You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

sspgvd.f 11 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364
  1. *> \brief \b SSPGVD
  2. *
  3. * =========== DOCUMENTATION ===========
  4. *
  5. * Online html documentation available at
  6. * http://www.netlib.org/lapack/explore-html/
  7. *
  8. *> \htmlonly
  9. *> Download SSPGVD + dependencies
  10. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/sspgvd.f">
  11. *> [TGZ]</a>
  12. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/sspgvd.f">
  13. *> [ZIP]</a>
  14. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/sspgvd.f">
  15. *> [TXT]</a>
  16. *> \endhtmlonly
  17. *
  18. * Definition:
  19. * ===========
  20. *
  21. * SUBROUTINE SSPGVD( ITYPE, JOBZ, UPLO, N, AP, BP, W, Z, LDZ, WORK,
  22. * LWORK, IWORK, LIWORK, INFO )
  23. *
  24. * .. Scalar Arguments ..
  25. * CHARACTER JOBZ, UPLO
  26. * INTEGER INFO, ITYPE, LDZ, LIWORK, LWORK, N
  27. * ..
  28. * .. Array Arguments ..
  29. * INTEGER IWORK( * )
  30. * REAL AP( * ), BP( * ), W( * ), WORK( * ),
  31. * $ Z( LDZ, * )
  32. * ..
  33. *
  34. *
  35. *> \par Purpose:
  36. * =============
  37. *>
  38. *> \verbatim
  39. *>
  40. *> SSPGVD computes all the eigenvalues, and optionally, the eigenvectors
  41. *> of a real generalized symmetric-definite eigenproblem, of the form
  42. *> A*x=(lambda)*B*x, A*Bx=(lambda)*x, or B*A*x=(lambda)*x. Here A and
  43. *> B are assumed to be symmetric, stored in packed format, and B is also
  44. *> positive definite.
  45. *> If eigenvectors are desired, it uses a divide and conquer algorithm.
  46. *>
  47. *> The divide and conquer algorithm makes very mild assumptions about
  48. *> floating point arithmetic. It will work on machines with a guard
  49. *> digit in add/subtract, or on those binary machines without guard
  50. *> digits which subtract like the Cray X-MP, Cray Y-MP, Cray C-90, or
  51. *> Cray-2. It could conceivably fail on hexadecimal or decimal machines
  52. *> without guard digits, but we know of none.
  53. *> \endverbatim
  54. *
  55. * Arguments:
  56. * ==========
  57. *
  58. *> \param[in] ITYPE
  59. *> \verbatim
  60. *> ITYPE is INTEGER
  61. *> Specifies the problem type to be solved:
  62. *> = 1: A*x = (lambda)*B*x
  63. *> = 2: A*B*x = (lambda)*x
  64. *> = 3: B*A*x = (lambda)*x
  65. *> \endverbatim
  66. *>
  67. *> \param[in] JOBZ
  68. *> \verbatim
  69. *> JOBZ is CHARACTER*1
  70. *> = 'N': Compute eigenvalues only;
  71. *> = 'V': Compute eigenvalues and eigenvectors.
  72. *> \endverbatim
  73. *>
  74. *> \param[in] UPLO
  75. *> \verbatim
  76. *> UPLO is CHARACTER*1
  77. *> = 'U': Upper triangles of A and B are stored;
  78. *> = 'L': Lower triangles of A and B are stored.
  79. *> \endverbatim
  80. *>
  81. *> \param[in] N
  82. *> \verbatim
  83. *> N is INTEGER
  84. *> The order of the matrices A and B. N >= 0.
  85. *> \endverbatim
  86. *>
  87. *> \param[in,out] AP
  88. *> \verbatim
  89. *> AP is REAL array, dimension (N*(N+1)/2)
  90. *> On entry, the upper or lower triangle of the symmetric matrix
  91. *> A, packed columnwise in a linear array. The j-th column of A
  92. *> is stored in the array AP as follows:
  93. *> if UPLO = 'U', AP(i + (j-1)*j/2) = A(i,j) for 1<=i<=j;
  94. *> if UPLO = 'L', AP(i + (j-1)*(2*n-j)/2) = A(i,j) for j<=i<=n.
  95. *>
  96. *> On exit, the contents of AP are destroyed.
  97. *> \endverbatim
  98. *>
  99. *> \param[in,out] BP
  100. *> \verbatim
  101. *> BP is REAL array, dimension (N*(N+1)/2)
  102. *> On entry, the upper or lower triangle of the symmetric matrix
  103. *> B, packed columnwise in a linear array. The j-th column of B
  104. *> is stored in the array BP as follows:
  105. *> if UPLO = 'U', BP(i + (j-1)*j/2) = B(i,j) for 1<=i<=j;
  106. *> if UPLO = 'L', BP(i + (j-1)*(2*n-j)/2) = B(i,j) for j<=i<=n.
  107. *>
  108. *> On exit, the triangular factor U or L from the Cholesky
  109. *> factorization B = U**T*U or B = L*L**T, in the same storage
  110. *> format as B.
  111. *> \endverbatim
  112. *>
  113. *> \param[out] W
  114. *> \verbatim
  115. *> W is REAL array, dimension (N)
  116. *> If INFO = 0, the eigenvalues in ascending order.
  117. *> \endverbatim
  118. *>
  119. *> \param[out] Z
  120. *> \verbatim
  121. *> Z is REAL array, dimension (LDZ, N)
  122. *> If JOBZ = 'V', then if INFO = 0, Z contains the matrix Z of
  123. *> eigenvectors. The eigenvectors are normalized as follows:
  124. *> if ITYPE = 1 or 2, Z**T*B*Z = I;
  125. *> if ITYPE = 3, Z**T*inv(B)*Z = I.
  126. *> If JOBZ = 'N', then Z is not referenced.
  127. *> \endverbatim
  128. *>
  129. *> \param[in] LDZ
  130. *> \verbatim
  131. *> LDZ is INTEGER
  132. *> The leading dimension of the array Z. LDZ >= 1, and if
  133. *> JOBZ = 'V', LDZ >= max(1,N).
  134. *> \endverbatim
  135. *>
  136. *> \param[out] WORK
  137. *> \verbatim
  138. *> WORK is REAL array, dimension (MAX(1,LWORK))
  139. *> On exit, if INFO = 0, WORK(1) returns the required LWORK.
  140. *> \endverbatim
  141. *>
  142. *> \param[in] LWORK
  143. *> \verbatim
  144. *> LWORK is INTEGER
  145. *> The dimension of the array WORK.
  146. *> If N <= 1, LWORK >= 1.
  147. *> If JOBZ = 'N' and N > 1, LWORK >= 2*N.
  148. *> If JOBZ = 'V' and N > 1, LWORK >= 1 + 6*N + 2*N**2.
  149. *>
  150. *> If LWORK = -1, then a workspace query is assumed; the routine
  151. *> only calculates the required sizes of the WORK and IWORK
  152. *> arrays, returns these values as the first entries of the WORK
  153. *> and IWORK arrays, and no error message related to LWORK or
  154. *> LIWORK is issued by XERBLA.
  155. *> \endverbatim
  156. *>
  157. *> \param[out] IWORK
  158. *> \verbatim
  159. *> IWORK is INTEGER array, dimension (MAX(1,LIWORK))
  160. *> On exit, if INFO = 0, IWORK(1) returns the required LIWORK.
  161. *> \endverbatim
  162. *>
  163. *> \param[in] LIWORK
  164. *> \verbatim
  165. *> LIWORK is INTEGER
  166. *> The dimension of the array IWORK.
  167. *> If JOBZ = 'N' or N <= 1, LIWORK >= 1.
  168. *> If JOBZ = 'V' and N > 1, LIWORK >= 3 + 5*N.
  169. *>
  170. *> If LIWORK = -1, then a workspace query is assumed; the
  171. *> routine only calculates the required sizes of the WORK and
  172. *> IWORK arrays, returns these values as the first entries of
  173. *> the WORK and IWORK arrays, and no error message related to
  174. *> LWORK or LIWORK is issued by XERBLA.
  175. *> \endverbatim
  176. *>
  177. *> \param[out] INFO
  178. *> \verbatim
  179. *> INFO is INTEGER
  180. *> = 0: successful exit
  181. *> < 0: if INFO = -i, the i-th argument had an illegal value
  182. *> > 0: SPPTRF or SSPEVD returned an error code:
  183. *> <= N: if INFO = i, SSPEVD failed to converge;
  184. *> i off-diagonal elements of an intermediate
  185. *> tridiagonal form did not converge to zero;
  186. *> > N: if INFO = N + i, for 1 <= i <= N, then the leading
  187. *> minor of order i of B is not positive definite.
  188. *> The factorization of B could not be completed and
  189. *> no eigenvalues or eigenvectors were computed.
  190. *> \endverbatim
  191. *
  192. * Authors:
  193. * ========
  194. *
  195. *> \author Univ. of Tennessee
  196. *> \author Univ. of California Berkeley
  197. *> \author Univ. of Colorado Denver
  198. *> \author NAG Ltd.
  199. *
  200. *> \date December 2016
  201. *
  202. *> \ingroup realOTHEReigen
  203. *
  204. *> \par Contributors:
  205. * ==================
  206. *>
  207. *> Mark Fahey, Department of Mathematics, Univ. of Kentucky, USA
  208. *
  209. * =====================================================================
  210. SUBROUTINE SSPGVD( ITYPE, JOBZ, UPLO, N, AP, BP, W, Z, LDZ, WORK,
  211. $ LWORK, IWORK, LIWORK, INFO )
  212. *
  213. * -- LAPACK driver routine (version 3.7.0) --
  214. * -- LAPACK is a software package provided by Univ. of Tennessee, --
  215. * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
  216. * December 2016
  217. *
  218. * .. Scalar Arguments ..
  219. CHARACTER JOBZ, UPLO
  220. INTEGER INFO, ITYPE, LDZ, LIWORK, LWORK, N
  221. * ..
  222. * .. Array Arguments ..
  223. INTEGER IWORK( * )
  224. REAL AP( * ), BP( * ), W( * ), WORK( * ),
  225. $ Z( LDZ, * )
  226. * ..
  227. *
  228. * =====================================================================
  229. *
  230. * .. Local Scalars ..
  231. LOGICAL LQUERY, UPPER, WANTZ
  232. CHARACTER TRANS
  233. INTEGER J, LIWMIN, LWMIN, NEIG
  234. * ..
  235. * .. External Functions ..
  236. LOGICAL LSAME
  237. EXTERNAL LSAME
  238. * ..
  239. * .. External Subroutines ..
  240. EXTERNAL SPPTRF, SSPEVD, SSPGST, STPMV, STPSV, XERBLA
  241. * ..
  242. * .. Intrinsic Functions ..
  243. INTRINSIC MAX, REAL
  244. * ..
  245. * .. Executable Statements ..
  246. *
  247. * Test the input parameters.
  248. *
  249. WANTZ = LSAME( JOBZ, 'V' )
  250. UPPER = LSAME( UPLO, 'U' )
  251. LQUERY = ( LWORK.EQ.-1 .OR. LIWORK.EQ.-1 )
  252. *
  253. INFO = 0
  254. IF( ITYPE.LT.1 .OR. ITYPE.GT.3 ) THEN
  255. INFO = -1
  256. ELSE IF( .NOT.( WANTZ .OR. LSAME( JOBZ, 'N' ) ) ) THEN
  257. INFO = -2
  258. ELSE IF( .NOT.( UPPER .OR. LSAME( UPLO, 'L' ) ) ) THEN
  259. INFO = -3
  260. ELSE IF( N.LT.0 ) THEN
  261. INFO = -4
  262. ELSE IF( LDZ.LT.1 .OR. ( WANTZ .AND. LDZ.LT.N ) ) THEN
  263. INFO = -9
  264. END IF
  265. *
  266. IF( INFO.EQ.0 ) THEN
  267. IF( N.LE.1 ) THEN
  268. LIWMIN = 1
  269. LWMIN = 1
  270. ELSE
  271. IF( WANTZ ) THEN
  272. LIWMIN = 3 + 5*N
  273. LWMIN = 1 + 6*N + 2*N**2
  274. ELSE
  275. LIWMIN = 1
  276. LWMIN = 2*N
  277. END IF
  278. END IF
  279. WORK( 1 ) = LWMIN
  280. IWORK( 1 ) = LIWMIN
  281. IF( LWORK.LT.LWMIN .AND. .NOT.LQUERY ) THEN
  282. INFO = -11
  283. ELSE IF( LIWORK.LT.LIWMIN .AND. .NOT.LQUERY ) THEN
  284. INFO = -13
  285. END IF
  286. END IF
  287. *
  288. IF( INFO.NE.0 ) THEN
  289. CALL XERBLA( 'SSPGVD', -INFO )
  290. RETURN
  291. ELSE IF( LQUERY ) THEN
  292. RETURN
  293. END IF
  294. *
  295. * Quick return if possible
  296. *
  297. IF( N.EQ.0 )
  298. $ RETURN
  299. *
  300. * Form a Cholesky factorization of BP.
  301. *
  302. CALL SPPTRF( UPLO, N, BP, INFO )
  303. IF( INFO.NE.0 ) THEN
  304. INFO = N + INFO
  305. RETURN
  306. END IF
  307. *
  308. * Transform problem to standard eigenvalue problem and solve.
  309. *
  310. CALL SSPGST( ITYPE, UPLO, N, AP, BP, INFO )
  311. CALL SSPEVD( JOBZ, UPLO, N, AP, W, Z, LDZ, WORK, LWORK, IWORK,
  312. $ LIWORK, INFO )
  313. LWMIN = MAX( REAL( LWMIN ), REAL( WORK( 1 ) ) )
  314. LIWMIN = MAX( REAL( LIWMIN ), REAL( IWORK( 1 ) ) )
  315. *
  316. IF( WANTZ ) THEN
  317. *
  318. * Backtransform eigenvectors to the original problem.
  319. *
  320. NEIG = N
  321. IF( INFO.GT.0 )
  322. $ NEIG = INFO - 1
  323. IF( ITYPE.EQ.1 .OR. ITYPE.EQ.2 ) THEN
  324. *
  325. * For A*x=(lambda)*B*x and A*B*x=(lambda)*x;
  326. * backtransform eigenvectors: x = inv(L)**T *y or inv(U)*y
  327. *
  328. IF( UPPER ) THEN
  329. TRANS = 'N'
  330. ELSE
  331. TRANS = 'T'
  332. END IF
  333. *
  334. DO 10 J = 1, NEIG
  335. CALL STPSV( UPLO, TRANS, 'Non-unit', N, BP, Z( 1, J ),
  336. $ 1 )
  337. 10 CONTINUE
  338. *
  339. ELSE IF( ITYPE.EQ.3 ) THEN
  340. *
  341. * For B*A*x=(lambda)*x;
  342. * backtransform eigenvectors: x = L*y or U**T *y
  343. *
  344. IF( UPPER ) THEN
  345. TRANS = 'T'
  346. ELSE
  347. TRANS = 'N'
  348. END IF
  349. *
  350. DO 20 J = 1, NEIG
  351. CALL STPMV( UPLO, TRANS, 'Non-unit', N, BP, Z( 1, J ),
  352. $ 1 )
  353. 20 CONTINUE
  354. END IF
  355. END IF
  356. *
  357. WORK( 1 ) = LWMIN
  358. IWORK( 1 ) = LIWMIN
  359. *
  360. RETURN
  361. *
  362. * End of SSPGVD
  363. *
  364. END