You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

getrf_parallel.c 26 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985
  1. /*********************************************************************/
  2. /* Copyright 2009, 2010 The University of Texas at Austin. */
  3. /* All rights reserved. */
  4. /* */
  5. /* Redistribution and use in source and binary forms, with or */
  6. /* without modification, are permitted provided that the following */
  7. /* conditions are met: */
  8. /* */
  9. /* 1. Redistributions of source code must retain the above */
  10. /* copyright notice, this list of conditions and the following */
  11. /* disclaimer. */
  12. /* */
  13. /* 2. Redistributions in binary form must reproduce the above */
  14. /* copyright notice, this list of conditions and the following */
  15. /* disclaimer in the documentation and/or other materials */
  16. /* provided with the distribution. */
  17. /* */
  18. /* THIS SOFTWARE IS PROVIDED BY THE UNIVERSITY OF TEXAS AT */
  19. /* AUSTIN ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, */
  20. /* INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF */
  21. /* MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE */
  22. /* DISCLAIMED. IN NO EVENT SHALL THE UNIVERSITY OF TEXAS AT */
  23. /* AUSTIN OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, */
  24. /* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES */
  25. /* (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE */
  26. /* GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR */
  27. /* BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF */
  28. /* LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT */
  29. /* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT */
  30. /* OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE */
  31. /* POSSIBILITY OF SUCH DAMAGE. */
  32. /* */
  33. /* The views and conclusions contained in the software and */
  34. /* documentation are those of the authors and should not be */
  35. /* interpreted as representing official policies, either expressed */
  36. /* or implied, of The University of Texas at Austin. */
  37. /*********************************************************************/
  38. #include <stdio.h>
  39. #include "common.h"
  40. static FLOAT dm1 = -1.;
  41. double sqrt(double);
  42. //In this case, the recursive getrf_parallel may overflow the stack.
  43. //Instead, use malloc to alloc job_t.
  44. #if MAX_CPU_NUMBER > GETRF_MEM_ALLOC_THRESHOLD
  45. #define USE_ALLOC_HEAP
  46. #endif
  47. #ifndef CACHE_LINE_SIZE
  48. #define CACHE_LINE_SIZE 8
  49. #endif
  50. #ifndef DIVIDE_RATE
  51. #define DIVIDE_RATE 2
  52. #endif
  53. #define GEMM_PQ MAX(GEMM_P, GEMM_Q)
  54. #define REAL_GEMM_R (GEMM_R - GEMM_PQ)
  55. #ifndef GETRF_FACTOR
  56. #define GETRF_FACTOR 0.75
  57. #endif
  58. #undef GETRF_FACTOR
  59. #define GETRF_FACTOR 1.00
  60. #if defined(USE_PTHREAD_LOCK)
  61. static pthread_mutex_t getrf_lock = PTHREAD_MUTEX_INITIALIZER;
  62. #elif defined(USE_PTHREAD_SPINLOCK)
  63. static pthread_spinlock_t getrf_lock = 0;
  64. #else
  65. static BLASULONG getrf_lock = 0UL;
  66. #endif
  67. #if defined(USE_PTHREAD_LOCK)
  68. static pthread_mutex_t getrf_flag_lock = PTHREAD_MUTEX_INITIALIZER;
  69. #elif defined(USE_PTHREAD_SPINLOCK)
  70. static pthread_spinlock_t getrf_flag_lock = 0;
  71. #else
  72. static BLASULONG getrf_flag_lock = 0UL;
  73. #endif
  74. static __inline BLASLONG FORMULA1(BLASLONG M, BLASLONG N, BLASLONG IS, BLASLONG BK, BLASLONG T) {
  75. double m = (double)(M - IS - BK);
  76. double n = (double)(N - IS - BK);
  77. double b = (double)BK;
  78. double a = (double)T;
  79. return (BLASLONG)((n + GETRF_FACTOR * m * b * (1. - a) / (b + m)) / a);
  80. }
  81. #define FORMULA2(M, N, IS, BK, T) (BLASLONG)((double)(N - IS + BK) * (1. - sqrt(1. - 1. / (double)(T))))
  82. static void inner_basic_thread(blas_arg_t *args, BLASLONG *range_m, BLASLONG *range_n, FLOAT *sa, FLOAT *sb, BLASLONG mypos){
  83. BLASLONG is, min_i;
  84. BLASLONG js, min_j;
  85. BLASLONG jjs, min_jj;
  86. BLASLONG m = args -> m;
  87. BLASLONG n = args -> n;
  88. BLASLONG k = args -> k;
  89. BLASLONG lda = args -> lda;
  90. BLASLONG off = args -> ldb;
  91. FLOAT *b = (FLOAT *)args -> b + (k ) * COMPSIZE;
  92. FLOAT *c = (FLOAT *)args -> b + ( k * lda) * COMPSIZE;
  93. FLOAT *d = (FLOAT *)args -> b + (k + k * lda) * COMPSIZE;
  94. FLOAT *sbb = sb;
  95. #if __STDC_VERSION__ >= 201112L
  96. _Atomic BLASLONG *flag = (_Atomic BLASLONG *)args -> d;
  97. #else
  98. volatile BLASLONG *flag = (volatile BLASLONG *)args -> d;
  99. #endif
  100. blasint *ipiv = (blasint *)args -> c;
  101. if (range_n) {
  102. n = range_n[1] - range_n[0];
  103. c += range_n[0] * lda * COMPSIZE;
  104. d += range_n[0] * lda * COMPSIZE;
  105. }
  106. if (args -> a == NULL) {
  107. TRSM_ILTCOPY(k, k, (FLOAT *)args -> b, lda, 0, sb);
  108. sbb = (FLOAT *)((((BLASULONG)(sb + k * k * COMPSIZE) + GEMM_ALIGN) & ~GEMM_ALIGN) + GEMM_OFFSET_B);
  109. } else {
  110. sb = (FLOAT *)args -> a;
  111. }
  112. for (js = 0; js < n; js += REAL_GEMM_R) {
  113. min_j = n - js;
  114. if (min_j > REAL_GEMM_R) min_j = REAL_GEMM_R;
  115. for (jjs = js; jjs < js + min_j; jjs += GEMM_UNROLL_N){
  116. min_jj = js + min_j - jjs;
  117. if (min_jj > GEMM_UNROLL_N) min_jj = GEMM_UNROLL_N;
  118. if (0 && GEMM_UNROLL_N <= 8) {
  119. LASWP_NCOPY(min_jj, off + 1, off + k,
  120. c + (- off + jjs * lda) * COMPSIZE, lda,
  121. ipiv, sbb + k * (jjs - js) * COMPSIZE);
  122. } else {
  123. LASWP_PLUS(min_jj, off + 1, off + k, ZERO,
  124. #ifdef COMPLEX
  125. ZERO,
  126. #endif
  127. c + (- off + jjs * lda) * COMPSIZE, lda, NULL, 0, ipiv, 1);
  128. GEMM_ONCOPY (k, min_jj, c + jjs * lda * COMPSIZE, lda, sbb + (jjs - js) * k * COMPSIZE);
  129. }
  130. for (is = 0; is < k; is += GEMM_P) {
  131. min_i = k - is;
  132. if (min_i > GEMM_P) min_i = GEMM_P;
  133. TRSM_KERNEL_LT(min_i, min_jj, k, dm1,
  134. #ifdef COMPLEX
  135. ZERO,
  136. #endif
  137. sb + k * is * COMPSIZE,
  138. sbb + (jjs - js) * k * COMPSIZE,
  139. c + (is + jjs * lda) * COMPSIZE, lda, is);
  140. }
  141. }
  142. if ((js + REAL_GEMM_R >= n) && (mypos >= 0)) flag[mypos * CACHE_LINE_SIZE] = 0;
  143. for (is = 0; is < m; is += GEMM_P){
  144. min_i = m - is;
  145. if (min_i > GEMM_P) min_i = GEMM_P;
  146. GEMM_ITCOPY (k, min_i, b + is * COMPSIZE, lda, sa);
  147. GEMM_KERNEL_N(min_i, min_j, k, dm1,
  148. #ifdef COMPLEX
  149. ZERO,
  150. #endif
  151. sa, sbb, d + (is + js * lda) * COMPSIZE, lda);
  152. }
  153. }
  154. }
  155. /* Non blocking implementation */
  156. typedef struct {
  157. #if __STDC_VERSION__ >= 201112L
  158. _Atomic
  159. #else
  160. volatile
  161. #endif
  162. BLASLONG working[MAX_CPU_NUMBER][CACHE_LINE_SIZE * DIVIDE_RATE];
  163. } job_t;
  164. #define ICOPY_OPERATION(M, N, A, LDA, X, Y, BUFFER) GEMM_ITCOPY(M, N, (FLOAT *)(A) + ((Y) + (X) * (LDA)) * COMPSIZE, LDA, BUFFER);
  165. #define OCOPY_OPERATION(M, N, A, LDA, X, Y, BUFFER) GEMM_ONCOPY(M, N, (FLOAT *)(A) + ((X) + (Y) * (LDA)) * COMPSIZE, LDA, BUFFER);
  166. #ifndef COMPLEX
  167. #define KERNEL_OPERATION(M, N, K, SA, SB, C, LDC, X, Y) \
  168. GEMM_KERNEL_N(M, N, K, dm1, SA, SB, (FLOAT *)(C) + ((X) + (Y) * LDC) * COMPSIZE, LDC)
  169. #else
  170. #define KERNEL_OPERATION(M, N, K, SA, SB, C, LDC, X, Y) \
  171. GEMM_KERNEL_N(M, N, K, dm1, ZERO, SA, SB, (FLOAT *)(C) + ((X) + (Y) * LDC) * COMPSIZE, LDC)
  172. #endif
  173. static int inner_advanced_thread(blas_arg_t *args, BLASLONG *range_m, BLASLONG *range_n, FLOAT *sa, FLOAT *sb, BLASLONG mypos){
  174. job_t *job = (job_t *)args -> common;
  175. BLASLONG xxx, bufferside;
  176. FLOAT *buffer[DIVIDE_RATE];
  177. BLASLONG jjs, min_jj, div_n;
  178. BLASLONG i, current;
  179. BLASLONG is, min_i;
  180. BLASLONG m, n_from, n_to;
  181. BLASLONG k = args -> k;
  182. BLASLONG lda = args -> lda;
  183. BLASLONG off = args -> ldb;
  184. FLOAT *a = (FLOAT *)args -> b + (k ) * COMPSIZE;
  185. FLOAT *b = (FLOAT *)args -> b + ( k * lda) * COMPSIZE;
  186. FLOAT *c = (FLOAT *)args -> b + (k + k * lda) * COMPSIZE;
  187. FLOAT *sbb= sb;
  188. blasint *ipiv = (blasint *)args -> c;
  189. BLASLONG jw;
  190. #if __STDC_VERSION__ >= 201112L
  191. _Atomic BLASLONG *flag = (_Atomic BLASLONG *)args -> d;
  192. #else
  193. volatile BLASLONG *flag = (volatile BLASLONG *)args -> d;
  194. #endif
  195. if (args -> a == NULL) {
  196. TRSM_ILTCOPY(k, k, (FLOAT *)args -> b, lda, 0, sb);
  197. sbb = (FLOAT *)((((BLASULONG)(sb + k * k * COMPSIZE) + GEMM_ALIGN) & ~GEMM_ALIGN) + GEMM_OFFSET_B);
  198. } else {
  199. sb = (FLOAT *)args -> a;
  200. }
  201. m = range_m[1] - range_m[0];
  202. n_from = range_n[mypos + 0];
  203. n_to = range_n[mypos + 1];
  204. a += range_m[0] * COMPSIZE;
  205. c += range_m[0] * COMPSIZE;
  206. div_n = (n_to - n_from + DIVIDE_RATE - 1) / DIVIDE_RATE;
  207. buffer[0] = sbb;
  208. for (i = 1; i < DIVIDE_RATE; i++) {
  209. buffer[i] = buffer[i - 1] + GEMM_Q * (((div_n + GEMM_UNROLL_N - 1)/GEMM_UNROLL_N) * GEMM_UNROLL_N) * COMPSIZE;
  210. }
  211. for (xxx = n_from, bufferside = 0; xxx < n_to; xxx += div_n, bufferside ++) {
  212. for (i = 0; i < args -> nthreads; i++)
  213. #if 1
  214. {
  215. LOCK_COMMAND(&getrf_lock);
  216. jw = job[mypos].working[i][CACHE_LINE_SIZE * bufferside];
  217. UNLOCK_COMMAND(&getrf_lock);
  218. do {
  219. LOCK_COMMAND(&getrf_lock);
  220. jw = job[mypos].working[i][CACHE_LINE_SIZE * bufferside];
  221. UNLOCK_COMMAND(&getrf_lock);
  222. } while (jw);
  223. }
  224. #else
  225. while (job[mypos].working[i][CACHE_LINE_SIZE * bufferside]) {};
  226. #endif
  227. for(jjs = xxx; jjs < MIN(n_to, xxx + div_n); jjs += min_jj){
  228. min_jj = MIN(n_to, xxx + div_n) - jjs;
  229. if (min_jj > GEMM_UNROLL_N) min_jj = GEMM_UNROLL_N;
  230. if (0 && GEMM_UNROLL_N <= 8) {
  231. printf("helllo\n");
  232. LASWP_NCOPY(min_jj, off + 1, off + k,
  233. b + (- off + jjs * lda) * COMPSIZE, lda,
  234. ipiv, buffer[bufferside] + (jjs - xxx) * k * COMPSIZE);
  235. } else {
  236. LASWP_PLUS(min_jj, off + 1, off + k, ZERO,
  237. #ifdef COMPLEX
  238. ZERO,
  239. #endif
  240. b + (- off + jjs * lda) * COMPSIZE, lda, NULL, 0, ipiv, 1);
  241. GEMM_ONCOPY (k, min_jj, b + jjs * lda * COMPSIZE, lda,
  242. buffer[bufferside] + (jjs - xxx) * k * COMPSIZE);
  243. }
  244. for (is = 0; is < k; is += GEMM_P) {
  245. min_i = k - is;
  246. if (min_i > GEMM_P) min_i = GEMM_P;
  247. TRSM_KERNEL_LT(min_i, min_jj, k, dm1,
  248. #ifdef COMPLEX
  249. ZERO,
  250. #endif
  251. sb + k * is * COMPSIZE,
  252. buffer[bufferside] + (jjs - xxx) * k * COMPSIZE,
  253. b + (is + jjs * lda) * COMPSIZE, lda, is);
  254. }
  255. }
  256. MB;
  257. for (i = 0; i < args -> nthreads; i++) {
  258. LOCK_COMMAND(&getrf_lock);
  259. job[mypos].working[i][CACHE_LINE_SIZE * bufferside] = (BLASLONG)buffer[bufferside];
  260. UNLOCK_COMMAND(&getrf_lock);
  261. }
  262. }
  263. LOCK_COMMAND(&getrf_flag_lock);
  264. flag[mypos * CACHE_LINE_SIZE] = 0;
  265. UNLOCK_COMMAND(&getrf_flag_lock);
  266. if (m == 0) {
  267. for (xxx = 0; xxx < DIVIDE_RATE; xxx++) {
  268. LOCK_COMMAND(&getrf_lock);
  269. job[mypos].working[mypos][CACHE_LINE_SIZE * xxx] = 0;
  270. UNLOCK_COMMAND(&getrf_lock);
  271. }
  272. }
  273. for(is = 0; is < m; is += min_i){
  274. min_i = m - is;
  275. if (min_i >= GEMM_P * 2) {
  276. min_i = GEMM_P;
  277. } else
  278. if (min_i > GEMM_P) {
  279. min_i = (((min_i + 1) / 2 + GEMM_UNROLL_M - 1)/GEMM_UNROLL_M) * GEMM_UNROLL_M;
  280. }
  281. ICOPY_OPERATION(k, min_i, a, lda, 0, is, sa);
  282. current = mypos;
  283. do {
  284. div_n = (range_n[current + 1] - range_n[current] + DIVIDE_RATE - 1) / DIVIDE_RATE;
  285. for (xxx = range_n[current], bufferside = 0; xxx < range_n[current + 1]; xxx += div_n, bufferside ++) {
  286. if ((current != mypos) && (!is)) {
  287. #if 1
  288. LOCK_COMMAND(&getrf_lock);
  289. jw = job[current].working[mypos][CACHE_LINE_SIZE * bufferside];
  290. UNLOCK_COMMAND(&getrf_lock);
  291. do {
  292. LOCK_COMMAND(&getrf_lock);
  293. jw = job[current].working[mypos][CACHE_LINE_SIZE * bufferside];
  294. UNLOCK_COMMAND(&getrf_lock);
  295. } while (jw == 0);
  296. #else
  297. while(job[current].working[mypos][CACHE_LINE_SIZE * bufferside] == 0) {};
  298. #endif
  299. }
  300. KERNEL_OPERATION(min_i, MIN(range_n[current + 1] - xxx, div_n), k,
  301. sa, (FLOAT *)job[current].working[mypos][CACHE_LINE_SIZE * bufferside],
  302. c, lda, is, xxx);
  303. MB;
  304. if (is + min_i >= m) {
  305. LOCK_COMMAND(&getrf_lock);
  306. job[current].working[mypos][CACHE_LINE_SIZE * bufferside] = 0;
  307. UNLOCK_COMMAND(&getrf_lock);
  308. }
  309. }
  310. current ++;
  311. if (current >= args -> nthreads) current = 0;
  312. } while (current != mypos);
  313. }
  314. for (i = 0; i < args -> nthreads; i++) {
  315. for (xxx = 0; xxx < DIVIDE_RATE; xxx++) {
  316. #if 1
  317. LOCK_COMMAND(&getrf_lock);
  318. jw = job[mypos].working[i][CACHE_LINE_SIZE *xxx];
  319. UNLOCK_COMMAND(&getrf_lock);
  320. do {
  321. LOCK_COMMAND(&getrf_lock);
  322. jw = job[mypos].working[i][CACHE_LINE_SIZE *xxx];
  323. UNLOCK_COMMAND(&getrf_lock);
  324. } while(jw != 0);
  325. #else
  326. while (job[mypos].working[i][CACHE_LINE_SIZE * xxx] ) {};
  327. #endif
  328. }
  329. }
  330. return 0;
  331. }
  332. #if 1
  333. blasint CNAME(blas_arg_t *args, BLASLONG *range_m, BLASLONG *range_n, FLOAT *sa, FLOAT *sb, BLASLONG myid) {
  334. BLASLONG m, n, mn, lda, offset;
  335. BLASLONG init_bk, next_bk, range_n_mine[2], range_n_new[2];
  336. blasint *ipiv, iinfo, info;
  337. int mode;
  338. blas_arg_t newarg;
  339. FLOAT *a, *sbb;
  340. FLOAT dummyalpha[2] = {ZERO, ZERO};
  341. blas_queue_t queue[MAX_CPU_NUMBER];
  342. BLASLONG range_M[MAX_CPU_NUMBER + 1];
  343. BLASLONG range_N[MAX_CPU_NUMBER + 1];
  344. #ifndef USE_ALLOC_HEAP
  345. job_t job[MAX_CPU_NUMBER];
  346. #else
  347. job_t * job=NULL;
  348. #endif
  349. BLASLONG width, nn, mm;
  350. BLASLONG i, j, k, is, bk;
  351. BLASLONG num_cpu;
  352. BLASLONG f;
  353. #ifdef _MSC_VER
  354. BLASLONG flag[MAX_CPU_NUMBER * CACHE_LINE_SIZE];
  355. #else
  356. #if __STDC_VERSION__ >= 201112L
  357. _Atomic
  358. #else
  359. volatile
  360. #endif
  361. BLASLONG flag[MAX_CPU_NUMBER * CACHE_LINE_SIZE] __attribute__((aligned(128)));
  362. #endif
  363. #ifndef COMPLEX
  364. #ifdef XDOUBLE
  365. mode = BLAS_XDOUBLE | BLAS_REAL;
  366. #elif defined(DOUBLE)
  367. mode = BLAS_DOUBLE | BLAS_REAL;
  368. #else
  369. mode = BLAS_SINGLE | BLAS_REAL;
  370. #endif
  371. #else
  372. #ifdef XDOUBLE
  373. mode = BLAS_XDOUBLE | BLAS_COMPLEX;
  374. #elif defined(DOUBLE)
  375. mode = BLAS_DOUBLE | BLAS_COMPLEX;
  376. #else
  377. mode = BLAS_SINGLE | BLAS_COMPLEX;
  378. #endif
  379. #endif
  380. m = args -> m;
  381. n = args -> n;
  382. a = (FLOAT *)args -> a;
  383. lda = args -> lda;
  384. ipiv = (blasint *)args -> c;
  385. offset = 0;
  386. if (range_n) {
  387. m -= range_n[0];
  388. n = range_n[1] - range_n[0];
  389. offset = range_n[0];
  390. a += range_n[0] * (lda + 1) * COMPSIZE;
  391. }
  392. if (m <= 0 || n <= 0) return 0;
  393. newarg.c = ipiv;
  394. newarg.lda = lda;
  395. info = 0;
  396. mn = MIN(m, n);
  397. init_bk = ((mn / 2 + GEMM_UNROLL_N - 1)/GEMM_UNROLL_N) * GEMM_UNROLL_N;
  398. if (init_bk > GEMM_Q) init_bk = GEMM_Q;
  399. if (init_bk <= GEMM_UNROLL_N) {
  400. info = GETF2(args, NULL, range_n, sa, sb, 0);
  401. return info;
  402. }
  403. next_bk = init_bk;
  404. bk = mn;
  405. if (bk > next_bk) bk = next_bk;
  406. range_n_new[0] = offset;
  407. range_n_new[1] = offset + bk;
  408. iinfo = CNAME(args, NULL, range_n_new, sa, sb, 0);
  409. if (iinfo && !info) info = iinfo;
  410. #ifdef USE_ALLOC_HEAP
  411. job = (job_t*)malloc(MAX_CPU_NUMBER * sizeof(job_t));
  412. if(job==NULL){
  413. fprintf(stderr, "OpenBLAS: malloc failed in %s\n", __func__);
  414. exit(1);
  415. }
  416. #endif
  417. newarg.common = (void *)job;
  418. TRSM_ILTCOPY(bk, bk, a, lda, 0, sb);
  419. sbb = (FLOAT *)((((BLASULONG)(sb + bk * bk * COMPSIZE) + GEMM_ALIGN) & ~GEMM_ALIGN) + GEMM_OFFSET_B);
  420. is = 0;
  421. num_cpu = 0;
  422. while (is < mn) {
  423. width = ((FORMULA1(m, n, is, bk, args -> nthreads) + GEMM_UNROLL_N - 1)/GEMM_UNROLL_N) * GEMM_UNROLL_N;
  424. if (width > mn - is - bk) width = mn - is - bk;
  425. if (width < bk) {
  426. next_bk = ((FORMULA2(m, n, is, bk, args -> nthreads) + GEMM_UNROLL_N)/GEMM_UNROLL_N) * GEMM_UNROLL_N;
  427. if (next_bk > bk) next_bk = bk;
  428. width = next_bk;
  429. if (width > mn - is - bk) width = mn - is - bk;
  430. }
  431. if (num_cpu > 0) exec_blas_async_wait(num_cpu, &queue[0]);
  432. mm = m - bk - is;
  433. nn = n - bk - is;
  434. newarg.a = sb;
  435. newarg.b = a + (is + is * lda) * COMPSIZE;
  436. newarg.d = (void *)flag;
  437. newarg.m = mm;
  438. newarg.n = nn;
  439. newarg.k = bk;
  440. newarg.ldb = is + offset;
  441. nn -= width;
  442. range_n_mine[0] = 0;
  443. range_n_mine[1] = width;
  444. range_N[0] = width;
  445. range_M[0] = 0;
  446. num_cpu = 0;
  447. while (nn > 0){
  448. if (mm >= nn) {
  449. width = blas_quickdivide(nn + args -> nthreads - num_cpu, args -> nthreads - num_cpu - 1);
  450. if (width == 0) width = nn;
  451. if (nn < width) width = nn;
  452. nn -= width;
  453. range_N[num_cpu + 1] = range_N[num_cpu] + width;
  454. width = blas_quickdivide(mm + args -> nthreads - num_cpu, args -> nthreads - num_cpu - 1);
  455. if (width == 0) width = mm;
  456. if (mm < width) width = mm;
  457. if (nn <= 0) width = mm;
  458. mm -= width;
  459. range_M[num_cpu + 1] = range_M[num_cpu] + width;
  460. } else {
  461. width = blas_quickdivide(mm + args -> nthreads - num_cpu, args -> nthreads - num_cpu - 1);
  462. if (width == 0) width = mm;
  463. if (mm < width) width = mm;
  464. mm -= width;
  465. range_M[num_cpu + 1] = range_M[num_cpu] + width;
  466. width = blas_quickdivide(nn + args -> nthreads - num_cpu, args -> nthreads - num_cpu - 1);
  467. if (width == 0) width = nn;
  468. if (nn < width) width = nn;
  469. if (mm <= 0) width = nn;
  470. nn -= width;
  471. range_N[num_cpu + 1] = range_N[num_cpu] + width;
  472. }
  473. queue[num_cpu].mode = mode;
  474. queue[num_cpu].routine = inner_advanced_thread;
  475. queue[num_cpu].args = &newarg;
  476. queue[num_cpu].range_m = &range_M[num_cpu];
  477. queue[num_cpu].range_n = &range_N[0];
  478. queue[num_cpu].sa = NULL;
  479. queue[num_cpu].sb = NULL;
  480. queue[num_cpu].next = &queue[num_cpu + 1];
  481. flag[num_cpu * CACHE_LINE_SIZE] = 1;
  482. num_cpu ++;
  483. }
  484. newarg.nthreads = num_cpu;
  485. if (num_cpu > 0) {
  486. for (j = 0; j < num_cpu; j++) {
  487. for (i = 0; i < num_cpu; i++) {
  488. for (k = 0; k < DIVIDE_RATE; k++) {
  489. job[j].working[i][CACHE_LINE_SIZE * k] = 0;
  490. }
  491. }
  492. }
  493. }
  494. is += bk;
  495. bk = mn - is;
  496. if (bk > next_bk) bk = next_bk;
  497. range_n_new[0] = offset + is;
  498. range_n_new[1] = offset + is + bk;
  499. if (num_cpu > 0) {
  500. queue[num_cpu - 1].next = NULL;
  501. exec_blas_async(0, &queue[0]);
  502. inner_basic_thread(&newarg, NULL, range_n_mine, sa, sbb, -1);
  503. iinfo = GETRF_SINGLE(args, NULL, range_n_new, sa, sbb, 0);
  504. if (iinfo && !info) info = iinfo + is;
  505. for (i = 0; i < num_cpu; i ++) {
  506. #if 1
  507. LOCK_COMMAND(&getrf_flag_lock);
  508. f=flag[i*CACHE_LINE_SIZE];
  509. UNLOCK_COMMAND(&getrf_flag_lock);
  510. while (f!=0) {
  511. LOCK_COMMAND(&getrf_flag_lock);
  512. f=flag[i*CACHE_LINE_SIZE];
  513. UNLOCK_COMMAND(&getrf_flag_lock);
  514. };
  515. #else
  516. while (flag[i*CACHE_LINE_SIZE]) {};
  517. #endif
  518. }
  519. TRSM_ILTCOPY(bk, bk, a + (is + is * lda) * COMPSIZE, lda, 0, sb);
  520. } else {
  521. inner_basic_thread(&newarg, NULL, range_n_mine, sa, sbb, -1);
  522. iinfo = GETRF_SINGLE(args, NULL, range_n_new, sa, sbb, 0);
  523. if (iinfo && !info) info = iinfo + is;
  524. }
  525. }
  526. next_bk = init_bk;
  527. is = 0;
  528. while (is < mn) {
  529. bk = mn - is;
  530. if (bk > next_bk) bk = next_bk;
  531. width = ((FORMULA1(m, n, is, bk, args -> nthreads) + GEMM_UNROLL_N - 1)/GEMM_UNROLL_N) * GEMM_UNROLL_N;
  532. if (width > mn - is - bk) width = mn - is - bk;
  533. if (width < bk) {
  534. next_bk = ((FORMULA2(m, n, is, bk, args -> nthreads) + GEMM_UNROLL_N)/GEMM_UNROLL_N) * GEMM_UNROLL_N;
  535. if (next_bk > bk) next_bk = bk;
  536. }
  537. blas_level1_thread(mode, bk, is + bk + offset + 1, mn + offset, (void *)dummyalpha,
  538. a + (- offset + is * lda) * COMPSIZE, lda, NULL, 0,
  539. ipiv, 1, (void *)LASWP_PLUS, args -> nthreads);
  540. is += bk;
  541. }
  542. #ifdef USE_ALLOC_HEAP
  543. free(job);
  544. #endif
  545. return info;
  546. }
  547. #else
  548. blasint CNAME(blas_arg_t *args, BLASLONG *range_m, BLASLONG *range_n, FLOAT *sa, FLOAT *sb, BLASLONG myid) {
  549. BLASLONG m, n, mn, lda, offset;
  550. BLASLONG i, is, bk, init_bk, next_bk, range_n_new[2];
  551. blasint *ipiv, iinfo, info;
  552. int mode;
  553. blas_arg_t newarg;
  554. FLOAT *a, *sbb;
  555. FLOAT dummyalpha[2] = {ZERO, ZERO};
  556. blas_queue_t queue[MAX_CPU_NUMBER];
  557. BLASLONG range[MAX_CPU_NUMBER + 1];
  558. BLASLONG width, nn, num_cpu;
  559. #if __STDC_VERSION__ >= 201112L
  560. _Atomic
  561. #else
  562. volatile
  563. #endif
  564. BLASLONG flag[MAX_CPU_NUMBER * CACHE_LINE_SIZE] __attribute__((aligned(128)));
  565. #ifndef COMPLEX
  566. #ifdef XDOUBLE
  567. mode = BLAS_XDOUBLE | BLAS_REAL;
  568. #elif defined(DOUBLE)
  569. mode = BLAS_DOUBLE | BLAS_REAL;
  570. #else
  571. mode = BLAS_SINGLE | BLAS_REAL;
  572. #endif
  573. #else
  574. #ifdef XDOUBLE
  575. mode = BLAS_XDOUBLE | BLAS_COMPLEX;
  576. #elif defined(DOUBLE)
  577. mode = BLAS_DOUBLE | BLAS_COMPLEX;
  578. #else
  579. mode = BLAS_SINGLE | BLAS_COMPLEX;
  580. #endif
  581. #endif
  582. m = args -> m;
  583. n = args -> n;
  584. a = (FLOAT *)args -> a;
  585. lda = args -> lda;
  586. ipiv = (blasint *)args -> c;
  587. offset = 0;
  588. if (range_n) {
  589. m -= range_n[0];
  590. n = range_n[1] - range_n[0];
  591. offset = range_n[0];
  592. a += range_n[0] * (lda + 1) * COMPSIZE;
  593. }
  594. if (m <= 0 || n <= 0) return 0;
  595. newarg.c = ipiv;
  596. newarg.lda = lda;
  597. newarg.common = NULL;
  598. newarg.nthreads = args -> nthreads;
  599. mn = MIN(m, n);
  600. init_bk = ((mn / 2 + GEMM_UNROLL_N - 1)/GEMM_UNROLL_N) * GEMM_UNROLL_N;
  601. if (init_bk > GEMM_Q) init_bk = GEMM_Q;
  602. if (init_bk <= GEMM_UNROLL_N) {
  603. info = GETF2(args, NULL, range_n, sa, sb, 0);
  604. return info;
  605. }
  606. width = FORMULA1(m, n, 0, init_bk, args -> nthreads);
  607. width = ((width + GEMM_UNROLL_N - 1)/GEMM_UNROLL_N) * GEMM_UNROLL_N;
  608. if (width > n - init_bk) width = n - init_bk;
  609. if (width < init_bk) {
  610. BLASLONG temp;
  611. temp = FORMULA2(m, n, 0, init_bk, args -> nthreads);
  612. temp = ((temp + GEMM_UNROLL_N - 1)/GEMM_UNROLL_N) * GEMM_UNROLL_N;
  613. if (temp < GEMM_UNROLL_N) temp = GEMM_UNROLL_N;
  614. if (temp < init_bk) init_bk = temp;
  615. }
  616. next_bk = init_bk;
  617. bk = init_bk;
  618. range_n_new[0] = offset;
  619. range_n_new[1] = offset + bk;
  620. info = CNAME(args, NULL, range_n_new, sa, sb, 0);
  621. TRSM_ILTCOPY(bk, bk, a, lda, 0, sb);
  622. is = 0;
  623. num_cpu = 0;
  624. sbb = (FLOAT *)((((BLASULONG)(sb + GEMM_PQ * GEMM_PQ * COMPSIZE) + GEMM_ALIGN) & ~GEMM_ALIGN) + GEMM_OFFSET_B);
  625. while (is < mn) {
  626. width = FORMULA1(m, n, is, bk, args -> nthreads);
  627. width = ((width + GEMM_UNROLL_N - 1)/GEMM_UNROLL_N) * GEMM_UNROLL_N;
  628. if (width < bk) {
  629. next_bk = FORMULA2(m, n, is, bk, args -> nthreads);
  630. next_bk = ((next_bk + GEMM_UNROLL_N - 1)/GEMM_UNROLL_N) * GEMM_UNROLL_N;
  631. if (next_bk > bk) next_bk = bk;
  632. #if 0
  633. if (next_bk < GEMM_UNROLL_N) next_bk = MIN(GEMM_UNROLL_N, mn - bk - is);
  634. #else
  635. if (next_bk < GEMM_UNROLL_N) next_bk = MAX(GEMM_UNROLL_N, mn - bk - is);
  636. #endif
  637. width = next_bk;
  638. }
  639. if (width > mn - is - bk) {
  640. next_bk = mn - is - bk;
  641. width = next_bk;
  642. }
  643. nn = n - bk - is;
  644. if (width > nn) width = nn;
  645. if (num_cpu > 1) exec_blas_async_wait(num_cpu - 1, &queue[1]);
  646. range[0] = 0;
  647. range[1] = width;
  648. num_cpu = 1;
  649. nn -= width;
  650. newarg.a = sb;
  651. newarg.b = a + (is + is * lda) * COMPSIZE;
  652. newarg.d = (void *)flag;
  653. newarg.m = m - bk - is;
  654. newarg.n = n - bk - is;
  655. newarg.k = bk;
  656. newarg.ldb = is + offset;
  657. while (nn > 0){
  658. width = blas_quickdivide(nn + args -> nthreads - num_cpu, args -> nthreads - num_cpu);
  659. nn -= width;
  660. if (nn < 0) width = width + nn;
  661. range[num_cpu + 1] = range[num_cpu] + width;
  662. queue[num_cpu].mode = mode;
  663. //queue[num_cpu].routine = inner_advanced_thread;
  664. queue[num_cpu].routine = (void *)inner_basic_thread;
  665. queue[num_cpu].args = &newarg;
  666. queue[num_cpu].range_m = NULL;
  667. queue[num_cpu].range_n = &range[num_cpu];
  668. queue[num_cpu].sa = NULL;
  669. queue[num_cpu].sb = NULL;
  670. queue[num_cpu].next = &queue[num_cpu + 1];
  671. flag[num_cpu * CACHE_LINE_SIZE] = 1;
  672. num_cpu ++;
  673. }
  674. queue[num_cpu - 1].next = NULL;
  675. is += bk;
  676. bk = n - is;
  677. if (bk > next_bk) bk = next_bk;
  678. range_n_new[0] = offset + is;
  679. range_n_new[1] = offset + is + bk;
  680. if (num_cpu > 1) {
  681. exec_blas_async(1, &queue[1]);
  682. #if 0
  683. inner_basic_thread(&newarg, NULL, &range[0], sa, sbb, 0);
  684. iinfo = GETRF_SINGLE(args, NULL, range_n_new, sa, sbb, 0);
  685. #else
  686. if (range[1] >= bk * 4) {
  687. BLASLONG myrange[2];
  688. myrange[0] = 0;
  689. myrange[1] = bk;
  690. inner_basic_thread(&newarg, NULL, &myrange[0], sa, sbb, -1);
  691. iinfo = GETRF_SINGLE(args, NULL, range_n_new, sa, sbb, 0);
  692. myrange[0] = bk;
  693. myrange[1] = range[1];
  694. inner_basic_thread(&newarg, NULL, &myrange[0], sa, sbb, -1);
  695. } else {
  696. inner_basic_thread(&newarg, NULL, &range[0], sa, sbb, -1);
  697. iinfo = GETRF_SINGLE(args, NULL, range_n_new, sa, sbb, 0);
  698. }
  699. #endif
  700. for (i = 1; i < num_cpu; i ++) while (flag[i * CACHE_LINE_SIZE]) {};
  701. TRSM_ILTCOPY(bk, bk, a + (is + is * lda) * COMPSIZE, lda, 0, sb);
  702. } else {
  703. inner_basic_thread(&newarg, NULL, &range[0], sa, sbb, -1);
  704. iinfo = GETRF_SINGLE(args, NULL, range_n_new, sa, sbb, 0);
  705. }
  706. if (iinfo && !info) info = iinfo + is;
  707. }
  708. next_bk = init_bk;
  709. bk = init_bk;
  710. is = 0;
  711. while (is < mn) {
  712. bk = mn - is;
  713. if (bk > next_bk) bk = next_bk;
  714. width = FORMULA1(m, n, is, bk, args -> nthreads);
  715. width = ((width + GEMM_UNROLL_N - 1)/GEMM_UNROLL_N) * GEMM_UNROLL_N;
  716. if (width < bk) {
  717. next_bk = FORMULA2(m, n, is, bk, args -> nthreads);
  718. next_bk = ((next_bk + GEMM_UNROLL_N - 1)/GEMM_UNROLL_N) * GEMM_UNROLL_N;
  719. if (next_bk > bk) next_bk = bk;
  720. #if 0
  721. if (next_bk < GEMM_UNROLL_N) next_bk = MIN(GEMM_UNROLL_N, mn - bk - is);
  722. #else
  723. if (next_bk < GEMM_UNROLL_N) next_bk = MAX(GEMM_UNROLL_N, mn - bk - is);
  724. #endif
  725. }
  726. if (width > mn - is - bk) {
  727. next_bk = mn - is - bk;
  728. width = next_bk;
  729. }
  730. blas_level1_thread(mode, bk, is + bk + offset + 1, mn + offset, (void *)dummyalpha,
  731. a + (- offset + is * lda) * COMPSIZE, lda, NULL, 0,
  732. ipiv, 1, (void *)LASWP_PLUS, args -> nthreads);
  733. is += bk;
  734. }
  735. return info;
  736. }
  737. #endif