You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

sdrvgt.f 19 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590
  1. *> \brief \b SDRVGT
  2. *
  3. * =========== DOCUMENTATION ===========
  4. *
  5. * Online html documentation available at
  6. * http://www.netlib.org/lapack/explore-html/
  7. *
  8. * Definition:
  9. * ===========
  10. *
  11. * SUBROUTINE SDRVGT( DOTYPE, NN, NVAL, NRHS, THRESH, TSTERR, A, AF,
  12. * B, X, XACT, WORK, RWORK, IWORK, NOUT )
  13. *
  14. * .. Scalar Arguments ..
  15. * LOGICAL TSTERR
  16. * INTEGER NN, NOUT, NRHS
  17. * REAL THRESH
  18. * ..
  19. * .. Array Arguments ..
  20. * LOGICAL DOTYPE( * )
  21. * INTEGER IWORK( * ), NVAL( * )
  22. * REAL A( * ), AF( * ), B( * ), RWORK( * ), WORK( * ),
  23. * $ X( * ), XACT( * )
  24. * ..
  25. *
  26. *
  27. *> \par Purpose:
  28. * =============
  29. *>
  30. *> \verbatim
  31. *>
  32. *> SDRVGT tests SGTSV and -SVX.
  33. *> \endverbatim
  34. *
  35. * Arguments:
  36. * ==========
  37. *
  38. *> \param[in] DOTYPE
  39. *> \verbatim
  40. *> DOTYPE is LOGICAL array, dimension (NTYPES)
  41. *> The matrix types to be used for testing. Matrices of type j
  42. *> (for 1 <= j <= NTYPES) are used for testing if DOTYPE(j) =
  43. *> .TRUE.; if DOTYPE(j) = .FALSE., then type j is not used.
  44. *> \endverbatim
  45. *>
  46. *> \param[in] NN
  47. *> \verbatim
  48. *> NN is INTEGER
  49. *> The number of values of N contained in the vector NVAL.
  50. *> \endverbatim
  51. *>
  52. *> \param[in] NVAL
  53. *> \verbatim
  54. *> NVAL is INTEGER array, dimension (NN)
  55. *> The values of the matrix dimension N.
  56. *> \endverbatim
  57. *>
  58. *> \param[in] NRHS
  59. *> \verbatim
  60. *> NRHS is INTEGER
  61. *> The number of right hand sides, NRHS >= 0.
  62. *> \endverbatim
  63. *>
  64. *> \param[in] THRESH
  65. *> \verbatim
  66. *> THRESH is REAL
  67. *> The threshold value for the test ratios. A result is
  68. *> included in the output file if RESULT >= THRESH. To have
  69. *> every test ratio printed, use THRESH = 0.
  70. *> \endverbatim
  71. *>
  72. *> \param[in] TSTERR
  73. *> \verbatim
  74. *> TSTERR is LOGICAL
  75. *> Flag that indicates whether error exits are to be tested.
  76. *> \endverbatim
  77. *>
  78. *> \param[out] A
  79. *> \verbatim
  80. *> A is REAL array, dimension (NMAX*4)
  81. *> \endverbatim
  82. *>
  83. *> \param[out] AF
  84. *> \verbatim
  85. *> AF is REAL array, dimension (NMAX*4)
  86. *> \endverbatim
  87. *>
  88. *> \param[out] B
  89. *> \verbatim
  90. *> B is REAL array, dimension (NMAX*NRHS)
  91. *> \endverbatim
  92. *>
  93. *> \param[out] X
  94. *> \verbatim
  95. *> X is REAL array, dimension (NMAX*NRHS)
  96. *> \endverbatim
  97. *>
  98. *> \param[out] XACT
  99. *> \verbatim
  100. *> XACT is REAL array, dimension (NMAX*NRHS)
  101. *> \endverbatim
  102. *>
  103. *> \param[out] WORK
  104. *> \verbatim
  105. *> WORK is REAL array, dimension
  106. *> (NMAX*max(3,NRHS))
  107. *> \endverbatim
  108. *>
  109. *> \param[out] RWORK
  110. *> \verbatim
  111. *> RWORK is REAL array, dimension
  112. *> (max(NMAX,2*NRHS))
  113. *> \endverbatim
  114. *>
  115. *> \param[out] IWORK
  116. *> \verbatim
  117. *> IWORK is INTEGER array, dimension (2*NMAX)
  118. *> \endverbatim
  119. *>
  120. *> \param[in] NOUT
  121. *> \verbatim
  122. *> NOUT is INTEGER
  123. *> The unit number for output.
  124. *> \endverbatim
  125. *
  126. * Authors:
  127. * ========
  128. *
  129. *> \author Univ. of Tennessee
  130. *> \author Univ. of California Berkeley
  131. *> \author Univ. of Colorado Denver
  132. *> \author NAG Ltd.
  133. *
  134. *> \ingroup single_lin
  135. *
  136. * =====================================================================
  137. SUBROUTINE SDRVGT( DOTYPE, NN, NVAL, NRHS, THRESH, TSTERR, A, AF,
  138. $ B, X, XACT, WORK, RWORK, IWORK, NOUT )
  139. *
  140. * -- LAPACK test routine --
  141. * -- LAPACK is a software package provided by Univ. of Tennessee, --
  142. * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
  143. *
  144. * .. Scalar Arguments ..
  145. LOGICAL TSTERR
  146. INTEGER NN, NOUT, NRHS
  147. REAL THRESH
  148. * ..
  149. * .. Array Arguments ..
  150. LOGICAL DOTYPE( * )
  151. INTEGER IWORK( * ), NVAL( * )
  152. REAL A( * ), AF( * ), B( * ), RWORK( * ), WORK( * ),
  153. $ X( * ), XACT( * )
  154. * ..
  155. *
  156. * =====================================================================
  157. *
  158. * .. Parameters ..
  159. REAL ONE, ZERO
  160. PARAMETER ( ONE = 1.0E+0, ZERO = 0.0E+0 )
  161. INTEGER NTYPES
  162. PARAMETER ( NTYPES = 12 )
  163. INTEGER NTESTS
  164. PARAMETER ( NTESTS = 6 )
  165. * ..
  166. * .. Local Scalars ..
  167. LOGICAL TRFCON, ZEROT
  168. CHARACTER DIST, FACT, TRANS, TYPE
  169. CHARACTER*3 PATH
  170. INTEGER I, IFACT, IMAT, IN, INFO, ITRAN, IX, IZERO, J,
  171. $ K, K1, KL, KOFF, KU, LDA, M, MODE, N, NERRS,
  172. $ NFAIL, NIMAT, NRUN, NT
  173. REAL AINVNM, ANORM, ANORMI, ANORMO, COND, RCOND,
  174. $ RCONDC, RCONDI, RCONDO
  175. * ..
  176. * .. Local Arrays ..
  177. CHARACTER TRANSS( 3 )
  178. INTEGER ISEED( 4 ), ISEEDY( 4 )
  179. REAL RESULT( NTESTS ), Z( 3 )
  180. * ..
  181. * .. External Functions ..
  182. REAL SASUM, SGET06, SLANGT
  183. EXTERNAL SASUM, SGET06, SLANGT
  184. * ..
  185. * .. External Subroutines ..
  186. EXTERNAL ALADHD, ALAERH, ALASVM, SCOPY, SERRVX, SGET04,
  187. $ SGTSV, SGTSVX, SGTT01, SGTT02, SGTT05, SGTTRF,
  188. $ SGTTRS, SLACPY, SLAGTM, SLARNV, SLASET, SLATB4,
  189. $ SLATMS, SSCAL
  190. * ..
  191. * .. Intrinsic Functions ..
  192. INTRINSIC MAX
  193. * ..
  194. * .. Scalars in Common ..
  195. LOGICAL LERR, OK
  196. CHARACTER*32 SRNAMT
  197. INTEGER INFOT, NUNIT
  198. * ..
  199. * .. Common blocks ..
  200. COMMON / INFOC / INFOT, NUNIT, OK, LERR
  201. COMMON / SRNAMC / SRNAMT
  202. * ..
  203. * .. Data statements ..
  204. DATA ISEEDY / 0, 0, 0, 1 / , TRANSS / 'N', 'T',
  205. $ 'C' /
  206. * ..
  207. * .. Executable Statements ..
  208. *
  209. PATH( 1: 1 ) = 'Single precision'
  210. PATH( 2: 3 ) = 'GT'
  211. NRUN = 0
  212. NFAIL = 0
  213. NERRS = 0
  214. DO 10 I = 1, 4
  215. ISEED( I ) = ISEEDY( I )
  216. 10 CONTINUE
  217. *
  218. * Test the error exits
  219. *
  220. IF( TSTERR )
  221. $ CALL SERRVX( PATH, NOUT )
  222. INFOT = 0
  223. *
  224. DO 140 IN = 1, NN
  225. *
  226. * Do for each value of N in NVAL.
  227. *
  228. N = NVAL( IN )
  229. M = MAX( N-1, 0 )
  230. LDA = MAX( 1, N )
  231. NIMAT = NTYPES
  232. IF( N.LE.0 )
  233. $ NIMAT = 1
  234. *
  235. DO 130 IMAT = 1, NIMAT
  236. *
  237. * Do the tests only if DOTYPE( IMAT ) is true.
  238. *
  239. IF( .NOT.DOTYPE( IMAT ) )
  240. $ GO TO 130
  241. *
  242. * Set up parameters with SLATB4.
  243. *
  244. CALL SLATB4( PATH, IMAT, N, N, TYPE, KL, KU, ANORM, MODE,
  245. $ COND, DIST )
  246. *
  247. ZEROT = IMAT.GE.8 .AND. IMAT.LE.10
  248. IF( IMAT.LE.6 ) THEN
  249. *
  250. * Types 1-6: generate matrices of known condition number.
  251. *
  252. KOFF = MAX( 2-KU, 3-MAX( 1, N ) )
  253. SRNAMT = 'SLATMS'
  254. CALL SLATMS( N, N, DIST, ISEED, TYPE, RWORK, MODE, COND,
  255. $ ANORM, KL, KU, 'Z', AF( KOFF ), 3, WORK,
  256. $ INFO )
  257. *
  258. * Check the error code from SLATMS.
  259. *
  260. IF( INFO.NE.0 ) THEN
  261. CALL ALAERH( PATH, 'SLATMS', INFO, 0, ' ', N, N, KL,
  262. $ KU, -1, IMAT, NFAIL, NERRS, NOUT )
  263. GO TO 130
  264. END IF
  265. IZERO = 0
  266. *
  267. IF( N.GT.1 ) THEN
  268. CALL SCOPY( N-1, AF( 4 ), 3, A, 1 )
  269. CALL SCOPY( N-1, AF( 3 ), 3, A( N+M+1 ), 1 )
  270. END IF
  271. CALL SCOPY( N, AF( 2 ), 3, A( M+1 ), 1 )
  272. ELSE
  273. *
  274. * Types 7-12: generate tridiagonal matrices with
  275. * unknown condition numbers.
  276. *
  277. IF( .NOT.ZEROT .OR. .NOT.DOTYPE( 7 ) ) THEN
  278. *
  279. * Generate a matrix with elements from [-1,1].
  280. *
  281. CALL SLARNV( 2, ISEED, N+2*M, A )
  282. IF( ANORM.NE.ONE )
  283. $ CALL SSCAL( N+2*M, ANORM, A, 1 )
  284. ELSE IF( IZERO.GT.0 ) THEN
  285. *
  286. * Reuse the last matrix by copying back the zeroed out
  287. * elements.
  288. *
  289. IF( IZERO.EQ.1 ) THEN
  290. A( N ) = Z( 2 )
  291. IF( N.GT.1 )
  292. $ A( 1 ) = Z( 3 )
  293. ELSE IF( IZERO.EQ.N ) THEN
  294. A( 3*N-2 ) = Z( 1 )
  295. A( 2*N-1 ) = Z( 2 )
  296. ELSE
  297. A( 2*N-2+IZERO ) = Z( 1 )
  298. A( N-1+IZERO ) = Z( 2 )
  299. A( IZERO ) = Z( 3 )
  300. END IF
  301. END IF
  302. *
  303. * If IMAT > 7, set one column of the matrix to 0.
  304. *
  305. IF( .NOT.ZEROT ) THEN
  306. IZERO = 0
  307. ELSE IF( IMAT.EQ.8 ) THEN
  308. IZERO = 1
  309. Z( 2 ) = A( N )
  310. A( N ) = ZERO
  311. IF( N.GT.1 ) THEN
  312. Z( 3 ) = A( 1 )
  313. A( 1 ) = ZERO
  314. END IF
  315. ELSE IF( IMAT.EQ.9 ) THEN
  316. IZERO = N
  317. Z( 1 ) = A( 3*N-2 )
  318. Z( 2 ) = A( 2*N-1 )
  319. A( 3*N-2 ) = ZERO
  320. A( 2*N-1 ) = ZERO
  321. ELSE
  322. IZERO = ( N+1 ) / 2
  323. DO 20 I = IZERO, N - 1
  324. A( 2*N-2+I ) = ZERO
  325. A( N-1+I ) = ZERO
  326. A( I ) = ZERO
  327. 20 CONTINUE
  328. A( 3*N-2 ) = ZERO
  329. A( 2*N-1 ) = ZERO
  330. END IF
  331. END IF
  332. *
  333. DO 120 IFACT = 1, 2
  334. IF( IFACT.EQ.1 ) THEN
  335. FACT = 'F'
  336. ELSE
  337. FACT = 'N'
  338. END IF
  339. *
  340. * Compute the condition number for comparison with
  341. * the value returned by SGTSVX.
  342. *
  343. IF( ZEROT ) THEN
  344. IF( IFACT.EQ.1 )
  345. $ GO TO 120
  346. RCONDO = ZERO
  347. RCONDI = ZERO
  348. *
  349. ELSE IF( IFACT.EQ.1 ) THEN
  350. CALL SCOPY( N+2*M, A, 1, AF, 1 )
  351. *
  352. * Compute the 1-norm and infinity-norm of A.
  353. *
  354. ANORMO = SLANGT( '1', N, A, A( M+1 ), A( N+M+1 ) )
  355. ANORMI = SLANGT( 'I', N, A, A( M+1 ), A( N+M+1 ) )
  356. *
  357. * Factor the matrix A.
  358. *
  359. CALL SGTTRF( N, AF, AF( M+1 ), AF( N+M+1 ),
  360. $ AF( N+2*M+1 ), IWORK, INFO )
  361. *
  362. * Use SGTTRS to solve for one column at a time of
  363. * inv(A), computing the maximum column sum as we go.
  364. *
  365. AINVNM = ZERO
  366. DO 40 I = 1, N
  367. DO 30 J = 1, N
  368. X( J ) = ZERO
  369. 30 CONTINUE
  370. X( I ) = ONE
  371. CALL SGTTRS( 'No transpose', N, 1, AF, AF( M+1 ),
  372. $ AF( N+M+1 ), AF( N+2*M+1 ), IWORK, X,
  373. $ LDA, INFO )
  374. AINVNM = MAX( AINVNM, SASUM( N, X, 1 ) )
  375. 40 CONTINUE
  376. *
  377. * Compute the 1-norm condition number of A.
  378. *
  379. IF( ANORMO.LE.ZERO .OR. AINVNM.LE.ZERO ) THEN
  380. RCONDO = ONE
  381. ELSE
  382. RCONDO = ( ONE / ANORMO ) / AINVNM
  383. END IF
  384. *
  385. * Use SGTTRS to solve for one column at a time of
  386. * inv(A'), computing the maximum column sum as we go.
  387. *
  388. AINVNM = ZERO
  389. DO 60 I = 1, N
  390. DO 50 J = 1, N
  391. X( J ) = ZERO
  392. 50 CONTINUE
  393. X( I ) = ONE
  394. CALL SGTTRS( 'Transpose', N, 1, AF, AF( M+1 ),
  395. $ AF( N+M+1 ), AF( N+2*M+1 ), IWORK, X,
  396. $ LDA, INFO )
  397. AINVNM = MAX( AINVNM, SASUM( N, X, 1 ) )
  398. 60 CONTINUE
  399. *
  400. * Compute the infinity-norm condition number of A.
  401. *
  402. IF( ANORMI.LE.ZERO .OR. AINVNM.LE.ZERO ) THEN
  403. RCONDI = ONE
  404. ELSE
  405. RCONDI = ( ONE / ANORMI ) / AINVNM
  406. END IF
  407. END IF
  408. *
  409. DO 110 ITRAN = 1, 3
  410. TRANS = TRANSS( ITRAN )
  411. IF( ITRAN.EQ.1 ) THEN
  412. RCONDC = RCONDO
  413. ELSE
  414. RCONDC = RCONDI
  415. END IF
  416. *
  417. * Generate NRHS random solution vectors.
  418. *
  419. IX = 1
  420. DO 70 J = 1, NRHS
  421. CALL SLARNV( 2, ISEED, N, XACT( IX ) )
  422. IX = IX + LDA
  423. 70 CONTINUE
  424. *
  425. * Set the right hand side.
  426. *
  427. CALL SLAGTM( TRANS, N, NRHS, ONE, A, A( M+1 ),
  428. $ A( N+M+1 ), XACT, LDA, ZERO, B, LDA )
  429. *
  430. IF( IFACT.EQ.2 .AND. ITRAN.EQ.1 ) THEN
  431. *
  432. * --- Test SGTSV ---
  433. *
  434. * Solve the system using Gaussian elimination with
  435. * partial pivoting.
  436. *
  437. CALL SCOPY( N+2*M, A, 1, AF, 1 )
  438. CALL SLACPY( 'Full', N, NRHS, B, LDA, X, LDA )
  439. *
  440. SRNAMT = 'SGTSV '
  441. CALL SGTSV( N, NRHS, AF, AF( M+1 ), AF( N+M+1 ), X,
  442. $ LDA, INFO )
  443. *
  444. * Check error code from SGTSV .
  445. *
  446. IF( INFO.NE.IZERO )
  447. $ CALL ALAERH( PATH, 'SGTSV ', INFO, IZERO, ' ',
  448. $ N, N, 1, 1, NRHS, IMAT, NFAIL,
  449. $ NERRS, NOUT )
  450. NT = 1
  451. IF( IZERO.EQ.0 ) THEN
  452. *
  453. * Check residual of computed solution.
  454. *
  455. CALL SLACPY( 'Full', N, NRHS, B, LDA, WORK,
  456. $ LDA )
  457. CALL SGTT02( TRANS, N, NRHS, A, A( M+1 ),
  458. $ A( N+M+1 ), X, LDA, WORK, LDA,
  459. $ RESULT( 2 ) )
  460. *
  461. * Check solution from generated exact solution.
  462. *
  463. CALL SGET04( N, NRHS, X, LDA, XACT, LDA, RCONDC,
  464. $ RESULT( 3 ) )
  465. NT = 3
  466. END IF
  467. *
  468. * Print information about the tests that did not pass
  469. * the threshold.
  470. *
  471. DO 80 K = 2, NT
  472. IF( RESULT( K ).GE.THRESH ) THEN
  473. IF( NFAIL.EQ.0 .AND. NERRS.EQ.0 )
  474. $ CALL ALADHD( NOUT, PATH )
  475. WRITE( NOUT, FMT = 9999 )'SGTSV ', N, IMAT,
  476. $ K, RESULT( K )
  477. NFAIL = NFAIL + 1
  478. END IF
  479. 80 CONTINUE
  480. NRUN = NRUN + NT - 1
  481. END IF
  482. *
  483. * --- Test SGTSVX ---
  484. *
  485. IF( IFACT.GT.1 ) THEN
  486. *
  487. * Initialize AF to zero.
  488. *
  489. DO 90 I = 1, 3*N - 2
  490. AF( I ) = ZERO
  491. 90 CONTINUE
  492. END IF
  493. CALL SLASET( 'Full', N, NRHS, ZERO, ZERO, X, LDA )
  494. *
  495. * Solve the system and compute the condition number and
  496. * error bounds using SGTSVX.
  497. *
  498. SRNAMT = 'SGTSVX'
  499. CALL SGTSVX( FACT, TRANS, N, NRHS, A, A( M+1 ),
  500. $ A( N+M+1 ), AF, AF( M+1 ), AF( N+M+1 ),
  501. $ AF( N+2*M+1 ), IWORK, B, LDA, X, LDA,
  502. $ RCOND, RWORK, RWORK( NRHS+1 ), WORK,
  503. $ IWORK( N+1 ), INFO )
  504. *
  505. * Check the error code from SGTSVX.
  506. *
  507. IF( INFO.NE.IZERO )
  508. $ CALL ALAERH( PATH, 'SGTSVX', INFO, IZERO,
  509. $ FACT // TRANS, N, N, 1, 1, NRHS, IMAT,
  510. $ NFAIL, NERRS, NOUT )
  511. *
  512. IF( IFACT.GE.2 ) THEN
  513. *
  514. * Reconstruct matrix from factors and compute
  515. * residual.
  516. *
  517. CALL SGTT01( N, A, A( M+1 ), A( N+M+1 ), AF,
  518. $ AF( M+1 ), AF( N+M+1 ), AF( N+2*M+1 ),
  519. $ IWORK, WORK, LDA, RWORK, RESULT( 1 ) )
  520. K1 = 1
  521. ELSE
  522. K1 = 2
  523. END IF
  524. *
  525. IF( INFO.EQ.0 ) THEN
  526. TRFCON = .FALSE.
  527. *
  528. * Check residual of computed solution.
  529. *
  530. CALL SLACPY( 'Full', N, NRHS, B, LDA, WORK, LDA )
  531. CALL SGTT02( TRANS, N, NRHS, A, A( M+1 ),
  532. $ A( N+M+1 ), X, LDA, WORK, LDA,
  533. $ RESULT( 2 ) )
  534. *
  535. * Check solution from generated exact solution.
  536. *
  537. CALL SGET04( N, NRHS, X, LDA, XACT, LDA, RCONDC,
  538. $ RESULT( 3 ) )
  539. *
  540. * Check the error bounds from iterative refinement.
  541. *
  542. CALL SGTT05( TRANS, N, NRHS, A, A( M+1 ),
  543. $ A( N+M+1 ), B, LDA, X, LDA, XACT, LDA,
  544. $ RWORK, RWORK( NRHS+1 ), RESULT( 4 ) )
  545. NT = 5
  546. END IF
  547. *
  548. * Print information about the tests that did not pass
  549. * the threshold.
  550. *
  551. DO 100 K = K1, NT
  552. IF( RESULT( K ).GE.THRESH ) THEN
  553. IF( NFAIL.EQ.0 .AND. NERRS.EQ.0 )
  554. $ CALL ALADHD( NOUT, PATH )
  555. WRITE( NOUT, FMT = 9998 )'SGTSVX', FACT, TRANS,
  556. $ N, IMAT, K, RESULT( K )
  557. NFAIL = NFAIL + 1
  558. END IF
  559. 100 CONTINUE
  560. *
  561. * Check the reciprocal of the condition number.
  562. *
  563. RESULT( 6 ) = SGET06( RCOND, RCONDC )
  564. IF( RESULT( 6 ).GE.THRESH ) THEN
  565. IF( NFAIL.EQ.0 .AND. NERRS.EQ.0 )
  566. $ CALL ALADHD( NOUT, PATH )
  567. WRITE( NOUT, FMT = 9998 )'SGTSVX', FACT, TRANS, N,
  568. $ IMAT, K, RESULT( K )
  569. NFAIL = NFAIL + 1
  570. END IF
  571. NRUN = NRUN + NT - K1 + 2
  572. *
  573. 110 CONTINUE
  574. 120 CONTINUE
  575. 130 CONTINUE
  576. 140 CONTINUE
  577. *
  578. * Print a summary of the results.
  579. *
  580. CALL ALASVM( PATH, NOUT, NFAIL, NRUN, NERRS )
  581. *
  582. 9999 FORMAT( 1X, A, ', N =', I5, ', type ', I2, ', test ', I2,
  583. $ ', ratio = ', G12.5 )
  584. 9998 FORMAT( 1X, A, ', FACT=''', A1, ''', TRANS=''', A1, ''', N =',
  585. $ I5, ', type ', I2, ', test ', I2, ', ratio = ', G12.5 )
  586. RETURN
  587. *
  588. * End of SDRVGT
  589. *
  590. END