You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

zunbdb4.f 13 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382
  1. *> \brief \b ZUNBDB4
  2. *
  3. * =========== DOCUMENTATION ===========
  4. *
  5. * Online html documentation available at
  6. * http://www.netlib.org/lapack/explore-html/
  7. *
  8. *> \htmlonly
  9. *> Download ZUNBDB4 + dependencies
  10. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/zunbdb4.f">
  11. *> [TGZ]</a>
  12. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/zunbdb4.f">
  13. *> [ZIP]</a>
  14. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/zunbdb4.f">
  15. *> [TXT]</a>
  16. *> \endhtmlonly
  17. *
  18. * Definition:
  19. * ===========
  20. *
  21. * SUBROUTINE ZUNBDB4( M, P, Q, X11, LDX11, X21, LDX21, THETA, PHI,
  22. * TAUP1, TAUP2, TAUQ1, PHANTOM, WORK, LWORK,
  23. * INFO )
  24. *
  25. * .. Scalar Arguments ..
  26. * INTEGER INFO, LWORK, M, P, Q, LDX11, LDX21
  27. * ..
  28. * .. Array Arguments ..
  29. * DOUBLE PRECISION PHI(*), THETA(*)
  30. * COMPLEX*16 PHANTOM(*), TAUP1(*), TAUP2(*), TAUQ1(*),
  31. * $ WORK(*), X11(LDX11,*), X21(LDX21,*)
  32. * ..
  33. *
  34. *
  35. *> \par Purpose:
  36. * =============
  37. *>
  38. *>\verbatim
  39. *>
  40. *> ZUNBDB4 simultaneously bidiagonalizes the blocks of a tall and skinny
  41. *> matrix X with orthonormal columns:
  42. *>
  43. *> [ B11 ]
  44. *> [ X11 ] [ P1 | ] [ 0 ]
  45. *> [-----] = [---------] [-----] Q1**T .
  46. *> [ X21 ] [ | P2 ] [ B21 ]
  47. *> [ 0 ]
  48. *>
  49. *> X11 is P-by-Q, and X21 is (M-P)-by-Q. M-Q must be no larger than P,
  50. *> M-P, or Q. Routines ZUNBDB1, ZUNBDB2, and ZUNBDB3 handle cases in
  51. *> which M-Q is not the minimum dimension.
  52. *>
  53. *> The unitary matrices P1, P2, and Q1 are P-by-P, (M-P)-by-(M-P),
  54. *> and (M-Q)-by-(M-Q), respectively. They are represented implicitly by
  55. *> Householder vectors.
  56. *>
  57. *> B11 and B12 are (M-Q)-by-(M-Q) bidiagonal matrices represented
  58. *> implicitly by angles THETA, PHI.
  59. *>
  60. *>\endverbatim
  61. *
  62. * Arguments:
  63. * ==========
  64. *
  65. *> \param[in] M
  66. *> \verbatim
  67. *> M is INTEGER
  68. *> The number of rows X11 plus the number of rows in X21.
  69. *> \endverbatim
  70. *>
  71. *> \param[in] P
  72. *> \verbatim
  73. *> P is INTEGER
  74. *> The number of rows in X11. 0 <= P <= M.
  75. *> \endverbatim
  76. *>
  77. *> \param[in] Q
  78. *> \verbatim
  79. *> Q is INTEGER
  80. *> The number of columns in X11 and X21. 0 <= Q <= M and
  81. *> M-Q <= min(P,M-P,Q).
  82. *> \endverbatim
  83. *>
  84. *> \param[in,out] X11
  85. *> \verbatim
  86. *> X11 is COMPLEX*16 array, dimension (LDX11,Q)
  87. *> On entry, the top block of the matrix X to be reduced. On
  88. *> exit, the columns of tril(X11) specify reflectors for P1 and
  89. *> the rows of triu(X11,1) specify reflectors for Q1.
  90. *> \endverbatim
  91. *>
  92. *> \param[in] LDX11
  93. *> \verbatim
  94. *> LDX11 is INTEGER
  95. *> The leading dimension of X11. LDX11 >= P.
  96. *> \endverbatim
  97. *>
  98. *> \param[in,out] X21
  99. *> \verbatim
  100. *> X21 is COMPLEX*16 array, dimension (LDX21,Q)
  101. *> On entry, the bottom block of the matrix X to be reduced. On
  102. *> exit, the columns of tril(X21) specify reflectors for P2.
  103. *> \endverbatim
  104. *>
  105. *> \param[in] LDX21
  106. *> \verbatim
  107. *> LDX21 is INTEGER
  108. *> The leading dimension of X21. LDX21 >= M-P.
  109. *> \endverbatim
  110. *>
  111. *> \param[out] THETA
  112. *> \verbatim
  113. *> THETA is DOUBLE PRECISION array, dimension (Q)
  114. *> The entries of the bidiagonal blocks B11, B21 are defined by
  115. *> THETA and PHI. See Further Details.
  116. *> \endverbatim
  117. *>
  118. *> \param[out] PHI
  119. *> \verbatim
  120. *> PHI is DOUBLE PRECISION array, dimension (Q-1)
  121. *> The entries of the bidiagonal blocks B11, B21 are defined by
  122. *> THETA and PHI. See Further Details.
  123. *> \endverbatim
  124. *>
  125. *> \param[out] TAUP1
  126. *> \verbatim
  127. *> TAUP1 is COMPLEX*16 array, dimension (M-Q)
  128. *> The scalar factors of the elementary reflectors that define
  129. *> P1.
  130. *> \endverbatim
  131. *>
  132. *> \param[out] TAUP2
  133. *> \verbatim
  134. *> TAUP2 is COMPLEX*16 array, dimension (M-Q)
  135. *> The scalar factors of the elementary reflectors that define
  136. *> P2.
  137. *> \endverbatim
  138. *>
  139. *> \param[out] TAUQ1
  140. *> \verbatim
  141. *> TAUQ1 is COMPLEX*16 array, dimension (Q)
  142. *> The scalar factors of the elementary reflectors that define
  143. *> Q1.
  144. *> \endverbatim
  145. *>
  146. *> \param[out] PHANTOM
  147. *> \verbatim
  148. *> PHANTOM is COMPLEX*16 array, dimension (M)
  149. *> The routine computes an M-by-1 column vector Y that is
  150. *> orthogonal to the columns of [ X11; X21 ]. PHANTOM(1:P) and
  151. *> PHANTOM(P+1:M) contain Householder vectors for Y(1:P) and
  152. *> Y(P+1:M), respectively.
  153. *> \endverbatim
  154. *>
  155. *> \param[out] WORK
  156. *> \verbatim
  157. *> WORK is COMPLEX*16 array, dimension (LWORK)
  158. *> \endverbatim
  159. *>
  160. *> \param[in] LWORK
  161. *> \verbatim
  162. *> LWORK is INTEGER
  163. *> The dimension of the array WORK. LWORK >= M-Q.
  164. *>
  165. *> If LWORK = -1, then a workspace query is assumed; the routine
  166. *> only calculates the optimal size of the WORK array, returns
  167. *> this value as the first entry of the WORK array, and no error
  168. *> message related to LWORK is issued by XERBLA.
  169. *> \endverbatim
  170. *>
  171. *> \param[out] INFO
  172. *> \verbatim
  173. *> INFO is INTEGER
  174. *> = 0: successful exit.
  175. *> < 0: if INFO = -i, the i-th argument had an illegal value.
  176. *> \endverbatim
  177. *
  178. * Authors:
  179. * ========
  180. *
  181. *> \author Univ. of Tennessee
  182. *> \author Univ. of California Berkeley
  183. *> \author Univ. of Colorado Denver
  184. *> \author NAG Ltd.
  185. *
  186. *> \ingroup complex16OTHERcomputational
  187. *
  188. *> \par Further Details:
  189. * =====================
  190. *>
  191. *> \verbatim
  192. *>
  193. *> The upper-bidiagonal blocks B11, B21 are represented implicitly by
  194. *> angles THETA(1), ..., THETA(Q) and PHI(1), ..., PHI(Q-1). Every entry
  195. *> in each bidiagonal band is a product of a sine or cosine of a THETA
  196. *> with a sine or cosine of a PHI. See [1] or ZUNCSD for details.
  197. *>
  198. *> P1, P2, and Q1 are represented as products of elementary reflectors.
  199. *> See ZUNCSD2BY1 for details on generating P1, P2, and Q1 using ZUNGQR
  200. *> and ZUNGLQ.
  201. *> \endverbatim
  202. *
  203. *> \par References:
  204. * ================
  205. *>
  206. *> [1] Brian D. Sutton. Computing the complete CS decomposition. Numer.
  207. *> Algorithms, 50(1):33-65, 2009.
  208. *>
  209. * =====================================================================
  210. SUBROUTINE ZUNBDB4( M, P, Q, X11, LDX11, X21, LDX21, THETA, PHI,
  211. $ TAUP1, TAUP2, TAUQ1, PHANTOM, WORK, LWORK,
  212. $ INFO )
  213. *
  214. * -- LAPACK computational routine --
  215. * -- LAPACK is a software package provided by Univ. of Tennessee, --
  216. * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
  217. *
  218. * .. Scalar Arguments ..
  219. INTEGER INFO, LWORK, M, P, Q, LDX11, LDX21
  220. * ..
  221. * .. Array Arguments ..
  222. DOUBLE PRECISION PHI(*), THETA(*)
  223. COMPLEX*16 PHANTOM(*), TAUP1(*), TAUP2(*), TAUQ1(*),
  224. $ WORK(*), X11(LDX11,*), X21(LDX21,*)
  225. * ..
  226. *
  227. * ====================================================================
  228. *
  229. * .. Parameters ..
  230. COMPLEX*16 NEGONE, ONE, ZERO
  231. PARAMETER ( NEGONE = (-1.0D0,0.0D0), ONE = (1.0D0,0.0D0),
  232. $ ZERO = (0.0D0,0.0D0) )
  233. * ..
  234. * .. Local Scalars ..
  235. DOUBLE PRECISION C, S
  236. INTEGER CHILDINFO, I, ILARF, IORBDB5, J, LLARF,
  237. $ LORBDB5, LWORKMIN, LWORKOPT
  238. LOGICAL LQUERY
  239. * ..
  240. * .. External Subroutines ..
  241. EXTERNAL ZLARF, ZLARFGP, ZUNBDB5, ZDROT, ZSCAL, ZLACGV,
  242. $ XERBLA
  243. * ..
  244. * .. External Functions ..
  245. DOUBLE PRECISION DZNRM2
  246. EXTERNAL DZNRM2
  247. * ..
  248. * .. Intrinsic Function ..
  249. INTRINSIC ATAN2, COS, MAX, SIN, SQRT
  250. * ..
  251. * .. Executable Statements ..
  252. *
  253. * Test input arguments
  254. *
  255. INFO = 0
  256. LQUERY = LWORK .EQ. -1
  257. *
  258. IF( M .LT. 0 ) THEN
  259. INFO = -1
  260. ELSE IF( P .LT. M-Q .OR. M-P .LT. M-Q ) THEN
  261. INFO = -2
  262. ELSE IF( Q .LT. M-Q .OR. Q .GT. M ) THEN
  263. INFO = -3
  264. ELSE IF( LDX11 .LT. MAX( 1, P ) ) THEN
  265. INFO = -5
  266. ELSE IF( LDX21 .LT. MAX( 1, M-P ) ) THEN
  267. INFO = -7
  268. END IF
  269. *
  270. * Compute workspace
  271. *
  272. IF( INFO .EQ. 0 ) THEN
  273. ILARF = 2
  274. LLARF = MAX( Q-1, P-1, M-P-1 )
  275. IORBDB5 = 2
  276. LORBDB5 = Q
  277. LWORKOPT = ILARF + LLARF - 1
  278. LWORKOPT = MAX( LWORKOPT, IORBDB5 + LORBDB5 - 1 )
  279. LWORKMIN = LWORKOPT
  280. WORK(1) = LWORKOPT
  281. IF( LWORK .LT. LWORKMIN .AND. .NOT.LQUERY ) THEN
  282. INFO = -14
  283. END IF
  284. END IF
  285. IF( INFO .NE. 0 ) THEN
  286. CALL XERBLA( 'ZUNBDB4', -INFO )
  287. RETURN
  288. ELSE IF( LQUERY ) THEN
  289. RETURN
  290. END IF
  291. *
  292. * Reduce columns 1, ..., M-Q of X11 and X21
  293. *
  294. DO I = 1, M-Q
  295. *
  296. IF( I .EQ. 1 ) THEN
  297. DO J = 1, M
  298. PHANTOM(J) = ZERO
  299. END DO
  300. CALL ZUNBDB5( P, M-P, Q, PHANTOM(1), 1, PHANTOM(P+1), 1,
  301. $ X11, LDX11, X21, LDX21, WORK(IORBDB5),
  302. $ LORBDB5, CHILDINFO )
  303. CALL ZSCAL( P, NEGONE, PHANTOM(1), 1 )
  304. CALL ZLARFGP( P, PHANTOM(1), PHANTOM(2), 1, TAUP1(1) )
  305. CALL ZLARFGP( M-P, PHANTOM(P+1), PHANTOM(P+2), 1, TAUP2(1) )
  306. THETA(I) = ATAN2( DBLE( PHANTOM(1) ), DBLE( PHANTOM(P+1) ) )
  307. C = COS( THETA(I) )
  308. S = SIN( THETA(I) )
  309. PHANTOM(1) = ONE
  310. PHANTOM(P+1) = ONE
  311. CALL ZLARF( 'L', P, Q, PHANTOM(1), 1, DCONJG(TAUP1(1)), X11,
  312. $ LDX11, WORK(ILARF) )
  313. CALL ZLARF( 'L', M-P, Q, PHANTOM(P+1), 1, DCONJG(TAUP2(1)),
  314. $ X21, LDX21, WORK(ILARF) )
  315. ELSE
  316. CALL ZUNBDB5( P-I+1, M-P-I+1, Q-I+1, X11(I,I-1), 1,
  317. $ X21(I,I-1), 1, X11(I,I), LDX11, X21(I,I),
  318. $ LDX21, WORK(IORBDB5), LORBDB5, CHILDINFO )
  319. CALL ZSCAL( P-I+1, NEGONE, X11(I,I-1), 1 )
  320. CALL ZLARFGP( P-I+1, X11(I,I-1), X11(I+1,I-1), 1, TAUP1(I) )
  321. CALL ZLARFGP( M-P-I+1, X21(I,I-1), X21(I+1,I-1), 1,
  322. $ TAUP2(I) )
  323. THETA(I) = ATAN2( DBLE( X11(I,I-1) ), DBLE( X21(I,I-1) ) )
  324. C = COS( THETA(I) )
  325. S = SIN( THETA(I) )
  326. X11(I,I-1) = ONE
  327. X21(I,I-1) = ONE
  328. CALL ZLARF( 'L', P-I+1, Q-I+1, X11(I,I-1), 1,
  329. $ DCONJG(TAUP1(I)), X11(I,I), LDX11, WORK(ILARF) )
  330. CALL ZLARF( 'L', M-P-I+1, Q-I+1, X21(I,I-1), 1,
  331. $ DCONJG(TAUP2(I)), X21(I,I), LDX21, WORK(ILARF) )
  332. END IF
  333. *
  334. CALL ZDROT( Q-I+1, X11(I,I), LDX11, X21(I,I), LDX21, S, -C )
  335. CALL ZLACGV( Q-I+1, X21(I,I), LDX21 )
  336. CALL ZLARFGP( Q-I+1, X21(I,I), X21(I,I+1), LDX21, TAUQ1(I) )
  337. C = DBLE( X21(I,I) )
  338. X21(I,I) = ONE
  339. CALL ZLARF( 'R', P-I, Q-I+1, X21(I,I), LDX21, TAUQ1(I),
  340. $ X11(I+1,I), LDX11, WORK(ILARF) )
  341. CALL ZLARF( 'R', M-P-I, Q-I+1, X21(I,I), LDX21, TAUQ1(I),
  342. $ X21(I+1,I), LDX21, WORK(ILARF) )
  343. CALL ZLACGV( Q-I+1, X21(I,I), LDX21 )
  344. IF( I .LT. M-Q ) THEN
  345. S = SQRT( DZNRM2( P-I, X11(I+1,I), 1 )**2
  346. $ + DZNRM2( M-P-I, X21(I+1,I), 1 )**2 )
  347. PHI(I) = ATAN2( S, C )
  348. END IF
  349. *
  350. END DO
  351. *
  352. * Reduce the bottom-right portion of X11 to [ I 0 ]
  353. *
  354. DO I = M - Q + 1, P
  355. CALL ZLACGV( Q-I+1, X11(I,I), LDX11 )
  356. CALL ZLARFGP( Q-I+1, X11(I,I), X11(I,I+1), LDX11, TAUQ1(I) )
  357. X11(I,I) = ONE
  358. CALL ZLARF( 'R', P-I, Q-I+1, X11(I,I), LDX11, TAUQ1(I),
  359. $ X11(I+1,I), LDX11, WORK(ILARF) )
  360. CALL ZLARF( 'R', Q-P, Q-I+1, X11(I,I), LDX11, TAUQ1(I),
  361. $ X21(M-Q+1,I), LDX21, WORK(ILARF) )
  362. CALL ZLACGV( Q-I+1, X11(I,I), LDX11 )
  363. END DO
  364. *
  365. * Reduce the bottom-right portion of X21 to [ 0 I ]
  366. *
  367. DO I = P + 1, Q
  368. CALL ZLACGV( Q-I+1, X21(M-Q+I-P,I), LDX21 )
  369. CALL ZLARFGP( Q-I+1, X21(M-Q+I-P,I), X21(M-Q+I-P,I+1), LDX21,
  370. $ TAUQ1(I) )
  371. X21(M-Q+I-P,I) = ONE
  372. CALL ZLARF( 'R', Q-I, Q-I+1, X21(M-Q+I-P,I), LDX21, TAUQ1(I),
  373. $ X21(M-Q+I-P+1,I), LDX21, WORK(ILARF) )
  374. CALL ZLACGV( Q-I+1, X21(M-Q+I-P,I), LDX21 )
  375. END DO
  376. *
  377. RETURN
  378. *
  379. * End of ZUNBDB4
  380. *
  381. END