You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

csptrf.f 19 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619
  1. *> \brief \b CSPTRF
  2. *
  3. * =========== DOCUMENTATION ===========
  4. *
  5. * Online html documentation available at
  6. * http://www.netlib.org/lapack/explore-html/
  7. *
  8. *> \htmlonly
  9. *> Download CSPTRF + dependencies
  10. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/csptrf.f">
  11. *> [TGZ]</a>
  12. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/csptrf.f">
  13. *> [ZIP]</a>
  14. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/csptrf.f">
  15. *> [TXT]</a>
  16. *> \endhtmlonly
  17. *
  18. * Definition:
  19. * ===========
  20. *
  21. * SUBROUTINE CSPTRF( UPLO, N, AP, IPIV, INFO )
  22. *
  23. * .. Scalar Arguments ..
  24. * CHARACTER UPLO
  25. * INTEGER INFO, N
  26. * ..
  27. * .. Array Arguments ..
  28. * INTEGER IPIV( * )
  29. * COMPLEX AP( * )
  30. * ..
  31. *
  32. *
  33. *> \par Purpose:
  34. * =============
  35. *>
  36. *> \verbatim
  37. *>
  38. *> CSPTRF computes the factorization of a complex symmetric matrix A
  39. *> stored in packed format using the Bunch-Kaufman diagonal pivoting
  40. *> method:
  41. *>
  42. *> A = U*D*U**T or A = L*D*L**T
  43. *>
  44. *> where U (or L) is a product of permutation and unit upper (lower)
  45. *> triangular matrices, and D is symmetric and block diagonal with
  46. *> 1-by-1 and 2-by-2 diagonal blocks.
  47. *> \endverbatim
  48. *
  49. * Arguments:
  50. * ==========
  51. *
  52. *> \param[in] UPLO
  53. *> \verbatim
  54. *> UPLO is CHARACTER*1
  55. *> = 'U': Upper triangle of A is stored;
  56. *> = 'L': Lower triangle of A is stored.
  57. *> \endverbatim
  58. *>
  59. *> \param[in] N
  60. *> \verbatim
  61. *> N is INTEGER
  62. *> The order of the matrix A. N >= 0.
  63. *> \endverbatim
  64. *>
  65. *> \param[in,out] AP
  66. *> \verbatim
  67. *> AP is COMPLEX array, dimension (N*(N+1)/2)
  68. *> On entry, the upper or lower triangle of the symmetric matrix
  69. *> A, packed columnwise in a linear array. The j-th column of A
  70. *> is stored in the array AP as follows:
  71. *> if UPLO = 'U', AP(i + (j-1)*j/2) = A(i,j) for 1<=i<=j;
  72. *> if UPLO = 'L', AP(i + (j-1)*(2n-j)/2) = A(i,j) for j<=i<=n.
  73. *>
  74. *> On exit, the block diagonal matrix D and the multipliers used
  75. *> to obtain the factor U or L, stored as a packed triangular
  76. *> matrix overwriting A (see below for further details).
  77. *> \endverbatim
  78. *>
  79. *> \param[out] IPIV
  80. *> \verbatim
  81. *> IPIV is INTEGER array, dimension (N)
  82. *> Details of the interchanges and the block structure of D.
  83. *> If IPIV(k) > 0, then rows and columns k and IPIV(k) were
  84. *> interchanged and D(k,k) is a 1-by-1 diagonal block.
  85. *> If UPLO = 'U' and IPIV(k) = IPIV(k-1) < 0, then rows and
  86. *> columns k-1 and -IPIV(k) were interchanged and D(k-1:k,k-1:k)
  87. *> is a 2-by-2 diagonal block. If UPLO = 'L' and IPIV(k) =
  88. *> IPIV(k+1) < 0, then rows and columns k+1 and -IPIV(k) were
  89. *> interchanged and D(k:k+1,k:k+1) is a 2-by-2 diagonal block.
  90. *> \endverbatim
  91. *>
  92. *> \param[out] INFO
  93. *> \verbatim
  94. *> INFO is INTEGER
  95. *> = 0: successful exit
  96. *> < 0: if INFO = -i, the i-th argument had an illegal value
  97. *> > 0: if INFO = i, D(i,i) is exactly zero. The factorization
  98. *> has been completed, but the block diagonal matrix D is
  99. *> exactly singular, and division by zero will occur if it
  100. *> is used to solve a system of equations.
  101. *> \endverbatim
  102. *
  103. * Authors:
  104. * ========
  105. *
  106. *> \author Univ. of Tennessee
  107. *> \author Univ. of California Berkeley
  108. *> \author Univ. of Colorado Denver
  109. *> \author NAG Ltd.
  110. *
  111. *> \date December 2016
  112. *
  113. *> \ingroup complexOTHERcomputational
  114. *
  115. *> \par Further Details:
  116. * =====================
  117. *>
  118. *> \verbatim
  119. *>
  120. *> 5-96 - Based on modifications by J. Lewis, Boeing Computer Services
  121. *> Company
  122. *>
  123. *> If UPLO = 'U', then A = U*D*U**T, where
  124. *> U = P(n)*U(n)* ... *P(k)U(k)* ...,
  125. *> i.e., U is a product of terms P(k)*U(k), where k decreases from n to
  126. *> 1 in steps of 1 or 2, and D is a block diagonal matrix with 1-by-1
  127. *> and 2-by-2 diagonal blocks D(k). P(k) is a permutation matrix as
  128. *> defined by IPIV(k), and U(k) is a unit upper triangular matrix, such
  129. *> that if the diagonal block D(k) is of order s (s = 1 or 2), then
  130. *>
  131. *> ( I v 0 ) k-s
  132. *> U(k) = ( 0 I 0 ) s
  133. *> ( 0 0 I ) n-k
  134. *> k-s s n-k
  135. *>
  136. *> If s = 1, D(k) overwrites A(k,k), and v overwrites A(1:k-1,k).
  137. *> If s = 2, the upper triangle of D(k) overwrites A(k-1,k-1), A(k-1,k),
  138. *> and A(k,k), and v overwrites A(1:k-2,k-1:k).
  139. *>
  140. *> If UPLO = 'L', then A = L*D*L**T, where
  141. *> L = P(1)*L(1)* ... *P(k)*L(k)* ...,
  142. *> i.e., L is a product of terms P(k)*L(k), where k increases from 1 to
  143. *> n in steps of 1 or 2, and D is a block diagonal matrix with 1-by-1
  144. *> and 2-by-2 diagonal blocks D(k). P(k) is a permutation matrix as
  145. *> defined by IPIV(k), and L(k) is a unit lower triangular matrix, such
  146. *> that if the diagonal block D(k) is of order s (s = 1 or 2), then
  147. *>
  148. *> ( I 0 0 ) k-1
  149. *> L(k) = ( 0 I 0 ) s
  150. *> ( 0 v I ) n-k-s+1
  151. *> k-1 s n-k-s+1
  152. *>
  153. *> If s = 1, D(k) overwrites A(k,k), and v overwrites A(k+1:n,k).
  154. *> If s = 2, the lower triangle of D(k) overwrites A(k,k), A(k+1,k),
  155. *> and A(k+1,k+1), and v overwrites A(k+2:n,k:k+1).
  156. *> \endverbatim
  157. *>
  158. * =====================================================================
  159. SUBROUTINE CSPTRF( UPLO, N, AP, IPIV, INFO )
  160. *
  161. * -- LAPACK computational routine (version 3.7.0) --
  162. * -- LAPACK is a software package provided by Univ. of Tennessee, --
  163. * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
  164. * December 2016
  165. *
  166. * .. Scalar Arguments ..
  167. CHARACTER UPLO
  168. INTEGER INFO, N
  169. * ..
  170. * .. Array Arguments ..
  171. INTEGER IPIV( * )
  172. COMPLEX AP( * )
  173. * ..
  174. *
  175. * =====================================================================
  176. *
  177. * .. Parameters ..
  178. REAL ZERO, ONE
  179. PARAMETER ( ZERO = 0.0E+0, ONE = 1.0E+0 )
  180. REAL EIGHT, SEVTEN
  181. PARAMETER ( EIGHT = 8.0E+0, SEVTEN = 17.0E+0 )
  182. COMPLEX CONE
  183. PARAMETER ( CONE = ( 1.0E+0, 0.0E+0 ) )
  184. * ..
  185. * .. Local Scalars ..
  186. LOGICAL UPPER
  187. INTEGER I, IMAX, J, JMAX, K, KC, KK, KNC, KP, KPC,
  188. $ KSTEP, KX, NPP
  189. REAL ABSAKK, ALPHA, COLMAX, ROWMAX
  190. COMPLEX D11, D12, D21, D22, R1, T, WK, WKM1, WKP1, ZDUM
  191. * ..
  192. * .. External Functions ..
  193. LOGICAL LSAME
  194. INTEGER ICAMAX
  195. EXTERNAL LSAME, ICAMAX
  196. * ..
  197. * .. External Subroutines ..
  198. EXTERNAL CSCAL, CSPR, CSWAP, XERBLA
  199. * ..
  200. * .. Intrinsic Functions ..
  201. INTRINSIC ABS, AIMAG, MAX, REAL, SQRT
  202. * ..
  203. * .. Statement Functions ..
  204. REAL CABS1
  205. * ..
  206. * .. Statement Function definitions ..
  207. CABS1( ZDUM ) = ABS( REAL( ZDUM ) ) + ABS( AIMAG( ZDUM ) )
  208. * ..
  209. * .. Executable Statements ..
  210. *
  211. * Test the input parameters.
  212. *
  213. INFO = 0
  214. UPPER = LSAME( UPLO, 'U' )
  215. IF( .NOT.UPPER .AND. .NOT.LSAME( UPLO, 'L' ) ) THEN
  216. INFO = -1
  217. ELSE IF( N.LT.0 ) THEN
  218. INFO = -2
  219. END IF
  220. IF( INFO.NE.0 ) THEN
  221. CALL XERBLA( 'CSPTRF', -INFO )
  222. RETURN
  223. END IF
  224. *
  225. * Initialize ALPHA for use in choosing pivot block size.
  226. *
  227. ALPHA = ( ONE+SQRT( SEVTEN ) ) / EIGHT
  228. *
  229. IF( UPPER ) THEN
  230. *
  231. * Factorize A as U*D*U**T using the upper triangle of A
  232. *
  233. * K is the main loop index, decreasing from N to 1 in steps of
  234. * 1 or 2
  235. *
  236. K = N
  237. KC = ( N-1 )*N / 2 + 1
  238. 10 CONTINUE
  239. KNC = KC
  240. *
  241. * If K < 1, exit from loop
  242. *
  243. IF( K.LT.1 )
  244. $ GO TO 110
  245. KSTEP = 1
  246. *
  247. * Determine rows and columns to be interchanged and whether
  248. * a 1-by-1 or 2-by-2 pivot block will be used
  249. *
  250. ABSAKK = CABS1( AP( KC+K-1 ) )
  251. *
  252. * IMAX is the row-index of the largest off-diagonal element in
  253. * column K, and COLMAX is its absolute value
  254. *
  255. IF( K.GT.1 ) THEN
  256. IMAX = ICAMAX( K-1, AP( KC ), 1 )
  257. COLMAX = CABS1( AP( KC+IMAX-1 ) )
  258. ELSE
  259. COLMAX = ZERO
  260. END IF
  261. *
  262. IF( MAX( ABSAKK, COLMAX ).EQ.ZERO ) THEN
  263. *
  264. * Column K is zero: set INFO and continue
  265. *
  266. IF( INFO.EQ.0 )
  267. $ INFO = K
  268. KP = K
  269. ELSE
  270. IF( ABSAKK.GE.ALPHA*COLMAX ) THEN
  271. *
  272. * no interchange, use 1-by-1 pivot block
  273. *
  274. KP = K
  275. ELSE
  276. *
  277. ROWMAX = ZERO
  278. JMAX = IMAX
  279. KX = IMAX*( IMAX+1 ) / 2 + IMAX
  280. DO 20 J = IMAX + 1, K
  281. IF( CABS1( AP( KX ) ).GT.ROWMAX ) THEN
  282. ROWMAX = CABS1( AP( KX ) )
  283. JMAX = J
  284. END IF
  285. KX = KX + J
  286. 20 CONTINUE
  287. KPC = ( IMAX-1 )*IMAX / 2 + 1
  288. IF( IMAX.GT.1 ) THEN
  289. JMAX = ICAMAX( IMAX-1, AP( KPC ), 1 )
  290. ROWMAX = MAX( ROWMAX, CABS1( AP( KPC+JMAX-1 ) ) )
  291. END IF
  292. *
  293. IF( ABSAKK.GE.ALPHA*COLMAX*( COLMAX / ROWMAX ) ) THEN
  294. *
  295. * no interchange, use 1-by-1 pivot block
  296. *
  297. KP = K
  298. ELSE IF( CABS1( AP( KPC+IMAX-1 ) ).GE.ALPHA*ROWMAX ) THEN
  299. *
  300. * interchange rows and columns K and IMAX, use 1-by-1
  301. * pivot block
  302. *
  303. KP = IMAX
  304. ELSE
  305. *
  306. * interchange rows and columns K-1 and IMAX, use 2-by-2
  307. * pivot block
  308. *
  309. KP = IMAX
  310. KSTEP = 2
  311. END IF
  312. END IF
  313. *
  314. KK = K - KSTEP + 1
  315. IF( KSTEP.EQ.2 )
  316. $ KNC = KNC - K + 1
  317. IF( KP.NE.KK ) THEN
  318. *
  319. * Interchange rows and columns KK and KP in the leading
  320. * submatrix A(1:k,1:k)
  321. *
  322. CALL CSWAP( KP-1, AP( KNC ), 1, AP( KPC ), 1 )
  323. KX = KPC + KP - 1
  324. DO 30 J = KP + 1, KK - 1
  325. KX = KX + J - 1
  326. T = AP( KNC+J-1 )
  327. AP( KNC+J-1 ) = AP( KX )
  328. AP( KX ) = T
  329. 30 CONTINUE
  330. T = AP( KNC+KK-1 )
  331. AP( KNC+KK-1 ) = AP( KPC+KP-1 )
  332. AP( KPC+KP-1 ) = T
  333. IF( KSTEP.EQ.2 ) THEN
  334. T = AP( KC+K-2 )
  335. AP( KC+K-2 ) = AP( KC+KP-1 )
  336. AP( KC+KP-1 ) = T
  337. END IF
  338. END IF
  339. *
  340. * Update the leading submatrix
  341. *
  342. IF( KSTEP.EQ.1 ) THEN
  343. *
  344. * 1-by-1 pivot block D(k): column k now holds
  345. *
  346. * W(k) = U(k)*D(k)
  347. *
  348. * where U(k) is the k-th column of U
  349. *
  350. * Perform a rank-1 update of A(1:k-1,1:k-1) as
  351. *
  352. * A := A - U(k)*D(k)*U(k)**T = A - W(k)*1/D(k)*W(k)**T
  353. *
  354. R1 = CONE / AP( KC+K-1 )
  355. CALL CSPR( UPLO, K-1, -R1, AP( KC ), 1, AP )
  356. *
  357. * Store U(k) in column k
  358. *
  359. CALL CSCAL( K-1, R1, AP( KC ), 1 )
  360. ELSE
  361. *
  362. * 2-by-2 pivot block D(k): columns k and k-1 now hold
  363. *
  364. * ( W(k-1) W(k) ) = ( U(k-1) U(k) )*D(k)
  365. *
  366. * where U(k) and U(k-1) are the k-th and (k-1)-th columns
  367. * of U
  368. *
  369. * Perform a rank-2 update of A(1:k-2,1:k-2) as
  370. *
  371. * A := A - ( U(k-1) U(k) )*D(k)*( U(k-1) U(k) )**T
  372. * = A - ( W(k-1) W(k) )*inv(D(k))*( W(k-1) W(k) )**T
  373. *
  374. IF( K.GT.2 ) THEN
  375. *
  376. D12 = AP( K-1+( K-1 )*K / 2 )
  377. D22 = AP( K-1+( K-2 )*( K-1 ) / 2 ) / D12
  378. D11 = AP( K+( K-1 )*K / 2 ) / D12
  379. T = CONE / ( D11*D22-CONE )
  380. D12 = T / D12
  381. *
  382. DO 50 J = K - 2, 1, -1
  383. WKM1 = D12*( D11*AP( J+( K-2 )*( K-1 ) / 2 )-
  384. $ AP( J+( K-1 )*K / 2 ) )
  385. WK = D12*( D22*AP( J+( K-1 )*K / 2 )-
  386. $ AP( J+( K-2 )*( K-1 ) / 2 ) )
  387. DO 40 I = J, 1, -1
  388. AP( I+( J-1 )*J / 2 ) = AP( I+( J-1 )*J / 2 ) -
  389. $ AP( I+( K-1 )*K / 2 )*WK -
  390. $ AP( I+( K-2 )*( K-1 ) / 2 )*WKM1
  391. 40 CONTINUE
  392. AP( J+( K-1 )*K / 2 ) = WK
  393. AP( J+( K-2 )*( K-1 ) / 2 ) = WKM1
  394. 50 CONTINUE
  395. *
  396. END IF
  397. END IF
  398. END IF
  399. *
  400. * Store details of the interchanges in IPIV
  401. *
  402. IF( KSTEP.EQ.1 ) THEN
  403. IPIV( K ) = KP
  404. ELSE
  405. IPIV( K ) = -KP
  406. IPIV( K-1 ) = -KP
  407. END IF
  408. *
  409. * Decrease K and return to the start of the main loop
  410. *
  411. K = K - KSTEP
  412. KC = KNC - K
  413. GO TO 10
  414. *
  415. ELSE
  416. *
  417. * Factorize A as L*D*L**T using the lower triangle of A
  418. *
  419. * K is the main loop index, increasing from 1 to N in steps of
  420. * 1 or 2
  421. *
  422. K = 1
  423. KC = 1
  424. NPP = N*( N+1 ) / 2
  425. 60 CONTINUE
  426. KNC = KC
  427. *
  428. * If K > N, exit from loop
  429. *
  430. IF( K.GT.N )
  431. $ GO TO 110
  432. KSTEP = 1
  433. *
  434. * Determine rows and columns to be interchanged and whether
  435. * a 1-by-1 or 2-by-2 pivot block will be used
  436. *
  437. ABSAKK = CABS1( AP( KC ) )
  438. *
  439. * IMAX is the row-index of the largest off-diagonal element in
  440. * column K, and COLMAX is its absolute value
  441. *
  442. IF( K.LT.N ) THEN
  443. IMAX = K + ICAMAX( N-K, AP( KC+1 ), 1 )
  444. COLMAX = CABS1( AP( KC+IMAX-K ) )
  445. ELSE
  446. COLMAX = ZERO
  447. END IF
  448. *
  449. IF( MAX( ABSAKK, COLMAX ).EQ.ZERO ) THEN
  450. *
  451. * Column K is zero: set INFO and continue
  452. *
  453. IF( INFO.EQ.0 )
  454. $ INFO = K
  455. KP = K
  456. ELSE
  457. IF( ABSAKK.GE.ALPHA*COLMAX ) THEN
  458. *
  459. * no interchange, use 1-by-1 pivot block
  460. *
  461. KP = K
  462. ELSE
  463. *
  464. * JMAX is the column-index of the largest off-diagonal
  465. * element in row IMAX, and ROWMAX is its absolute value
  466. *
  467. ROWMAX = ZERO
  468. KX = KC + IMAX - K
  469. DO 70 J = K, IMAX - 1
  470. IF( CABS1( AP( KX ) ).GT.ROWMAX ) THEN
  471. ROWMAX = CABS1( AP( KX ) )
  472. JMAX = J
  473. END IF
  474. KX = KX + N - J
  475. 70 CONTINUE
  476. KPC = NPP - ( N-IMAX+1 )*( N-IMAX+2 ) / 2 + 1
  477. IF( IMAX.LT.N ) THEN
  478. JMAX = IMAX + ICAMAX( N-IMAX, AP( KPC+1 ), 1 )
  479. ROWMAX = MAX( ROWMAX, CABS1( AP( KPC+JMAX-IMAX ) ) )
  480. END IF
  481. *
  482. IF( ABSAKK.GE.ALPHA*COLMAX*( COLMAX / ROWMAX ) ) THEN
  483. *
  484. * no interchange, use 1-by-1 pivot block
  485. *
  486. KP = K
  487. ELSE IF( CABS1( AP( KPC ) ).GE.ALPHA*ROWMAX ) THEN
  488. *
  489. * interchange rows and columns K and IMAX, use 1-by-1
  490. * pivot block
  491. *
  492. KP = IMAX
  493. ELSE
  494. *
  495. * interchange rows and columns K+1 and IMAX, use 2-by-2
  496. * pivot block
  497. *
  498. KP = IMAX
  499. KSTEP = 2
  500. END IF
  501. END IF
  502. *
  503. KK = K + KSTEP - 1
  504. IF( KSTEP.EQ.2 )
  505. $ KNC = KNC + N - K + 1
  506. IF( KP.NE.KK ) THEN
  507. *
  508. * Interchange rows and columns KK and KP in the trailing
  509. * submatrix A(k:n,k:n)
  510. *
  511. IF( KP.LT.N )
  512. $ CALL CSWAP( N-KP, AP( KNC+KP-KK+1 ), 1, AP( KPC+1 ),
  513. $ 1 )
  514. KX = KNC + KP - KK
  515. DO 80 J = KK + 1, KP - 1
  516. KX = KX + N - J + 1
  517. T = AP( KNC+J-KK )
  518. AP( KNC+J-KK ) = AP( KX )
  519. AP( KX ) = T
  520. 80 CONTINUE
  521. T = AP( KNC )
  522. AP( KNC ) = AP( KPC )
  523. AP( KPC ) = T
  524. IF( KSTEP.EQ.2 ) THEN
  525. T = AP( KC+1 )
  526. AP( KC+1 ) = AP( KC+KP-K )
  527. AP( KC+KP-K ) = T
  528. END IF
  529. END IF
  530. *
  531. * Update the trailing submatrix
  532. *
  533. IF( KSTEP.EQ.1 ) THEN
  534. *
  535. * 1-by-1 pivot block D(k): column k now holds
  536. *
  537. * W(k) = L(k)*D(k)
  538. *
  539. * where L(k) is the k-th column of L
  540. *
  541. IF( K.LT.N ) THEN
  542. *
  543. * Perform a rank-1 update of A(k+1:n,k+1:n) as
  544. *
  545. * A := A - L(k)*D(k)*L(k)**T = A - W(k)*(1/D(k))*W(k)**T
  546. *
  547. R1 = CONE / AP( KC )
  548. CALL CSPR( UPLO, N-K, -R1, AP( KC+1 ), 1,
  549. $ AP( KC+N-K+1 ) )
  550. *
  551. * Store L(k) in column K
  552. *
  553. CALL CSCAL( N-K, R1, AP( KC+1 ), 1 )
  554. END IF
  555. ELSE
  556. *
  557. * 2-by-2 pivot block D(k): columns K and K+1 now hold
  558. *
  559. * ( W(k) W(k+1) ) = ( L(k) L(k+1) )*D(k)
  560. *
  561. * where L(k) and L(k+1) are the k-th and (k+1)-th columns
  562. * of L
  563. *
  564. IF( K.LT.N-1 ) THEN
  565. *
  566. * Perform a rank-2 update of A(k+2:n,k+2:n) as
  567. *
  568. * A := A - ( L(k) L(k+1) )*D(k)*( L(k) L(k+1) )**T
  569. * = A - ( W(k) W(k+1) )*inv(D(k))*( W(k) W(k+1) )**T
  570. *
  571. * where L(k) and L(k+1) are the k-th and (k+1)-th
  572. * columns of L
  573. *
  574. D21 = AP( K+1+( K-1 )*( 2*N-K ) / 2 )
  575. D11 = AP( K+1+K*( 2*N-K-1 ) / 2 ) / D21
  576. D22 = AP( K+( K-1 )*( 2*N-K ) / 2 ) / D21
  577. T = CONE / ( D11*D22-CONE )
  578. D21 = T / D21
  579. *
  580. DO 100 J = K + 2, N
  581. WK = D21*( D11*AP( J+( K-1 )*( 2*N-K ) / 2 )-
  582. $ AP( J+K*( 2*N-K-1 ) / 2 ) )
  583. WKP1 = D21*( D22*AP( J+K*( 2*N-K-1 ) / 2 )-
  584. $ AP( J+( K-1 )*( 2*N-K ) / 2 ) )
  585. DO 90 I = J, N
  586. AP( I+( J-1 )*( 2*N-J ) / 2 ) = AP( I+( J-1 )*
  587. $ ( 2*N-J ) / 2 ) - AP( I+( K-1 )*( 2*N-K ) /
  588. $ 2 )*WK - AP( I+K*( 2*N-K-1 ) / 2 )*WKP1
  589. 90 CONTINUE
  590. AP( J+( K-1 )*( 2*N-K ) / 2 ) = WK
  591. AP( J+K*( 2*N-K-1 ) / 2 ) = WKP1
  592. 100 CONTINUE
  593. END IF
  594. END IF
  595. END IF
  596. *
  597. * Store details of the interchanges in IPIV
  598. *
  599. IF( KSTEP.EQ.1 ) THEN
  600. IPIV( K ) = KP
  601. ELSE
  602. IPIV( K ) = -KP
  603. IPIV( K+1 ) = -KP
  604. END IF
  605. *
  606. * Increase K and return to the start of the main loop
  607. *
  608. K = K + KSTEP
  609. KC = KNC + N - K + 2
  610. GO TO 60
  611. *
  612. END IF
  613. *
  614. 110 CONTINUE
  615. RETURN
  616. *
  617. * End of CSPTRF
  618. *
  619. END