You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

chet21.f 13 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428
  1. *> \brief \b CHET21
  2. *
  3. * =========== DOCUMENTATION ===========
  4. *
  5. * Online html documentation available at
  6. * http://www.netlib.org/lapack/explore-html/
  7. *
  8. * Definition:
  9. * ===========
  10. *
  11. * SUBROUTINE CHET21( ITYPE, UPLO, N, KBAND, A, LDA, D, E, U, LDU, V,
  12. * LDV, TAU, WORK, RWORK, RESULT )
  13. *
  14. * .. Scalar Arguments ..
  15. * CHARACTER UPLO
  16. * INTEGER ITYPE, KBAND, LDA, LDU, LDV, N
  17. * ..
  18. * .. Array Arguments ..
  19. * REAL D( * ), E( * ), RESULT( 2 ), RWORK( * )
  20. * COMPLEX A( LDA, * ), TAU( * ), U( LDU, * ),
  21. * $ V( LDV, * ), WORK( * )
  22. * ..
  23. *
  24. *
  25. *> \par Purpose:
  26. * =============
  27. *>
  28. *> \verbatim
  29. *>
  30. *> CHET21 generally checks a decomposition of the form
  31. *>
  32. *> A = U S UC>
  33. *> where * means conjugate transpose, A is hermitian, U is unitary, and
  34. *> S is diagonal (if KBAND=0) or (real) symmetric tridiagonal (if
  35. *> KBAND=1).
  36. *>
  37. *> If ITYPE=1, then U is represented as a dense matrix; otherwise U is
  38. *> expressed as a product of Householder transformations, whose vectors
  39. *> are stored in the array "V" and whose scaling constants are in "TAU".
  40. *> We shall use the letter "V" to refer to the product of Householder
  41. *> transformations (which should be equal to U).
  42. *>
  43. *> Specifically, if ITYPE=1, then:
  44. *>
  45. *> RESULT(1) = | A - U S U* | / ( |A| n ulp ) *andC> RESULT(2) = | I - UU* | / ( n ulp )
  46. *>
  47. *> If ITYPE=2, then:
  48. *>
  49. *> RESULT(1) = | A - V S V* | / ( |A| n ulp )
  50. *>
  51. *> If ITYPE=3, then:
  52. *>
  53. *> RESULT(1) = | I - UV* | / ( n ulp )
  54. *>
  55. *> For ITYPE > 1, the transformation U is expressed as a product
  56. *> V = H(1)...H(n-2), where H(j) = I - tau(j) v(j) v(j)C> and each
  57. *> vector v(j) has its first j elements 0 and the remaining n-j elements
  58. *> stored in V(j+1:n,j).
  59. *> \endverbatim
  60. *
  61. * Arguments:
  62. * ==========
  63. *
  64. *> \param[in] ITYPE
  65. *> \verbatim
  66. *> ITYPE is INTEGER
  67. *> Specifies the type of tests to be performed.
  68. *> 1: U expressed as a dense unitary matrix:
  69. *> RESULT(1) = | A - U S U* | / ( |A| n ulp ) *andC> RESULT(2) = | I - UU* | / ( n ulp )
  70. *>
  71. *> 2: U expressed as a product V of Housholder transformations:
  72. *> RESULT(1) = | A - V S V* | / ( |A| n ulp )
  73. *>
  74. *> 3: U expressed both as a dense unitary matrix and
  75. *> as a product of Housholder transformations:
  76. *> RESULT(1) = | I - UV* | / ( n ulp )
  77. *> \endverbatim
  78. *>
  79. *> \param[in] UPLO
  80. *> \verbatim
  81. *> UPLO is CHARACTER
  82. *> If UPLO='U', the upper triangle of A and V will be used and
  83. *> the (strictly) lower triangle will not be referenced.
  84. *> If UPLO='L', the lower triangle of A and V will be used and
  85. *> the (strictly) upper triangle will not be referenced.
  86. *> \endverbatim
  87. *>
  88. *> \param[in] N
  89. *> \verbatim
  90. *> N is INTEGER
  91. *> The size of the matrix. If it is zero, CHET21 does nothing.
  92. *> It must be at least zero.
  93. *> \endverbatim
  94. *>
  95. *> \param[in] KBAND
  96. *> \verbatim
  97. *> KBAND is INTEGER
  98. *> The bandwidth of the matrix. It may only be zero or one.
  99. *> If zero, then S is diagonal, and E is not referenced. If
  100. *> one, then S is symmetric tri-diagonal.
  101. *> \endverbatim
  102. *>
  103. *> \param[in] A
  104. *> \verbatim
  105. *> A is COMPLEX array, dimension (LDA, N)
  106. *> The original (unfactored) matrix. It is assumed to be
  107. *> hermitian, and only the upper (UPLO='U') or only the lower
  108. *> (UPLO='L') will be referenced.
  109. *> \endverbatim
  110. *>
  111. *> \param[in] LDA
  112. *> \verbatim
  113. *> LDA is INTEGER
  114. *> The leading dimension of A. It must be at least 1
  115. *> and at least N.
  116. *> \endverbatim
  117. *>
  118. *> \param[in] D
  119. *> \verbatim
  120. *> D is REAL array, dimension (N)
  121. *> The diagonal of the (symmetric tri-) diagonal matrix.
  122. *> \endverbatim
  123. *>
  124. *> \param[in] E
  125. *> \verbatim
  126. *> E is REAL array, dimension (N-1)
  127. *> The off-diagonal of the (symmetric tri-) diagonal matrix.
  128. *> E(1) is the (1,2) and (2,1) element, E(2) is the (2,3) and
  129. *> (3,2) element, etc.
  130. *> Not referenced if KBAND=0.
  131. *> \endverbatim
  132. *>
  133. *> \param[in] U
  134. *> \verbatim
  135. *> U is COMPLEX array, dimension (LDU, N)
  136. *> If ITYPE=1 or 3, this contains the unitary matrix in
  137. *> the decomposition, expressed as a dense matrix. If ITYPE=2,
  138. *> then it is not referenced.
  139. *> \endverbatim
  140. *>
  141. *> \param[in] LDU
  142. *> \verbatim
  143. *> LDU is INTEGER
  144. *> The leading dimension of U. LDU must be at least N and
  145. *> at least 1.
  146. *> \endverbatim
  147. *>
  148. *> \param[in] V
  149. *> \verbatim
  150. *> V is COMPLEX array, dimension (LDV, N)
  151. *> If ITYPE=2 or 3, the columns of this array contain the
  152. *> Householder vectors used to describe the unitary matrix
  153. *> in the decomposition. If UPLO='L', then the vectors are in
  154. *> the lower triangle, if UPLO='U', then in the upper
  155. *> triangle.
  156. *> *NOTE* If ITYPE=2 or 3, V is modified and restored. The
  157. *> subdiagonal (if UPLO='L') or the superdiagonal (if UPLO='U')
  158. *> is set to one, and later reset to its original value, during
  159. *> the course of the calculation.
  160. *> If ITYPE=1, then it is neither referenced nor modified.
  161. *> \endverbatim
  162. *>
  163. *> \param[in] LDV
  164. *> \verbatim
  165. *> LDV is INTEGER
  166. *> The leading dimension of V. LDV must be at least N and
  167. *> at least 1.
  168. *> \endverbatim
  169. *>
  170. *> \param[in] TAU
  171. *> \verbatim
  172. *> TAU is COMPLEX array, dimension (N)
  173. *> If ITYPE >= 2, then TAU(j) is the scalar factor of
  174. *> v(j) v(j)* in the Householder transformation H(j) of
  175. *> the product U = H(1)...H(n-2)
  176. *> If ITYPE < 2, then TAU is not referenced.
  177. *> \endverbatim
  178. *>
  179. *> \param[out] WORK
  180. *> \verbatim
  181. *> WORK is COMPLEX array, dimension (2*N**2)
  182. *> \endverbatim
  183. *>
  184. *> \param[out] RWORK
  185. *> \verbatim
  186. *> RWORK is REAL array, dimension (N)
  187. *> \endverbatim
  188. *>
  189. *> \param[out] RESULT
  190. *> \verbatim
  191. *> RESULT is REAL array, dimension (2)
  192. *> The values computed by the two tests described above. The
  193. *> values are currently limited to 1/ulp, to avoid overflow.
  194. *> RESULT(1) is always modified. RESULT(2) is modified only
  195. *> if ITYPE=1.
  196. *> \endverbatim
  197. *
  198. * Authors:
  199. * ========
  200. *
  201. *> \author Univ. of Tennessee
  202. *> \author Univ. of California Berkeley
  203. *> \author Univ. of Colorado Denver
  204. *> \author NAG Ltd.
  205. *
  206. *> \date December 2016
  207. *
  208. *> \ingroup complex_eig
  209. *
  210. * =====================================================================
  211. SUBROUTINE CHET21( ITYPE, UPLO, N, KBAND, A, LDA, D, E, U, LDU, V,
  212. $ LDV, TAU, WORK, RWORK, RESULT )
  213. *
  214. * -- LAPACK test routine (version 3.7.0) --
  215. * -- LAPACK is a software package provided by Univ. of Tennessee, --
  216. * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
  217. * December 2016
  218. *
  219. * .. Scalar Arguments ..
  220. CHARACTER UPLO
  221. INTEGER ITYPE, KBAND, LDA, LDU, LDV, N
  222. * ..
  223. * .. Array Arguments ..
  224. REAL D( * ), E( * ), RESULT( 2 ), RWORK( * )
  225. COMPLEX A( LDA, * ), TAU( * ), U( LDU, * ),
  226. $ V( LDV, * ), WORK( * )
  227. * ..
  228. *
  229. * =====================================================================
  230. *
  231. * .. Parameters ..
  232. REAL ZERO, ONE, TEN
  233. PARAMETER ( ZERO = 0.0E+0, ONE = 1.0E+0, TEN = 10.0E+0 )
  234. COMPLEX CZERO, CONE
  235. PARAMETER ( CZERO = ( 0.0E+0, 0.0E+0 ),
  236. $ CONE = ( 1.0E+0, 0.0E+0 ) )
  237. * ..
  238. * .. Local Scalars ..
  239. LOGICAL LOWER
  240. CHARACTER CUPLO
  241. INTEGER IINFO, J, JCOL, JR, JROW
  242. REAL ANORM, ULP, UNFL, WNORM
  243. COMPLEX VSAVE
  244. * ..
  245. * .. External Functions ..
  246. LOGICAL LSAME
  247. REAL CLANGE, CLANHE, SLAMCH
  248. EXTERNAL LSAME, CLANGE, CLANHE, SLAMCH
  249. * ..
  250. * .. External Subroutines ..
  251. EXTERNAL CGEMM, CHER, CHER2, CLACPY, CLARFY, CLASET,
  252. $ CUNM2L, CUNM2R
  253. * ..
  254. * .. Intrinsic Functions ..
  255. INTRINSIC CMPLX, MAX, MIN, REAL
  256. * ..
  257. * .. Executable Statements ..
  258. *
  259. RESULT( 1 ) = ZERO
  260. IF( ITYPE.EQ.1 )
  261. $ RESULT( 2 ) = ZERO
  262. IF( N.LE.0 )
  263. $ RETURN
  264. *
  265. IF( LSAME( UPLO, 'U' ) ) THEN
  266. LOWER = .FALSE.
  267. CUPLO = 'U'
  268. ELSE
  269. LOWER = .TRUE.
  270. CUPLO = 'L'
  271. END IF
  272. *
  273. UNFL = SLAMCH( 'Safe minimum' )
  274. ULP = SLAMCH( 'Epsilon' )*SLAMCH( 'Base' )
  275. *
  276. * Some Error Checks
  277. *
  278. IF( ITYPE.LT.1 .OR. ITYPE.GT.3 ) THEN
  279. RESULT( 1 ) = TEN / ULP
  280. RETURN
  281. END IF
  282. *
  283. * Do Test 1
  284. *
  285. * Norm of A:
  286. *
  287. IF( ITYPE.EQ.3 ) THEN
  288. ANORM = ONE
  289. ELSE
  290. ANORM = MAX( CLANHE( '1', CUPLO, N, A, LDA, RWORK ), UNFL )
  291. END IF
  292. *
  293. * Compute error matrix:
  294. *
  295. IF( ITYPE.EQ.1 ) THEN
  296. *
  297. * ITYPE=1: error = A - U S U*
  298. *
  299. CALL CLASET( 'Full', N, N, CZERO, CZERO, WORK, N )
  300. CALL CLACPY( CUPLO, N, N, A, LDA, WORK, N )
  301. *
  302. DO 10 J = 1, N
  303. CALL CHER( CUPLO, N, -D( J ), U( 1, J ), 1, WORK, N )
  304. 10 CONTINUE
  305. *
  306. IF( N.GT.1 .AND. KBAND.EQ.1 ) THEN
  307. CMK DO 20 J = 1, N - 1
  308. DO 20 J = 2, N - 1
  309. CALL CHER2( CUPLO, N, -CMPLX( E( J ) ), U( 1, J ), 1,
  310. $ U( 1, J-1 ), 1, WORK, N )
  311. 20 CONTINUE
  312. END IF
  313. WNORM = CLANHE( '1', CUPLO, N, WORK, N, RWORK )
  314. *
  315. ELSE IF( ITYPE.EQ.2 ) THEN
  316. *
  317. * ITYPE=2: error = V S V* - A
  318. *
  319. CALL CLASET( 'Full', N, N, CZERO, CZERO, WORK, N )
  320. *
  321. IF( LOWER ) THEN
  322. WORK( N**2 ) = D( N )
  323. DO 40 J = N - 1, 1, -1
  324. IF( KBAND.EQ.1 ) THEN
  325. WORK( ( N+1 )*( J-1 )+2 ) = ( CONE-TAU( J ) )*E( J )
  326. DO 30 JR = J + 2, N
  327. WORK( ( J-1 )*N+JR ) = -TAU( J )*E( J )*V( JR, J )
  328. 30 CONTINUE
  329. END IF
  330. *
  331. VSAVE = V( J+1, J )
  332. V( J+1, J ) = ONE
  333. CALL CLARFY( 'L', N-J, V( J+1, J ), 1, TAU( J ),
  334. $ WORK( ( N+1 )*J+1 ), N, WORK( N**2+1 ) )
  335. V( J+1, J ) = VSAVE
  336. WORK( ( N+1 )*( J-1 )+1 ) = D( J )
  337. 40 CONTINUE
  338. ELSE
  339. WORK( 1 ) = D( 1 )
  340. DO 60 J = 1, N - 1
  341. IF( KBAND.EQ.1 ) THEN
  342. WORK( ( N+1 )*J ) = ( CONE-TAU( J ) )*E( J )
  343. DO 50 JR = 1, J - 1
  344. WORK( J*N+JR ) = -TAU( J )*E( J )*V( JR, J+1 )
  345. 50 CONTINUE
  346. END IF
  347. *
  348. VSAVE = V( J, J+1 )
  349. V( J, J+1 ) = ONE
  350. CALL CLARFY( 'U', J, V( 1, J+1 ), 1, TAU( J ), WORK, N,
  351. $ WORK( N**2+1 ) )
  352. V( J, J+1 ) = VSAVE
  353. WORK( ( N+1 )*J+1 ) = D( J+1 )
  354. 60 CONTINUE
  355. END IF
  356. *
  357. DO 90 JCOL = 1, N
  358. IF( LOWER ) THEN
  359. DO 70 JROW = JCOL, N
  360. WORK( JROW+N*( JCOL-1 ) ) = WORK( JROW+N*( JCOL-1 ) )
  361. $ - A( JROW, JCOL )
  362. 70 CONTINUE
  363. ELSE
  364. DO 80 JROW = 1, JCOL
  365. WORK( JROW+N*( JCOL-1 ) ) = WORK( JROW+N*( JCOL-1 ) )
  366. $ - A( JROW, JCOL )
  367. 80 CONTINUE
  368. END IF
  369. 90 CONTINUE
  370. WNORM = CLANHE( '1', CUPLO, N, WORK, N, RWORK )
  371. *
  372. ELSE IF( ITYPE.EQ.3 ) THEN
  373. *
  374. * ITYPE=3: error = U V* - I
  375. *
  376. IF( N.LT.2 )
  377. $ RETURN
  378. CALL CLACPY( ' ', N, N, U, LDU, WORK, N )
  379. IF( LOWER ) THEN
  380. CALL CUNM2R( 'R', 'C', N, N-1, N-1, V( 2, 1 ), LDV, TAU,
  381. $ WORK( N+1 ), N, WORK( N**2+1 ), IINFO )
  382. ELSE
  383. CALL CUNM2L( 'R', 'C', N, N-1, N-1, V( 1, 2 ), LDV, TAU,
  384. $ WORK, N, WORK( N**2+1 ), IINFO )
  385. END IF
  386. IF( IINFO.NE.0 ) THEN
  387. RESULT( 1 ) = TEN / ULP
  388. RETURN
  389. END IF
  390. *
  391. DO 100 J = 1, N
  392. WORK( ( N+1 )*( J-1 )+1 ) = WORK( ( N+1 )*( J-1 )+1 ) - CONE
  393. 100 CONTINUE
  394. *
  395. WNORM = CLANGE( '1', N, N, WORK, N, RWORK )
  396. END IF
  397. *
  398. IF( ANORM.GT.WNORM ) THEN
  399. RESULT( 1 ) = ( WNORM / ANORM ) / ( N*ULP )
  400. ELSE
  401. IF( ANORM.LT.ONE ) THEN
  402. RESULT( 1 ) = ( MIN( WNORM, N*ANORM ) / ANORM ) / ( N*ULP )
  403. ELSE
  404. RESULT( 1 ) = MIN( WNORM / ANORM, REAL( N ) ) / ( N*ULP )
  405. END IF
  406. END IF
  407. *
  408. * Do Test 2
  409. *
  410. * Compute UU* - I
  411. *
  412. IF( ITYPE.EQ.1 ) THEN
  413. CALL CGEMM( 'N', 'C', N, N, N, CONE, U, LDU, U, LDU, CZERO,
  414. $ WORK, N )
  415. *
  416. DO 110 J = 1, N
  417. WORK( ( N+1 )*( J-1 )+1 ) = WORK( ( N+1 )*( J-1 )+1 ) - CONE
  418. 110 CONTINUE
  419. *
  420. RESULT( 2 ) = MIN( CLANGE( '1', N, N, WORK, N, RWORK ),
  421. $ REAL( N ) ) / ( N*ULP )
  422. END IF
  423. *
  424. RETURN
  425. *
  426. * End of CHET21
  427. *
  428. END