You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

srqt03.f 7.8 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279
  1. *> \brief \b SRQT03
  2. *
  3. * =========== DOCUMENTATION ===========
  4. *
  5. * Online html documentation available at
  6. * http://www.netlib.org/lapack/explore-html/
  7. *
  8. * Definition:
  9. * ===========
  10. *
  11. * SUBROUTINE SRQT03( M, N, K, AF, C, CC, Q, LDA, TAU, WORK, LWORK,
  12. * RWORK, RESULT )
  13. *
  14. * .. Scalar Arguments ..
  15. * INTEGER K, LDA, LWORK, M, N
  16. * ..
  17. * .. Array Arguments ..
  18. * REAL AF( LDA, * ), C( LDA, * ), CC( LDA, * ),
  19. * $ Q( LDA, * ), RESULT( * ), RWORK( * ), TAU( * ),
  20. * $ WORK( LWORK )
  21. * ..
  22. *
  23. *
  24. *> \par Purpose:
  25. * =============
  26. *>
  27. *> \verbatim
  28. *>
  29. *> SRQT03 tests SORMRQ, which computes Q*C, Q'*C, C*Q or C*Q'.
  30. *>
  31. *> SRQT03 compares the results of a call to SORMRQ with the results of
  32. *> forming Q explicitly by a call to SORGRQ and then performing matrix
  33. *> multiplication by a call to SGEMM.
  34. *> \endverbatim
  35. *
  36. * Arguments:
  37. * ==========
  38. *
  39. *> \param[in] M
  40. *> \verbatim
  41. *> M is INTEGER
  42. *> The number of rows or columns of the matrix C; C is n-by-m if
  43. *> Q is applied from the left, or m-by-n if Q is applied from
  44. *> the right. M >= 0.
  45. *> \endverbatim
  46. *>
  47. *> \param[in] N
  48. *> \verbatim
  49. *> N is INTEGER
  50. *> The order of the orthogonal matrix Q. N >= 0.
  51. *> \endverbatim
  52. *>
  53. *> \param[in] K
  54. *> \verbatim
  55. *> K is INTEGER
  56. *> The number of elementary reflectors whose product defines the
  57. *> orthogonal matrix Q. N >= K >= 0.
  58. *> \endverbatim
  59. *>
  60. *> \param[in] AF
  61. *> \verbatim
  62. *> AF is REAL array, dimension (LDA,N)
  63. *> Details of the RQ factorization of an m-by-n matrix, as
  64. *> returned by SGERQF. See SGERQF for further details.
  65. *> \endverbatim
  66. *>
  67. *> \param[out] C
  68. *> \verbatim
  69. *> C is REAL array, dimension (LDA,N)
  70. *> \endverbatim
  71. *>
  72. *> \param[out] CC
  73. *> \verbatim
  74. *> CC is REAL array, dimension (LDA,N)
  75. *> \endverbatim
  76. *>
  77. *> \param[out] Q
  78. *> \verbatim
  79. *> Q is REAL array, dimension (LDA,N)
  80. *> \endverbatim
  81. *>
  82. *> \param[in] LDA
  83. *> \verbatim
  84. *> LDA is INTEGER
  85. *> The leading dimension of the arrays AF, C, CC, and Q.
  86. *> \endverbatim
  87. *>
  88. *> \param[in] TAU
  89. *> \verbatim
  90. *> TAU is REAL array, dimension (min(M,N))
  91. *> The scalar factors of the elementary reflectors corresponding
  92. *> to the RQ factorization in AF.
  93. *> \endverbatim
  94. *>
  95. *> \param[out] WORK
  96. *> \verbatim
  97. *> WORK is REAL array, dimension (LWORK)
  98. *> \endverbatim
  99. *>
  100. *> \param[in] LWORK
  101. *> \verbatim
  102. *> LWORK is INTEGER
  103. *> The length of WORK. LWORK must be at least M, and should be
  104. *> M*NB, where NB is the blocksize for this environment.
  105. *> \endverbatim
  106. *>
  107. *> \param[out] RWORK
  108. *> \verbatim
  109. *> RWORK is REAL array, dimension (M)
  110. *> \endverbatim
  111. *>
  112. *> \param[out] RESULT
  113. *> \verbatim
  114. *> RESULT is REAL array, dimension (4)
  115. *> The test ratios compare two techniques for multiplying a
  116. *> random matrix C by an n-by-n orthogonal matrix Q.
  117. *> RESULT(1) = norm( Q*C - Q*C ) / ( N * norm(C) * EPS )
  118. *> RESULT(2) = norm( C*Q - C*Q ) / ( N * norm(C) * EPS )
  119. *> RESULT(3) = norm( Q'*C - Q'*C )/ ( N * norm(C) * EPS )
  120. *> RESULT(4) = norm( C*Q' - C*Q' )/ ( N * norm(C) * EPS )
  121. *> \endverbatim
  122. *
  123. * Authors:
  124. * ========
  125. *
  126. *> \author Univ. of Tennessee
  127. *> \author Univ. of California Berkeley
  128. *> \author Univ. of Colorado Denver
  129. *> \author NAG Ltd.
  130. *
  131. *> \ingroup single_lin
  132. *
  133. * =====================================================================
  134. SUBROUTINE SRQT03( M, N, K, AF, C, CC, Q, LDA, TAU, WORK, LWORK,
  135. $ RWORK, RESULT )
  136. *
  137. * -- LAPACK test routine --
  138. * -- LAPACK is a software package provided by Univ. of Tennessee, --
  139. * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
  140. *
  141. * .. Scalar Arguments ..
  142. INTEGER K, LDA, LWORK, M, N
  143. * ..
  144. * .. Array Arguments ..
  145. REAL AF( LDA, * ), C( LDA, * ), CC( LDA, * ),
  146. $ Q( LDA, * ), RESULT( * ), RWORK( * ), TAU( * ),
  147. $ WORK( LWORK )
  148. * ..
  149. *
  150. * =====================================================================
  151. *
  152. * .. Parameters ..
  153. REAL ZERO, ONE
  154. PARAMETER ( ZERO = 0.0E0, ONE = 1.0E0 )
  155. REAL ROGUE
  156. PARAMETER ( ROGUE = -1.0E+10 )
  157. * ..
  158. * .. Local Scalars ..
  159. CHARACTER SIDE, TRANS
  160. INTEGER INFO, ISIDE, ITRANS, J, MC, MINMN, NC
  161. REAL CNORM, EPS, RESID
  162. * ..
  163. * .. External Functions ..
  164. LOGICAL LSAME
  165. REAL SLAMCH, SLANGE
  166. EXTERNAL LSAME, SLAMCH, SLANGE
  167. * ..
  168. * .. External Subroutines ..
  169. EXTERNAL SGEMM, SLACPY, SLARNV, SLASET, SORGRQ, SORMRQ
  170. * ..
  171. * .. Local Arrays ..
  172. INTEGER ISEED( 4 )
  173. * ..
  174. * .. Intrinsic Functions ..
  175. INTRINSIC MAX, MIN, REAL
  176. * ..
  177. * .. Scalars in Common ..
  178. CHARACTER*32 SRNAMT
  179. * ..
  180. * .. Common blocks ..
  181. COMMON / SRNAMC / SRNAMT
  182. * ..
  183. * .. Data statements ..
  184. DATA ISEED / 1988, 1989, 1990, 1991 /
  185. * ..
  186. * .. Executable Statements ..
  187. *
  188. EPS = SLAMCH( 'Epsilon' )
  189. MINMN = MIN( M, N )
  190. *
  191. * Quick return if possible
  192. *
  193. IF( MINMN.EQ.0 ) THEN
  194. RESULT( 1 ) = ZERO
  195. RESULT( 2 ) = ZERO
  196. RESULT( 3 ) = ZERO
  197. RESULT( 4 ) = ZERO
  198. RETURN
  199. END IF
  200. *
  201. * Copy the last k rows of the factorization to the array Q
  202. *
  203. CALL SLASET( 'Full', N, N, ROGUE, ROGUE, Q, LDA )
  204. IF( K.GT.0 .AND. N.GT.K )
  205. $ CALL SLACPY( 'Full', K, N-K, AF( M-K+1, 1 ), LDA,
  206. $ Q( N-K+1, 1 ), LDA )
  207. IF( K.GT.1 )
  208. $ CALL SLACPY( 'Lower', K-1, K-1, AF( M-K+2, N-K+1 ), LDA,
  209. $ Q( N-K+2, N-K+1 ), LDA )
  210. *
  211. * Generate the n-by-n matrix Q
  212. *
  213. SRNAMT = 'SORGRQ'
  214. CALL SORGRQ( N, N, K, Q, LDA, TAU( MINMN-K+1 ), WORK, LWORK,
  215. $ INFO )
  216. *
  217. DO 30 ISIDE = 1, 2
  218. IF( ISIDE.EQ.1 ) THEN
  219. SIDE = 'L'
  220. MC = N
  221. NC = M
  222. ELSE
  223. SIDE = 'R'
  224. MC = M
  225. NC = N
  226. END IF
  227. *
  228. * Generate MC by NC matrix C
  229. *
  230. DO 10 J = 1, NC
  231. CALL SLARNV( 2, ISEED, MC, C( 1, J ) )
  232. 10 CONTINUE
  233. CNORM = SLANGE( '1', MC, NC, C, LDA, RWORK )
  234. IF( CNORM.EQ.0.0 )
  235. $ CNORM = ONE
  236. *
  237. DO 20 ITRANS = 1, 2
  238. IF( ITRANS.EQ.1 ) THEN
  239. TRANS = 'N'
  240. ELSE
  241. TRANS = 'T'
  242. END IF
  243. *
  244. * Copy C
  245. *
  246. CALL SLACPY( 'Full', MC, NC, C, LDA, CC, LDA )
  247. *
  248. * Apply Q or Q' to C
  249. *
  250. SRNAMT = 'SORMRQ'
  251. IF( K.GT.0 )
  252. $ CALL SORMRQ( SIDE, TRANS, MC, NC, K, AF( M-K+1, 1 ), LDA,
  253. $ TAU( MINMN-K+1 ), CC, LDA, WORK, LWORK,
  254. $ INFO )
  255. *
  256. * Form explicit product and subtract
  257. *
  258. IF( LSAME( SIDE, 'L' ) ) THEN
  259. CALL SGEMM( TRANS, 'No transpose', MC, NC, MC, -ONE, Q,
  260. $ LDA, C, LDA, ONE, CC, LDA )
  261. ELSE
  262. CALL SGEMM( 'No transpose', TRANS, MC, NC, NC, -ONE, C,
  263. $ LDA, Q, LDA, ONE, CC, LDA )
  264. END IF
  265. *
  266. * Compute error in the difference
  267. *
  268. RESID = SLANGE( '1', MC, NC, CC, LDA, RWORK )
  269. RESULT( ( ISIDE-1 )*2+ITRANS ) = RESID /
  270. $ ( REAL( MAX( 1, N ) )*CNORM*EPS )
  271. *
  272. 20 CONTINUE
  273. 30 CONTINUE
  274. *
  275. RETURN
  276. *
  277. * End of SRQT03
  278. *
  279. END