You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

zlasyf_rook.f 28 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897
  1. *> \brief \b ZLASYF_ROOK computes a partial factorization of a complex symmetric matrix using the bounded Bunch-Kaufman ("rook") diagonal pivoting method.
  2. *
  3. * =========== DOCUMENTATION ===========
  4. *
  5. * Online html documentation available at
  6. * http://www.netlib.org/lapack/explore-html/
  7. *
  8. *> \htmlonly
  9. *> Download ZLASYF_ROOK + dependencies
  10. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/zlasyf_rook.f">
  11. *> [TGZ]</a>
  12. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/zlasyf_rook.f">
  13. *> [ZIP]</a>
  14. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/zlasyf_rook.f">
  15. *> [TXT]</a>
  16. *> \endhtmlonly
  17. *
  18. * Definition:
  19. * ===========
  20. *
  21. * SUBROUTINE ZLASYF_ROOK( UPLO, N, NB, KB, A, LDA, IPIV, W, LDW, INFO )
  22. *
  23. * .. Scalar Arguments ..
  24. * CHARACTER UPLO
  25. * INTEGER INFO, KB, LDA, LDW, N, NB
  26. * ..
  27. * .. Array Arguments ..
  28. * INTEGER IPIV( * )
  29. * COMPLEX*16 A( LDA, * ), W( LDW, * )
  30. * ..
  31. *
  32. *
  33. *> \par Purpose:
  34. * =============
  35. *>
  36. *> \verbatim
  37. *>
  38. *> ZLASYF_ROOK computes a partial factorization of a complex symmetric
  39. *> matrix A using the bounded Bunch-Kaufman ("rook") diagonal
  40. *> pivoting method. The partial factorization has the form:
  41. *>
  42. *> A = ( I U12 ) ( A11 0 ) ( I 0 ) if UPLO = 'U', or:
  43. *> ( 0 U22 ) ( 0 D ) ( U12**T U22**T )
  44. *>
  45. *> A = ( L11 0 ) ( D 0 ) ( L11**T L21**T ) if UPLO = 'L'
  46. *> ( L21 I ) ( 0 A22 ) ( 0 I )
  47. *>
  48. *> where the order of D is at most NB. The actual order is returned in
  49. *> the argument KB, and is either NB or NB-1, or N if N <= NB.
  50. *>
  51. *> ZLASYF_ROOK is an auxiliary routine called by ZSYTRF_ROOK. It uses
  52. *> blocked code (calling Level 3 BLAS) to update the submatrix
  53. *> A11 (if UPLO = 'U') or A22 (if UPLO = 'L').
  54. *> \endverbatim
  55. *
  56. * Arguments:
  57. * ==========
  58. *
  59. *> \param[in] UPLO
  60. *> \verbatim
  61. *> UPLO is CHARACTER*1
  62. *> Specifies whether the upper or lower triangular part of the
  63. *> symmetric matrix A is stored:
  64. *> = 'U': Upper triangular
  65. *> = 'L': Lower triangular
  66. *> \endverbatim
  67. *>
  68. *> \param[in] N
  69. *> \verbatim
  70. *> N is INTEGER
  71. *> The order of the matrix A. N >= 0.
  72. *> \endverbatim
  73. *>
  74. *> \param[in] NB
  75. *> \verbatim
  76. *> NB is INTEGER
  77. *> The maximum number of columns of the matrix A that should be
  78. *> factored. NB should be at least 2 to allow for 2-by-2 pivot
  79. *> blocks.
  80. *> \endverbatim
  81. *>
  82. *> \param[out] KB
  83. *> \verbatim
  84. *> KB is INTEGER
  85. *> The number of columns of A that were actually factored.
  86. *> KB is either NB-1 or NB, or N if N <= NB.
  87. *> \endverbatim
  88. *>
  89. *> \param[in,out] A
  90. *> \verbatim
  91. *> A is COMPLEX*16 array, dimension (LDA,N)
  92. *> On entry, the symmetric matrix A. If UPLO = 'U', the leading
  93. *> n-by-n upper triangular part of A contains the upper
  94. *> triangular part of the matrix A, and the strictly lower
  95. *> triangular part of A is not referenced. If UPLO = 'L', the
  96. *> leading n-by-n lower triangular part of A contains the lower
  97. *> triangular part of the matrix A, and the strictly upper
  98. *> triangular part of A is not referenced.
  99. *> On exit, A contains details of the partial factorization.
  100. *> \endverbatim
  101. *>
  102. *> \param[in] LDA
  103. *> \verbatim
  104. *> LDA is INTEGER
  105. *> The leading dimension of the array A. LDA >= max(1,N).
  106. *> \endverbatim
  107. *>
  108. *> \param[out] IPIV
  109. *> \verbatim
  110. *> IPIV is INTEGER array, dimension (N)
  111. *> Details of the interchanges and the block structure of D.
  112. *>
  113. *> If UPLO = 'U':
  114. *> Only the last KB elements of IPIV are set.
  115. *>
  116. *> If IPIV(k) > 0, then rows and columns k and IPIV(k) were
  117. *> interchanged and D(k,k) is a 1-by-1 diagonal block.
  118. *>
  119. *> If IPIV(k) < 0 and IPIV(k-1) < 0, then rows and
  120. *> columns k and -IPIV(k) were interchanged and rows and
  121. *> columns k-1 and -IPIV(k-1) were inerchaged,
  122. *> D(k-1:k,k-1:k) is a 2-by-2 diagonal block.
  123. *>
  124. *> If UPLO = 'L':
  125. *> Only the first KB elements of IPIV are set.
  126. *>
  127. *> If IPIV(k) > 0, then rows and columns k and IPIV(k)
  128. *> were interchanged and D(k,k) is a 1-by-1 diagonal block.
  129. *>
  130. *> If IPIV(k) < 0 and IPIV(k+1) < 0, then rows and
  131. *> columns k and -IPIV(k) were interchanged and rows and
  132. *> columns k+1 and -IPIV(k+1) were inerchaged,
  133. *> D(k:k+1,k:k+1) is a 2-by-2 diagonal block.
  134. *> \endverbatim
  135. *>
  136. *> \param[out] W
  137. *> \verbatim
  138. *> W is COMPLEX*16 array, dimension (LDW,NB)
  139. *> \endverbatim
  140. *>
  141. *> \param[in] LDW
  142. *> \verbatim
  143. *> LDW is INTEGER
  144. *> The leading dimension of the array W. LDW >= max(1,N).
  145. *> \endverbatim
  146. *>
  147. *> \param[out] INFO
  148. *> \verbatim
  149. *> INFO is INTEGER
  150. *> = 0: successful exit
  151. *> > 0: if INFO = k, D(k,k) is exactly zero. The factorization
  152. *> has been completed, but the block diagonal matrix D is
  153. *> exactly singular.
  154. *> \endverbatim
  155. *
  156. * Authors:
  157. * ========
  158. *
  159. *> \author Univ. of Tennessee
  160. *> \author Univ. of California Berkeley
  161. *> \author Univ. of Colorado Denver
  162. *> \author NAG Ltd.
  163. *
  164. *> \ingroup complex16SYcomputational
  165. *
  166. *> \par Contributors:
  167. * ==================
  168. *>
  169. *> \verbatim
  170. *>
  171. *> November 2013, Igor Kozachenko,
  172. *> Computer Science Division,
  173. *> University of California, Berkeley
  174. *>
  175. *> September 2007, Sven Hammarling, Nicholas J. Higham, Craig Lucas,
  176. *> School of Mathematics,
  177. *> University of Manchester
  178. *>
  179. *> \endverbatim
  180. *
  181. * =====================================================================
  182. SUBROUTINE ZLASYF_ROOK( UPLO, N, NB, KB, A, LDA, IPIV, W, LDW,
  183. $ INFO )
  184. *
  185. * -- LAPACK computational routine --
  186. * -- LAPACK is a software package provided by Univ. of Tennessee, --
  187. * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
  188. *
  189. * .. Scalar Arguments ..
  190. CHARACTER UPLO
  191. INTEGER INFO, KB, LDA, LDW, N, NB
  192. * ..
  193. * .. Array Arguments ..
  194. INTEGER IPIV( * )
  195. COMPLEX*16 A( LDA, * ), W( LDW, * )
  196. * ..
  197. *
  198. * =====================================================================
  199. *
  200. * .. Parameters ..
  201. DOUBLE PRECISION ZERO, ONE
  202. PARAMETER ( ZERO = 0.0D+0, ONE = 1.0D+0 )
  203. DOUBLE PRECISION EIGHT, SEVTEN
  204. PARAMETER ( EIGHT = 8.0D+0, SEVTEN = 17.0D+0 )
  205. COMPLEX*16 CONE, CZERO
  206. PARAMETER ( CONE = ( 1.0D+0, 0.0D+0 ),
  207. $ CZERO = ( 0.0D+0, 0.0D+0 ) )
  208. * ..
  209. * .. Local Scalars ..
  210. LOGICAL DONE
  211. INTEGER IMAX, ITEMP, J, JB, JJ, JMAX, JP1, JP2, K, KK,
  212. $ KW, KKW, KP, KSTEP, P, II
  213. DOUBLE PRECISION ABSAKK, ALPHA, COLMAX, ROWMAX, DTEMP, SFMIN
  214. COMPLEX*16 D11, D12, D21, D22, R1, T, Z
  215. * ..
  216. * .. External Functions ..
  217. LOGICAL LSAME
  218. INTEGER IZAMAX
  219. DOUBLE PRECISION DLAMCH
  220. EXTERNAL LSAME, IZAMAX, DLAMCH
  221. * ..
  222. * .. External Subroutines ..
  223. EXTERNAL ZCOPY, ZGEMM, ZGEMV, ZSCAL, ZSWAP
  224. * ..
  225. * .. Intrinsic Functions ..
  226. INTRINSIC ABS, MAX, MIN, SQRT, DIMAG, DBLE
  227. * ..
  228. * .. Statement Functions ..
  229. DOUBLE PRECISION CABS1
  230. * ..
  231. * .. Statement Function definitions ..
  232. CABS1( Z ) = ABS( DBLE( Z ) ) + ABS( DIMAG( Z ) )
  233. * ..
  234. * .. Executable Statements ..
  235. *
  236. INFO = 0
  237. *
  238. * Initialize ALPHA for use in choosing pivot block size.
  239. *
  240. ALPHA = ( ONE+SQRT( SEVTEN ) ) / EIGHT
  241. *
  242. * Compute machine safe minimum
  243. *
  244. SFMIN = DLAMCH( 'S' )
  245. *
  246. IF( LSAME( UPLO, 'U' ) ) THEN
  247. *
  248. * Factorize the trailing columns of A using the upper triangle
  249. * of A and working backwards, and compute the matrix W = U12*D
  250. * for use in updating A11
  251. *
  252. * K is the main loop index, decreasing from N in steps of 1 or 2
  253. *
  254. K = N
  255. 10 CONTINUE
  256. *
  257. * KW is the column of W which corresponds to column K of A
  258. *
  259. KW = NB + K - N
  260. *
  261. * Exit from loop
  262. *
  263. IF( ( K.LE.N-NB+1 .AND. NB.LT.N ) .OR. K.LT.1 )
  264. $ GO TO 30
  265. *
  266. KSTEP = 1
  267. P = K
  268. *
  269. * Copy column K of A to column KW of W and update it
  270. *
  271. CALL ZCOPY( K, A( 1, K ), 1, W( 1, KW ), 1 )
  272. IF( K.LT.N )
  273. $ CALL ZGEMV( 'No transpose', K, N-K, -CONE, A( 1, K+1 ),
  274. $ LDA, W( K, KW+1 ), LDW, CONE, W( 1, KW ), 1 )
  275. *
  276. * Determine rows and columns to be interchanged and whether
  277. * a 1-by-1 or 2-by-2 pivot block will be used
  278. *
  279. ABSAKK = CABS1( W( K, KW ) )
  280. *
  281. * IMAX is the row-index of the largest off-diagonal element in
  282. * column K, and COLMAX is its absolute value.
  283. * Determine both COLMAX and IMAX.
  284. *
  285. IF( K.GT.1 ) THEN
  286. IMAX = IZAMAX( K-1, W( 1, KW ), 1 )
  287. COLMAX = CABS1( W( IMAX, KW ) )
  288. ELSE
  289. COLMAX = ZERO
  290. END IF
  291. *
  292. IF( MAX( ABSAKK, COLMAX ).EQ.ZERO ) THEN
  293. *
  294. * Column K is zero or underflow: set INFO and continue
  295. *
  296. IF( INFO.EQ.0 )
  297. $ INFO = K
  298. KP = K
  299. CALL ZCOPY( K, W( 1, KW ), 1, A( 1, K ), 1 )
  300. ELSE
  301. *
  302. * ============================================================
  303. *
  304. * Test for interchange
  305. *
  306. * Equivalent to testing for ABSAKK.GE.ALPHA*COLMAX
  307. * (used to handle NaN and Inf)
  308. *
  309. IF( .NOT.( ABSAKK.LT.ALPHA*COLMAX ) ) THEN
  310. *
  311. * no interchange, use 1-by-1 pivot block
  312. *
  313. KP = K
  314. *
  315. ELSE
  316. *
  317. DONE = .FALSE.
  318. *
  319. * Loop until pivot found
  320. *
  321. 12 CONTINUE
  322. *
  323. * Begin pivot search loop body
  324. *
  325. *
  326. * Copy column IMAX to column KW-1 of W and update it
  327. *
  328. CALL ZCOPY( IMAX, A( 1, IMAX ), 1, W( 1, KW-1 ), 1 )
  329. CALL ZCOPY( K-IMAX, A( IMAX, IMAX+1 ), LDA,
  330. $ W( IMAX+1, KW-1 ), 1 )
  331. *
  332. IF( K.LT.N )
  333. $ CALL ZGEMV( 'No transpose', K, N-K, -CONE,
  334. $ A( 1, K+1 ), LDA, W( IMAX, KW+1 ), LDW,
  335. $ CONE, W( 1, KW-1 ), 1 )
  336. *
  337. * JMAX is the column-index of the largest off-diagonal
  338. * element in row IMAX, and ROWMAX is its absolute value.
  339. * Determine both ROWMAX and JMAX.
  340. *
  341. IF( IMAX.NE.K ) THEN
  342. JMAX = IMAX + IZAMAX( K-IMAX, W( IMAX+1, KW-1 ),
  343. $ 1 )
  344. ROWMAX = CABS1( W( JMAX, KW-1 ) )
  345. ELSE
  346. ROWMAX = ZERO
  347. END IF
  348. *
  349. IF( IMAX.GT.1 ) THEN
  350. ITEMP = IZAMAX( IMAX-1, W( 1, KW-1 ), 1 )
  351. DTEMP = CABS1( W( ITEMP, KW-1 ) )
  352. IF( DTEMP.GT.ROWMAX ) THEN
  353. ROWMAX = DTEMP
  354. JMAX = ITEMP
  355. END IF
  356. END IF
  357. *
  358. * Equivalent to testing for
  359. * CABS1( W( IMAX, KW-1 ) ).GE.ALPHA*ROWMAX
  360. * (used to handle NaN and Inf)
  361. *
  362. IF( .NOT.(CABS1( W( IMAX, KW-1 ) ).LT.ALPHA*ROWMAX ) )
  363. $ THEN
  364. *
  365. * interchange rows and columns K and IMAX,
  366. * use 1-by-1 pivot block
  367. *
  368. KP = IMAX
  369. *
  370. * copy column KW-1 of W to column KW of W
  371. *
  372. CALL ZCOPY( K, W( 1, KW-1 ), 1, W( 1, KW ), 1 )
  373. *
  374. DONE = .TRUE.
  375. *
  376. * Equivalent to testing for ROWMAX.EQ.COLMAX,
  377. * (used to handle NaN and Inf)
  378. *
  379. ELSE IF( ( P.EQ.JMAX ) .OR. ( ROWMAX.LE.COLMAX ) )
  380. $ THEN
  381. *
  382. * interchange rows and columns K-1 and IMAX,
  383. * use 2-by-2 pivot block
  384. *
  385. KP = IMAX
  386. KSTEP = 2
  387. DONE = .TRUE.
  388. ELSE
  389. *
  390. * Pivot not found: set params and repeat
  391. *
  392. P = IMAX
  393. COLMAX = ROWMAX
  394. IMAX = JMAX
  395. *
  396. * Copy updated JMAXth (next IMAXth) column to Kth of W
  397. *
  398. CALL ZCOPY( K, W( 1, KW-1 ), 1, W( 1, KW ), 1 )
  399. *
  400. END IF
  401. *
  402. * End pivot search loop body
  403. *
  404. IF( .NOT. DONE ) GOTO 12
  405. *
  406. END IF
  407. *
  408. * ============================================================
  409. *
  410. KK = K - KSTEP + 1
  411. *
  412. * KKW is the column of W which corresponds to column KK of A
  413. *
  414. KKW = NB + KK - N
  415. *
  416. IF( ( KSTEP.EQ.2 ) .AND. ( P.NE.K ) ) THEN
  417. *
  418. * Copy non-updated column K to column P
  419. *
  420. CALL ZCOPY( K-P, A( P+1, K ), 1, A( P, P+1 ), LDA )
  421. CALL ZCOPY( P, A( 1, K ), 1, A( 1, P ), 1 )
  422. *
  423. * Interchange rows K and P in last N-K+1 columns of A
  424. * and last N-K+2 columns of W
  425. *
  426. CALL ZSWAP( N-K+1, A( K, K ), LDA, A( P, K ), LDA )
  427. CALL ZSWAP( N-KK+1, W( K, KKW ), LDW, W( P, KKW ), LDW )
  428. END IF
  429. *
  430. * Updated column KP is already stored in column KKW of W
  431. *
  432. IF( KP.NE.KK ) THEN
  433. *
  434. * Copy non-updated column KK to column KP
  435. *
  436. A( KP, K ) = A( KK, K )
  437. CALL ZCOPY( K-1-KP, A( KP+1, KK ), 1, A( KP, KP+1 ),
  438. $ LDA )
  439. CALL ZCOPY( KP, A( 1, KK ), 1, A( 1, KP ), 1 )
  440. *
  441. * Interchange rows KK and KP in last N-KK+1 columns
  442. * of A and W
  443. *
  444. CALL ZSWAP( N-KK+1, A( KK, KK ), LDA, A( KP, KK ), LDA )
  445. CALL ZSWAP( N-KK+1, W( KK, KKW ), LDW, W( KP, KKW ),
  446. $ LDW )
  447. END IF
  448. *
  449. IF( KSTEP.EQ.1 ) THEN
  450. *
  451. * 1-by-1 pivot block D(k): column KW of W now holds
  452. *
  453. * W(k) = U(k)*D(k)
  454. *
  455. * where U(k) is the k-th column of U
  456. *
  457. * Store U(k) in column k of A
  458. *
  459. CALL ZCOPY( K, W( 1, KW ), 1, A( 1, K ), 1 )
  460. IF( K.GT.1 ) THEN
  461. IF( CABS1( A( K, K ) ).GE.SFMIN ) THEN
  462. R1 = CONE / A( K, K )
  463. CALL ZSCAL( K-1, R1, A( 1, K ), 1 )
  464. ELSE IF( A( K, K ).NE.CZERO ) THEN
  465. DO 14 II = 1, K - 1
  466. A( II, K ) = A( II, K ) / A( K, K )
  467. 14 CONTINUE
  468. END IF
  469. END IF
  470. *
  471. ELSE
  472. *
  473. * 2-by-2 pivot block D(k): columns KW and KW-1 of W now
  474. * hold
  475. *
  476. * ( W(k-1) W(k) ) = ( U(k-1) U(k) )*D(k)
  477. *
  478. * where U(k) and U(k-1) are the k-th and (k-1)-th columns
  479. * of U
  480. *
  481. IF( K.GT.2 ) THEN
  482. *
  483. * Store U(k) and U(k-1) in columns k and k-1 of A
  484. *
  485. D12 = W( K-1, KW )
  486. D11 = W( K, KW ) / D12
  487. D22 = W( K-1, KW-1 ) / D12
  488. T = CONE / ( D11*D22-CONE )
  489. DO 20 J = 1, K - 2
  490. A( J, K-1 ) = T*( (D11*W( J, KW-1 )-W( J, KW ) ) /
  491. $ D12 )
  492. A( J, K ) = T*( ( D22*W( J, KW )-W( J, KW-1 ) ) /
  493. $ D12 )
  494. 20 CONTINUE
  495. END IF
  496. *
  497. * Copy D(k) to A
  498. *
  499. A( K-1, K-1 ) = W( K-1, KW-1 )
  500. A( K-1, K ) = W( K-1, KW )
  501. A( K, K ) = W( K, KW )
  502. END IF
  503. END IF
  504. *
  505. * Store details of the interchanges in IPIV
  506. *
  507. IF( KSTEP.EQ.1 ) THEN
  508. IPIV( K ) = KP
  509. ELSE
  510. IPIV( K ) = -P
  511. IPIV( K-1 ) = -KP
  512. END IF
  513. *
  514. * Decrease K and return to the start of the main loop
  515. *
  516. K = K - KSTEP
  517. GO TO 10
  518. *
  519. 30 CONTINUE
  520. *
  521. * Update the upper triangle of A11 (= A(1:k,1:k)) as
  522. *
  523. * A11 := A11 - U12*D*U12**T = A11 - U12*W**T
  524. *
  525. * computing blocks of NB columns at a time
  526. *
  527. DO 50 J = ( ( K-1 ) / NB )*NB + 1, 1, -NB
  528. JB = MIN( NB, K-J+1 )
  529. *
  530. * Update the upper triangle of the diagonal block
  531. *
  532. DO 40 JJ = J, J + JB - 1
  533. CALL ZGEMV( 'No transpose', JJ-J+1, N-K, -CONE,
  534. $ A( J, K+1 ), LDA, W( JJ, KW+1 ), LDW, CONE,
  535. $ A( J, JJ ), 1 )
  536. 40 CONTINUE
  537. *
  538. * Update the rectangular superdiagonal block
  539. *
  540. IF( J.GE.2 )
  541. $ CALL ZGEMM( 'No transpose', 'Transpose', J-1, JB,
  542. $ N-K, -CONE, A( 1, K+1 ), LDA, W( J, KW+1 ), LDW,
  543. $ CONE, A( 1, J ), LDA )
  544. 50 CONTINUE
  545. *
  546. * Put U12 in standard form by partially undoing the interchanges
  547. * in columns k+1:n
  548. *
  549. J = K + 1
  550. 60 CONTINUE
  551. *
  552. KSTEP = 1
  553. JP1 = 1
  554. JJ = J
  555. JP2 = IPIV( J )
  556. IF( JP2.LT.0 ) THEN
  557. JP2 = -JP2
  558. J = J + 1
  559. JP1 = -IPIV( J )
  560. KSTEP = 2
  561. END IF
  562. *
  563. J = J + 1
  564. IF( JP2.NE.JJ .AND. J.LE.N )
  565. $ CALL ZSWAP( N-J+1, A( JP2, J ), LDA, A( JJ, J ), LDA )
  566. JJ = J - 1
  567. IF( JP1.NE.JJ .AND. KSTEP.EQ.2 )
  568. $ CALL ZSWAP( N-J+1, A( JP1, J ), LDA, A( JJ, J ), LDA )
  569. IF( J.LE.N )
  570. $ GO TO 60
  571. *
  572. * Set KB to the number of columns factorized
  573. *
  574. KB = N - K
  575. *
  576. ELSE
  577. *
  578. * Factorize the leading columns of A using the lower triangle
  579. * of A and working forwards, and compute the matrix W = L21*D
  580. * for use in updating A22
  581. *
  582. * K is the main loop index, increasing from 1 in steps of 1 or 2
  583. *
  584. K = 1
  585. 70 CONTINUE
  586. *
  587. * Exit from loop
  588. *
  589. IF( ( K.GE.NB .AND. NB.LT.N ) .OR. K.GT.N )
  590. $ GO TO 90
  591. *
  592. KSTEP = 1
  593. P = K
  594. *
  595. * Copy column K of A to column K of W and update it
  596. *
  597. CALL ZCOPY( N-K+1, A( K, K ), 1, W( K, K ), 1 )
  598. IF( K.GT.1 )
  599. $ CALL ZGEMV( 'No transpose', N-K+1, K-1, -CONE, A( K, 1 ),
  600. $ LDA, W( K, 1 ), LDW, CONE, W( K, K ), 1 )
  601. *
  602. * Determine rows and columns to be interchanged and whether
  603. * a 1-by-1 or 2-by-2 pivot block will be used
  604. *
  605. ABSAKK = CABS1( W( K, K ) )
  606. *
  607. * IMAX is the row-index of the largest off-diagonal element in
  608. * column K, and COLMAX is its absolute value.
  609. * Determine both COLMAX and IMAX.
  610. *
  611. IF( K.LT.N ) THEN
  612. IMAX = K + IZAMAX( N-K, W( K+1, K ), 1 )
  613. COLMAX = CABS1( W( IMAX, K ) )
  614. ELSE
  615. COLMAX = ZERO
  616. END IF
  617. *
  618. IF( MAX( ABSAKK, COLMAX ).EQ.ZERO ) THEN
  619. *
  620. * Column K is zero or underflow: set INFO and continue
  621. *
  622. IF( INFO.EQ.0 )
  623. $ INFO = K
  624. KP = K
  625. CALL ZCOPY( N-K+1, W( K, K ), 1, A( K, K ), 1 )
  626. ELSE
  627. *
  628. * ============================================================
  629. *
  630. * Test for interchange
  631. *
  632. * Equivalent to testing for ABSAKK.GE.ALPHA*COLMAX
  633. * (used to handle NaN and Inf)
  634. *
  635. IF( .NOT.( ABSAKK.LT.ALPHA*COLMAX ) ) THEN
  636. *
  637. * no interchange, use 1-by-1 pivot block
  638. *
  639. KP = K
  640. *
  641. ELSE
  642. *
  643. DONE = .FALSE.
  644. *
  645. * Loop until pivot found
  646. *
  647. 72 CONTINUE
  648. *
  649. * Begin pivot search loop body
  650. *
  651. *
  652. * Copy column IMAX to column K+1 of W and update it
  653. *
  654. CALL ZCOPY( IMAX-K, A( IMAX, K ), LDA, W( K, K+1 ), 1)
  655. CALL ZCOPY( N-IMAX+1, A( IMAX, IMAX ), 1,
  656. $ W( IMAX, K+1 ), 1 )
  657. IF( K.GT.1 )
  658. $ CALL ZGEMV( 'No transpose', N-K+1, K-1, -CONE,
  659. $ A( K, 1 ), LDA, W( IMAX, 1 ), LDW,
  660. $ CONE, W( K, K+1 ), 1 )
  661. *
  662. * JMAX is the column-index of the largest off-diagonal
  663. * element in row IMAX, and ROWMAX is its absolute value.
  664. * Determine both ROWMAX and JMAX.
  665. *
  666. IF( IMAX.NE.K ) THEN
  667. JMAX = K - 1 + IZAMAX( IMAX-K, W( K, K+1 ), 1 )
  668. ROWMAX = CABS1( W( JMAX, K+1 ) )
  669. ELSE
  670. ROWMAX = ZERO
  671. END IF
  672. *
  673. IF( IMAX.LT.N ) THEN
  674. ITEMP = IMAX + IZAMAX( N-IMAX, W( IMAX+1, K+1 ), 1)
  675. DTEMP = CABS1( W( ITEMP, K+1 ) )
  676. IF( DTEMP.GT.ROWMAX ) THEN
  677. ROWMAX = DTEMP
  678. JMAX = ITEMP
  679. END IF
  680. END IF
  681. *
  682. * Equivalent to testing for
  683. * CABS1( W( IMAX, K+1 ) ).GE.ALPHA*ROWMAX
  684. * (used to handle NaN and Inf)
  685. *
  686. IF( .NOT.( CABS1( W( IMAX, K+1 ) ).LT.ALPHA*ROWMAX ) )
  687. $ THEN
  688. *
  689. * interchange rows and columns K and IMAX,
  690. * use 1-by-1 pivot block
  691. *
  692. KP = IMAX
  693. *
  694. * copy column K+1 of W to column K of W
  695. *
  696. CALL ZCOPY( N-K+1, W( K, K+1 ), 1, W( K, K ), 1 )
  697. *
  698. DONE = .TRUE.
  699. *
  700. * Equivalent to testing for ROWMAX.EQ.COLMAX,
  701. * (used to handle NaN and Inf)
  702. *
  703. ELSE IF( ( P.EQ.JMAX ) .OR. ( ROWMAX.LE.COLMAX ) )
  704. $ THEN
  705. *
  706. * interchange rows and columns K+1 and IMAX,
  707. * use 2-by-2 pivot block
  708. *
  709. KP = IMAX
  710. KSTEP = 2
  711. DONE = .TRUE.
  712. ELSE
  713. *
  714. * Pivot not found: set params and repeat
  715. *
  716. P = IMAX
  717. COLMAX = ROWMAX
  718. IMAX = JMAX
  719. *
  720. * Copy updated JMAXth (next IMAXth) column to Kth of W
  721. *
  722. CALL ZCOPY( N-K+1, W( K, K+1 ), 1, W( K, K ), 1 )
  723. *
  724. END IF
  725. *
  726. * End pivot search loop body
  727. *
  728. IF( .NOT. DONE ) GOTO 72
  729. *
  730. END IF
  731. *
  732. * ============================================================
  733. *
  734. KK = K + KSTEP - 1
  735. *
  736. IF( ( KSTEP.EQ.2 ) .AND. ( P.NE.K ) ) THEN
  737. *
  738. * Copy non-updated column K to column P
  739. *
  740. CALL ZCOPY( P-K, A( K, K ), 1, A( P, K ), LDA )
  741. CALL ZCOPY( N-P+1, A( P, K ), 1, A( P, P ), 1 )
  742. *
  743. * Interchange rows K and P in first K columns of A
  744. * and first K+1 columns of W
  745. *
  746. CALL ZSWAP( K, A( K, 1 ), LDA, A( P, 1 ), LDA )
  747. CALL ZSWAP( KK, W( K, 1 ), LDW, W( P, 1 ), LDW )
  748. END IF
  749. *
  750. * Updated column KP is already stored in column KK of W
  751. *
  752. IF( KP.NE.KK ) THEN
  753. *
  754. * Copy non-updated column KK to column KP
  755. *
  756. A( KP, K ) = A( KK, K )
  757. CALL ZCOPY( KP-K-1, A( K+1, KK ), 1, A( KP, K+1 ), LDA )
  758. CALL ZCOPY( N-KP+1, A( KP, KK ), 1, A( KP, KP ), 1 )
  759. *
  760. * Interchange rows KK and KP in first KK columns of A and W
  761. *
  762. CALL ZSWAP( KK, A( KK, 1 ), LDA, A( KP, 1 ), LDA )
  763. CALL ZSWAP( KK, W( KK, 1 ), LDW, W( KP, 1 ), LDW )
  764. END IF
  765. *
  766. IF( KSTEP.EQ.1 ) THEN
  767. *
  768. * 1-by-1 pivot block D(k): column k of W now holds
  769. *
  770. * W(k) = L(k)*D(k)
  771. *
  772. * where L(k) is the k-th column of L
  773. *
  774. * Store L(k) in column k of A
  775. *
  776. CALL ZCOPY( N-K+1, W( K, K ), 1, A( K, K ), 1 )
  777. IF( K.LT.N ) THEN
  778. IF( CABS1( A( K, K ) ).GE.SFMIN ) THEN
  779. R1 = CONE / A( K, K )
  780. CALL ZSCAL( N-K, R1, A( K+1, K ), 1 )
  781. ELSE IF( A( K, K ).NE.CZERO ) THEN
  782. DO 74 II = K + 1, N
  783. A( II, K ) = A( II, K ) / A( K, K )
  784. 74 CONTINUE
  785. END IF
  786. END IF
  787. *
  788. ELSE
  789. *
  790. * 2-by-2 pivot block D(k): columns k and k+1 of W now hold
  791. *
  792. * ( W(k) W(k+1) ) = ( L(k) L(k+1) )*D(k)
  793. *
  794. * where L(k) and L(k+1) are the k-th and (k+1)-th columns
  795. * of L
  796. *
  797. IF( K.LT.N-1 ) THEN
  798. *
  799. * Store L(k) and L(k+1) in columns k and k+1 of A
  800. *
  801. D21 = W( K+1, K )
  802. D11 = W( K+1, K+1 ) / D21
  803. D22 = W( K, K ) / D21
  804. T = CONE / ( D11*D22-CONE )
  805. DO 80 J = K + 2, N
  806. A( J, K ) = T*( ( D11*W( J, K )-W( J, K+1 ) ) /
  807. $ D21 )
  808. A( J, K+1 ) = T*( ( D22*W( J, K+1 )-W( J, K ) ) /
  809. $ D21 )
  810. 80 CONTINUE
  811. END IF
  812. *
  813. * Copy D(k) to A
  814. *
  815. A( K, K ) = W( K, K )
  816. A( K+1, K ) = W( K+1, K )
  817. A( K+1, K+1 ) = W( K+1, K+1 )
  818. END IF
  819. END IF
  820. *
  821. * Store details of the interchanges in IPIV
  822. *
  823. IF( KSTEP.EQ.1 ) THEN
  824. IPIV( K ) = KP
  825. ELSE
  826. IPIV( K ) = -P
  827. IPIV( K+1 ) = -KP
  828. END IF
  829. *
  830. * Increase K and return to the start of the main loop
  831. *
  832. K = K + KSTEP
  833. GO TO 70
  834. *
  835. 90 CONTINUE
  836. *
  837. * Update the lower triangle of A22 (= A(k:n,k:n)) as
  838. *
  839. * A22 := A22 - L21*D*L21**T = A22 - L21*W**T
  840. *
  841. * computing blocks of NB columns at a time
  842. *
  843. DO 110 J = K, N, NB
  844. JB = MIN( NB, N-J+1 )
  845. *
  846. * Update the lower triangle of the diagonal block
  847. *
  848. DO 100 JJ = J, J + JB - 1
  849. CALL ZGEMV( 'No transpose', J+JB-JJ, K-1, -CONE,
  850. $ A( JJ, 1 ), LDA, W( JJ, 1 ), LDW, CONE,
  851. $ A( JJ, JJ ), 1 )
  852. 100 CONTINUE
  853. *
  854. * Update the rectangular subdiagonal block
  855. *
  856. IF( J+JB.LE.N )
  857. $ CALL ZGEMM( 'No transpose', 'Transpose', N-J-JB+1, JB,
  858. $ K-1, -CONE, A( J+JB, 1 ), LDA, W( J, 1 ), LDW,
  859. $ CONE, A( J+JB, J ), LDA )
  860. 110 CONTINUE
  861. *
  862. * Put L21 in standard form by partially undoing the interchanges
  863. * in columns 1:k-1
  864. *
  865. J = K - 1
  866. 120 CONTINUE
  867. *
  868. KSTEP = 1
  869. JP1 = 1
  870. JJ = J
  871. JP2 = IPIV( J )
  872. IF( JP2.LT.0 ) THEN
  873. JP2 = -JP2
  874. J = J - 1
  875. JP1 = -IPIV( J )
  876. KSTEP = 2
  877. END IF
  878. *
  879. J = J - 1
  880. IF( JP2.NE.JJ .AND. J.GE.1 )
  881. $ CALL ZSWAP( J, A( JP2, 1 ), LDA, A( JJ, 1 ), LDA )
  882. JJ = J + 1
  883. IF( JP1.NE.JJ .AND. KSTEP.EQ.2 )
  884. $ CALL ZSWAP( J, A( JP1, 1 ), LDA, A( JJ, 1 ), LDA )
  885. IF( J.GE.1 )
  886. $ GO TO 120
  887. *
  888. * Set KB to the number of columns factorized
  889. *
  890. KB = K - 1
  891. *
  892. END IF
  893. RETURN
  894. *
  895. * End of ZLASYF_ROOK
  896. *
  897. END