for (i = 0; i < n1; i++) {
  211. ybuffer[0] = 0;
  212. ybuffer[1] = 0;
  213. ybuffer[2] = 0;
  214. ybuffer[3] = 0;
  215. ybuffer[4] = 0;
  216. ybuffer[5] = 0;
  217. ybuffer[6] = 0;
  218. ybuffer[7] = 0;
  219. sgemv_kernel_4x8(NB, lda, a_ptr, xbuffer, ybuffer, alpha);
  220. *y_ptr += ybuffer[0];
  221. y_ptr += inc_y;
  222. *y_ptr += ybuffer[1];
  223. y_ptr += inc_y;
  224. *y_ptr += ybuffer[2];
  225. y_ptr += inc_y;
  226. *y_ptr += ybuffer[3];
  227. y_ptr += inc_y;
  228. *y_ptr += ybuffer[4];
  229. y_ptr += inc_y;
  230. *y_ptr += ybuffer[5];
  231. y_ptr += inc_y;
  232. *y_ptr += ybuffer[6];
  233. y_ptr += inc_y;
  234. *y_ptr += ybuffer[7];
  235. y_ptr += inc_y;
  236. a_ptr += lda8;
  237. }
  238. }
  239. if (n2 & 4) {
  240. ybuffer[0] = 0;
  241. ybuffer[1] = 0;
  242. ybuffer[2] = 0;
  243. ybuffer[3] = 0;
  244. sgemv_kernel_4x4(NB, lda, a_ptr, xbuffer, ybuffer, alpha);
  245. a_ptr += lda << 2;
  246. *y_ptr += ybuffer[0];
  247. y_ptr += inc_y;
  248. *y_ptr += ybuffer[1];
  249. y_ptr += inc_y;
  250. *y_ptr += ybuffer[2];
  251. y_ptr += inc_y;
  252. *y_ptr += ybuffer[3];
  253. y_ptr += inc_y;
  254. }
  255. if (n2 & 2) {
  256. sgemv_kernel_4x2(NB, lda, a_ptr, xbuffer, y_ptr, alpha, inc_y);
  257. a_ptr += lda << 1;
  258. y_ptr += 2 * inc_y;
  259. }
  260. if (n2 & 1) {
  261. sgemv_kernel_4x1(NB, a_ptr, xbuffer, y_ptr, alpha);
  262. a_ptr += lda;
  263. y_ptr += inc_y;
  264. }
  265. a += NB;
  266. x += NB * inc_x;
  267. }
  268. if (m3 == 0) return (0);
  269. x_ptr = x;
  270. a_ptr = a;
  271. if (m3 == 3) {
  272. FLOAT xtemp0 = *x_ptr * alpha;
  273. x_ptr += inc_x;
  274. FLOAT xtemp1 = *x_ptr * alpha;
  275. x_ptr += inc_x;
  276. FLOAT xtemp2 = *x_ptr * alpha;
  277. FLOAT *aj = a_ptr;
  278. y_ptr = y;
  279. if (lda == 3 && inc_y == 1) {
  280. for (j = 0; j < (n & -4); j += 4) {
  281. y_ptr[j] += aj[0] * xtemp0 + aj[1] * xtemp1 + aj[2] * xtemp2;
  282. y_ptr[j + 1] +=
  283. aj[3] * xtemp0 + aj[4] * xtemp1 + aj[5] * xtemp2;
  284. y_ptr[j + 2] +=
  285. aj[6] * xtemp0 + aj[7] * xtemp1 + aj[8] * xtemp2;
  286. y_ptr[j + 3] +=
  287. aj[9] * xtemp0 + aj[10] * xtemp1 + aj[11] * xtemp2;
  288. aj += 12;
  289. }
  290. for (; j < n; j++) {
  291. y_ptr[j] += aj[0] * xtemp0 + aj[1] * xtemp1 + aj[2] * xtemp2;
  292. aj += 3;
  293. }
  294. } else {
  295. if (inc_y == 1) {
  296. BLASLONG register lda2 = lda << 1;
  297. BLASLONG register lda4 = lda << 2;
  298. BLASLONG register lda3 = lda2 + lda;
  299. for (j = 0; j < (n & -4); j += 4) {
  300. y_ptr[j] +=
  301. *aj * xtemp0 + *(aj + 1) * xtemp1 + *(aj + 2) * xtemp2;
  302. y_ptr[j + 1] += *(aj + lda) * xtemp0 +
  303. *(aj + lda + 1) * xtemp1 +
  304. *(aj + lda + 2) * xtemp2;
  305. y_ptr[j + 2] += *(aj + lda2) * xtemp0 +
  306. *(aj + lda2 + 1) * xtemp1 +
  307. *(aj + lda2 + 2) * xtemp2;
  308. y_ptr[j + 3] += *(aj + lda3) * xtemp0 +
  309. *(aj + lda3 + 1) * xtemp1 +
  310. *(aj + lda3 + 2) * xtemp2;
  311. aj += lda4;
  312. }
  313. for (; j < n; j++) {
  314. y_ptr[j] +=
  315. *aj * xtemp0 + *(aj + 1) * xtemp1 + *(aj + 2) * xtemp2;
  316. aj += lda;
  317. }
  318. } else {
  319. for (j = 0; j < n; j++) {
  320. *y_ptr +=
  321. *aj * xtemp0 + *(aj + 1) * xtemp1 + *(aj + 2) * xtemp2;
  322. y_ptr += inc_y;
  323. aj += lda;
  324. }
  325. }
  326. }
  327. return (0);
  328. }
  329. if (m3 == 2) {
  330. FLOAT xtemp0 = *x_ptr * alpha;
  331. x_ptr += inc_x;
  332. FLOAT xtemp1 = *x_ptr * alpha;
  333. FLOAT *aj = a_ptr;
  334. y_ptr = y;
  335. if (lda == 2 && inc_y == 1) {
  336. for (j = 0; j < (n & -4); j += 4) {
  337. y_ptr[j] += aj[0] * xtemp0 + aj[1] * xtemp1;
  338. y_ptr[j + 1] += aj[2] * xtemp0 + aj[3] * xtemp1;
  339. y_ptr[j + 2] += aj[4] * xtemp0 + aj[5] * xtemp1;
  340. y_ptr[j + 3] += aj[6] * xtemp0 + aj[7] * xtemp1;
  341. aj += 8;
  342. }
  343. for (; j < n; j++) {
  344. y_ptr[j] += aj[0] * xtemp0 + aj[1] * xtemp1;
  345. aj += 2;
  346. }
  347. } else {
  348. if (inc_y == 1) {
  349. BLASLONG register lda2 = lda << 1;
  350. BLASLONG register lda4 = lda << 2;
  351. BLASLONG register lda3 = lda2 + lda;
  352. for (j = 0; j < (n & -4); j += 4) {
  353. y_ptr[j] += *aj * xtemp0 + *(aj + 1) * xtemp1;
  354. y_ptr[j + 1] +=
  355. *(aj + lda) * xtemp0 + *(aj + lda + 1) * xtemp1;
  356. y_ptr[j + 2] +=
  357. *(aj + lda2) * xtemp0 + *(aj + lda2 + 1) * xtemp1;
  358. y_ptr[j + 3] +=
  359. *(aj + lda3) * xtemp0 + *(aj + lda3 + 1) * xtemp1;
  360. aj += lda4;
  361. }
  362. for (; j < n; j++) {
  363. y_ptr[j] += *aj * xtemp0 + *(aj + 1) * xtemp1;
  364. aj += lda;
  365. }
  366. } else {
  367. for (j = 0; j < n; j++) {
  368. *y_ptr += *aj * xtemp0 + *(aj + 1) * xtemp1;
  369. y_ptr += inc_y;
  370. aj += lda;
  371. }
  372. }
  373. }
  374. return (0);
  375. }
  376. FLOAT xtemp = *x_ptr * alpha;
  377. FLOAT *aj = a_ptr;
  378. y_ptr = y;
  379. if (lda == 1 && inc_y == 1) {
  380. for (j = 0; j < (n & -4); j += 4) {
  381. y_ptr[j] += aj[j] * xtemp;
  382. y_ptr[j + 1] += aj[j + 1] * xtemp;
  383. y_ptr[j + 2] += aj[j + 2] * xtemp;
  384. y_ptr[j + 3] += aj[j + 3] * xtemp;
  385. }
  386. for (; j < n; j++) {
  387. y_ptr[j] += aj[j] * xtemp;
  388. }
  389. } else {
  390. if (inc_y == 1) {
  391. BLASLONG register lda2 = lda << 1;
  392. BLASLONG register lda4 = lda << 2;
  393. BLASLONG register lda3 = lda2 + lda;
  394. for (j = 0; j < (n & -4); j += 4) {
  395. y_ptr[j] += *aj * xtemp;
  396. y_ptr[j + 1] += *(aj + lda) * xtemp;
  397. y_ptr[j + 2] += *(aj + lda2) * xtemp;
  398. y_ptr[j + 3] += *(aj + lda3) * xtemp;
  399. aj += lda4;
  400. }
  401. for (; j < n; j++) {
  402. y_ptr[j] += *aj * xtemp;
  403. aj += lda;
  404. }
  405. } else {
  406. for (j = 0; j < n; j++) {
  407. *y_ptr += *aj * xtemp;
  408. y_ptr += inc_y;
  409. aj += lda;
  410. }
  411. }
  412. }
  413. return (0);
  414. }
  415. #endif