You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

cgetf2.f 5.5 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198
  1. *> \brief \b CGETF2 computes the LU factorization of a general m-by-n matrix using partial pivoting with row interchanges (unblocked algorithm).
  2. *
  3. * =========== DOCUMENTATION ===========
  4. *
  5. * Online html documentation available at
  6. * http://www.netlib.org/lapack/explore-html/
  7. *
  8. *> \htmlonly
  9. *> Download CGETF2 + dependencies
  10. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/cgetf2.f">
  11. *> [TGZ]</a>
  12. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/cgetf2.f">
  13. *> [ZIP]</a>
  14. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/cgetf2.f">
  15. *> [TXT]</a>
  16. *> \endhtmlonly
  17. *
  18. * Definition:
  19. * ===========
  20. *
  21. * SUBROUTINE CGETF2( M, N, A, LDA, IPIV, INFO )
  22. *
  23. * .. Scalar Arguments ..
  24. * INTEGER INFO, LDA, M, N
  25. * ..
  26. * .. Array Arguments ..
  27. * INTEGER IPIV( * )
  28. * COMPLEX A( LDA, * )
  29. * ..
  30. *
  31. *
  32. *> \par Purpose:
  33. * =============
  34. *>
  35. *> \verbatim
  36. *>
  37. *> CGETF2 computes an LU factorization of a general m-by-n matrix A
  38. *> using partial pivoting with row interchanges.
  39. *>
  40. *> The factorization has the form
  41. *> A = P * L * U
  42. *> where P is a permutation matrix, L is lower triangular with unit
  43. *> diagonal elements (lower trapezoidal if m > n), and U is upper
  44. *> triangular (upper trapezoidal if m < n).
  45. *>
  46. *> This is the right-looking Level 2 BLAS version of the algorithm.
  47. *> \endverbatim
  48. *
  49. * Arguments:
  50. * ==========
  51. *
  52. *> \param[in] M
  53. *> \verbatim
  54. *> M is INTEGER
  55. *> The number of rows of the matrix A. M >= 0.
  56. *> \endverbatim
  57. *>
  58. *> \param[in] N
  59. *> \verbatim
  60. *> N is INTEGER
  61. *> The number of columns of the matrix A. N >= 0.
  62. *> \endverbatim
  63. *>
  64. *> \param[in,out] A
  65. *> \verbatim
  66. *> A is COMPLEX array, dimension (LDA,N)
  67. *> On entry, the m by n matrix to be factored.
  68. *> On exit, the factors L and U from the factorization
  69. *> A = P*L*U; the unit diagonal elements of L are not stored.
  70. *> \endverbatim
  71. *>
  72. *> \param[in] LDA
  73. *> \verbatim
  74. *> LDA is INTEGER
  75. *> The leading dimension of the array A. LDA >= max(1,M).
  76. *> \endverbatim
  77. *>
  78. *> \param[out] IPIV
  79. *> \verbatim
  80. *> IPIV is INTEGER array, dimension (min(M,N))
  81. *> The pivot indices; for 1 <= i <= min(M,N), row i of the
  82. *> matrix was interchanged with row IPIV(i).
  83. *> \endverbatim
  84. *>
  85. *> \param[out] INFO
  86. *> \verbatim
  87. *> INFO is INTEGER
  88. *> = 0: successful exit
  89. *> < 0: if INFO = -k, the k-th argument had an illegal value
  90. *> > 0: if INFO = k, U(k,k) is exactly zero. The factorization
  91. *> has been completed, but the factor U is exactly
  92. *> singular, and division by zero will occur if it is used
  93. *> to solve a system of equations.
  94. *> \endverbatim
  95. *
  96. * Authors:
  97. * ========
  98. *
  99. *> \author Univ. of Tennessee
  100. *> \author Univ. of California Berkeley
  101. *> \author Univ. of Colorado Denver
  102. *> \author NAG Ltd.
  103. *
  104. *> \ingroup getf2
  105. *
  106. * =====================================================================
  107. SUBROUTINE CGETF2( M, N, A, LDA, IPIV, INFO )
  108. *
  109. * -- LAPACK computational routine --
  110. * -- LAPACK is a software package provided by Univ. of Tennessee, --
  111. * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
  112. *
  113. * .. Scalar Arguments ..
  114. INTEGER INFO, LDA, M, N
  115. * ..
  116. * .. Array Arguments ..
  117. INTEGER IPIV( * )
  118. COMPLEX A( LDA, * )
  119. * ..
  120. *
  121. * =====================================================================
  122. *
  123. * .. Parameters ..
  124. COMPLEX ONE, ZERO
  125. PARAMETER ( ONE = ( 1.0E+0, 0.0E+0 ),
  126. $ ZERO = ( 0.0E+0, 0.0E+0 ) )
  127. * ..
  128. * .. Local Scalars ..
  129. INTEGER J, JP
  130. * ..
  131. * .. External Functions ..
  132. INTEGER ICAMAX
  133. EXTERNAL ICAMAX
  134. * ..
  135. * .. External Subroutines ..
  136. EXTERNAL CGERU, CRSCL, CSWAP, XERBLA
  137. * ..
  138. * .. Intrinsic Functions ..
  139. INTRINSIC MAX, MIN
  140. * ..
  141. * .. Executable Statements ..
  142. *
  143. * Test the input parameters.
  144. *
  145. INFO = 0
  146. IF( M.LT.0 ) THEN
  147. INFO = -1
  148. ELSE IF( N.LT.0 ) THEN
  149. INFO = -2
  150. ELSE IF( LDA.LT.MAX( 1, M ) ) THEN
  151. INFO = -4
  152. END IF
  153. IF( INFO.NE.0 ) THEN
  154. CALL XERBLA( 'CGETF2', -INFO )
  155. RETURN
  156. END IF
  157. *
  158. * Quick return if possible
  159. *
  160. IF( M.EQ.0 .OR. N.EQ.0 )
  161. $ RETURN
  162. *
  163. DO 10 J = 1, MIN( M, N )
  164. *
  165. * Find pivot and test for singularity.
  166. *
  167. JP = J - 1 + ICAMAX( M-J+1, A( J, J ), 1 )
  168. IPIV( J ) = JP
  169. IF( A( JP, J ).NE.ZERO ) THEN
  170. *
  171. * Apply the interchange to columns 1:N.
  172. *
  173. IF( JP.NE.J )
  174. $ CALL CSWAP( N, A( J, 1 ), LDA, A( JP, 1 ), LDA )
  175. *
  176. * Compute elements J+1:M of J-th column.
  177. *
  178. IF( J.LT.M )
  179. $ CALL CRSCL( M-J, A( J, J ), A( J+1, J ), 1 )
  180. *
  181. ELSE IF( INFO.EQ.0 ) THEN
  182. *
  183. INFO = J
  184. END IF
  185. *
  186. IF( J.LT.MIN( M, N ) ) THEN
  187. *
  188. * Update trailing submatrix.
  189. *
  190. CALL CGERU( M-J, N-J, -ONE, A( J+1, J ), 1, A( J, J+1 ),
  191. $ LDA, A( J+1, J+1 ), LDA )
  192. END IF
  193. 10 CONTINUE
  194. RETURN
  195. *
  196. * End of CGETF2
  197. *
  198. END