You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

zgetsls.f 14 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495
  1. *> \brief \b ZGETSLS
  2. *
  3. * Definition:
  4. * ===========
  5. *
  6. * SUBROUTINE ZGETSLS( TRANS, M, N, NRHS, A, LDA, B, LDB,
  7. * $ WORK, LWORK, INFO )
  8. *
  9. * .. Scalar Arguments ..
  10. * CHARACTER TRANS
  11. * INTEGER INFO, LDA, LDB, LWORK, M, N, NRHS
  12. * ..
  13. * .. Array Arguments ..
  14. * COMPLEX*16 A( LDA, * ), B( LDB, * ), WORK( * )
  15. * ..
  16. *
  17. *
  18. *> \par Purpose:
  19. * =============
  20. *>
  21. *> \verbatim
  22. *>
  23. *> ZGETSLS solves overdetermined or underdetermined complex linear systems
  24. *> involving an M-by-N matrix A, using a tall skinny QR or short wide LQ
  25. *> factorization of A. It is assumed that A has full rank.
  26. *>
  27. *>
  28. *>
  29. *> The following options are provided:
  30. *>
  31. *> 1. If TRANS = 'N' and m >= n: find the least squares solution of
  32. *> an overdetermined system, i.e., solve the least squares problem
  33. *> minimize || B - A*X ||.
  34. *>
  35. *> 2. If TRANS = 'N' and m < n: find the minimum norm solution of
  36. *> an underdetermined system A * X = B.
  37. *>
  38. *> 3. If TRANS = 'C' and m >= n: find the minimum norm solution of
  39. *> an undetermined system A**T * X = B.
  40. *>
  41. *> 4. If TRANS = 'C' and m < n: find the least squares solution of
  42. *> an overdetermined system, i.e., solve the least squares problem
  43. *> minimize || B - A**T * X ||.
  44. *>
  45. *> Several right hand side vectors b and solution vectors x can be
  46. *> handled in a single call; they are stored as the columns of the
  47. *> M-by-NRHS right hand side matrix B and the N-by-NRHS solution
  48. *> matrix X.
  49. *> \endverbatim
  50. *
  51. * Arguments:
  52. * ==========
  53. *
  54. *> \param[in] TRANS
  55. *> \verbatim
  56. *> TRANS is CHARACTER*1
  57. *> = 'N': the linear system involves A;
  58. *> = 'C': the linear system involves A**H.
  59. *> \endverbatim
  60. *>
  61. *> \param[in] M
  62. *> \verbatim
  63. *> M is INTEGER
  64. *> The number of rows of the matrix A. M >= 0.
  65. *> \endverbatim
  66. *>
  67. *> \param[in] N
  68. *> \verbatim
  69. *> N is INTEGER
  70. *> The number of columns of the matrix A. N >= 0.
  71. *> \endverbatim
  72. *>
  73. *> \param[in] NRHS
  74. *> \verbatim
  75. *> NRHS is INTEGER
  76. *> The number of right hand sides, i.e., the number of
  77. *> columns of the matrices B and X. NRHS >=0.
  78. *> \endverbatim
  79. *>
  80. *> \param[in,out] A
  81. *> \verbatim
  82. *> A is COMPLEX*16 array, dimension (LDA,N)
  83. *> On entry, the M-by-N matrix A.
  84. *> On exit,
  85. *> A is overwritten by details of its QR or LQ
  86. *> factorization as returned by ZGEQR or ZGELQ.
  87. *> \endverbatim
  88. *>
  89. *> \param[in] LDA
  90. *> \verbatim
  91. *> LDA is INTEGER
  92. *> The leading dimension of the array A. LDA >= max(1,M).
  93. *> \endverbatim
  94. *>
  95. *> \param[in,out] B
  96. *> \verbatim
  97. *> B is COMPLEX*16 array, dimension (LDB,NRHS)
  98. *> On entry, the matrix B of right hand side vectors, stored
  99. *> columnwise; B is M-by-NRHS if TRANS = 'N', or N-by-NRHS
  100. *> if TRANS = 'C'.
  101. *> On exit, if INFO = 0, B is overwritten by the solution
  102. *> vectors, stored columnwise:
  103. *> if TRANS = 'N' and m >= n, rows 1 to n of B contain the least
  104. *> squares solution vectors.
  105. *> if TRANS = 'N' and m < n, rows 1 to N of B contain the
  106. *> minimum norm solution vectors;
  107. *> if TRANS = 'C' and m >= n, rows 1 to M of B contain the
  108. *> minimum norm solution vectors;
  109. *> if TRANS = 'C' and m < n, rows 1 to M of B contain the
  110. *> least squares solution vectors.
  111. *> \endverbatim
  112. *>
  113. *> \param[in] LDB
  114. *> \verbatim
  115. *> LDB is INTEGER
  116. *> The leading dimension of the array B. LDB >= MAX(1,M,N).
  117. *> \endverbatim
  118. *>
  119. *> \param[out] WORK
  120. *> \verbatim
  121. *> (workspace) COMPLEX*16 array, dimension (MAX(1,LWORK))
  122. *> On exit, if INFO = 0, WORK(1) contains optimal (or either minimal
  123. *> or optimal, if query was assumed) LWORK.
  124. *> See LWORK for details.
  125. *> \endverbatim
  126. *>
  127. *> \param[in] LWORK
  128. *> \verbatim
  129. *> LWORK is INTEGER
  130. *> The dimension of the array WORK. LWORK >= 1.
  131. *> If LWORK = -1 or -2, then a workspace query is assumed.
  132. *> If LWORK = -1, the routine calculates optimal size of WORK for the
  133. *> optimal performance and returns this value in WORK(1).
  134. *> If LWORK = -2, the routine calculates minimal size of WORK and
  135. *> returns this value in WORK(1).
  136. *> \endverbatim
  137. *>
  138. *> \param[out] INFO
  139. *> \verbatim
  140. *> INFO is INTEGER
  141. *> = 0: successful exit
  142. *> < 0: if INFO = -i, the i-th argument had an illegal value
  143. *> > 0: if INFO = i, the i-th diagonal element of the
  144. *> triangular factor of A is zero, so that A does not have
  145. *> full rank; the least squares solution could not be
  146. *> computed.
  147. *> \endverbatim
  148. *
  149. * Authors:
  150. * ========
  151. *
  152. *> \author Univ. of Tennessee
  153. *> \author Univ. of California Berkeley
  154. *> \author Univ. of Colorado Denver
  155. *> \author NAG Ltd.
  156. *
  157. *> \ingroup getsls
  158. *
  159. * =====================================================================
  160. SUBROUTINE ZGETSLS( TRANS, M, N, NRHS, A, LDA, B, LDB,
  161. $ WORK, LWORK, INFO )
  162. *
  163. * -- LAPACK driver routine --
  164. * -- LAPACK is a software package provided by Univ. of Tennessee, --
  165. * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
  166. *
  167. * .. Scalar Arguments ..
  168. CHARACTER TRANS
  169. INTEGER INFO, LDA, LDB, LWORK, M, N, NRHS
  170. * ..
  171. * .. Array Arguments ..
  172. COMPLEX*16 A( LDA, * ), B( LDB, * ), WORK( * )
  173. *
  174. * ..
  175. *
  176. * =====================================================================
  177. *
  178. * .. Parameters ..
  179. DOUBLE PRECISION ZERO, ONE
  180. PARAMETER ( ZERO = 0.0D0, ONE = 1.0D0 )
  181. COMPLEX*16 CZERO
  182. PARAMETER ( CZERO = ( 0.0D+0, 0.0D+0 ) )
  183. * ..
  184. * .. Local Scalars ..
  185. LOGICAL LQUERY, TRAN
  186. INTEGER I, IASCL, IBSCL, J, MAXMN, BROW,
  187. $ SCLLEN, TSZO, TSZM, LWO, LWM, LW1, LW2,
  188. $ WSIZEO, WSIZEM, INFO2
  189. DOUBLE PRECISION ANRM, BIGNUM, BNRM, SMLNUM, DUM( 1 )
  190. COMPLEX*16 TQ( 5 ), WORKQ( 1 )
  191. * ..
  192. * .. External Functions ..
  193. LOGICAL LSAME
  194. DOUBLE PRECISION DLAMCH, ZLANGE
  195. EXTERNAL LSAME, DLAMCH, ZLANGE
  196. * ..
  197. * .. External Subroutines ..
  198. EXTERNAL ZGEQR, ZGEMQR, ZLASCL, ZLASET,
  199. $ ZTRTRS, XERBLA, ZGELQ, ZGEMLQ
  200. * ..
  201. * .. Intrinsic Functions ..
  202. INTRINSIC DBLE, MAX, MIN, INT
  203. * ..
  204. * .. Executable Statements ..
  205. *
  206. * Test the input arguments.
  207. *
  208. INFO = 0
  209. MAXMN = MAX( M, N )
  210. TRAN = LSAME( TRANS, 'C' )
  211. *
  212. LQUERY = ( LWORK.EQ.-1 .OR. LWORK.EQ.-2 )
  213. IF( .NOT.( LSAME( TRANS, 'N' ) .OR.
  214. $ LSAME( TRANS, 'C' ) ) ) THEN
  215. INFO = -1
  216. ELSE IF( M.LT.0 ) THEN
  217. INFO = -2
  218. ELSE IF( N.LT.0 ) THEN
  219. INFO = -3
  220. ELSE IF( NRHS.LT.0 ) THEN
  221. INFO = -4
  222. ELSE IF( LDA.LT.MAX( 1, M ) ) THEN
  223. INFO = -6
  224. ELSE IF( LDB.LT.MAX( 1, M, N ) ) THEN
  225. INFO = -8
  226. END IF
  227. *
  228. IF( INFO.EQ.0 ) THEN
  229. *
  230. * Determine the optimum and minimum LWORK
  231. *
  232. IF( MIN( M, N, NRHS ).EQ.0 ) THEN
  233. WSIZEO = 1
  234. WSIZEM = 1
  235. ELSE IF( M.GE.N ) THEN
  236. CALL ZGEQR( M, N, A, LDA, TQ, -1, WORKQ, -1, INFO2 )
  237. TSZO = INT( TQ( 1 ) )
  238. LWO = INT( WORKQ( 1 ) )
  239. CALL ZGEMQR( 'L', TRANS, M, NRHS, N, A, LDA, TQ,
  240. $ TSZO, B, LDB, WORKQ, -1, INFO2 )
  241. LWO = MAX( LWO, INT( WORKQ( 1 ) ) )
  242. CALL ZGEQR( M, N, A, LDA, TQ, -2, WORKQ, -2, INFO2 )
  243. TSZM = INT( TQ( 1 ) )
  244. LWM = INT( WORKQ( 1 ) )
  245. CALL ZGEMQR( 'L', TRANS, M, NRHS, N, A, LDA, TQ,
  246. $ TSZM, B, LDB, WORKQ, -1, INFO2 )
  247. LWM = MAX( LWM, INT( WORKQ( 1 ) ) )
  248. WSIZEO = TSZO + LWO
  249. WSIZEM = TSZM + LWM
  250. ELSE
  251. CALL ZGELQ( M, N, A, LDA, TQ, -1, WORKQ, -1, INFO2 )
  252. TSZO = INT( TQ( 1 ) )
  253. LWO = INT( WORKQ( 1 ) )
  254. CALL ZGEMLQ( 'L', TRANS, N, NRHS, M, A, LDA, TQ,
  255. $ TSZO, B, LDB, WORKQ, -1, INFO2 )
  256. LWO = MAX( LWO, INT( WORKQ( 1 ) ) )
  257. CALL ZGELQ( M, N, A, LDA, TQ, -2, WORKQ, -2, INFO2 )
  258. TSZM = INT( TQ( 1 ) )
  259. LWM = INT( WORKQ( 1 ) )
  260. CALL ZGEMLQ( 'L', TRANS, N, NRHS, M, A, LDA, TQ,
  261. $ TSZM, B, LDB, WORKQ, -1, INFO2 )
  262. LWM = MAX( LWM, INT( WORKQ( 1 ) ) )
  263. WSIZEO = TSZO + LWO
  264. WSIZEM = TSZM + LWM
  265. END IF
  266. *
  267. IF( ( LWORK.LT.WSIZEM ).AND.( .NOT.LQUERY ) ) THEN
  268. INFO = -10
  269. END IF
  270. *
  271. WORK( 1 ) = DBLE( WSIZEO )
  272. *
  273. END IF
  274. *
  275. IF( INFO.NE.0 ) THEN
  276. CALL XERBLA( 'ZGETSLS', -INFO )
  277. RETURN
  278. END IF
  279. IF( LQUERY ) THEN
  280. IF( LWORK.EQ.-2 ) WORK( 1 ) = DBLE( WSIZEM )
  281. RETURN
  282. END IF
  283. IF( LWORK.LT.WSIZEO ) THEN
  284. LW1 = TSZM
  285. LW2 = LWM
  286. ELSE
  287. LW1 = TSZO
  288. LW2 = LWO
  289. END IF
  290. *
  291. * Quick return if possible
  292. *
  293. IF( MIN( M, N, NRHS ).EQ.0 ) THEN
  294. CALL ZLASET( 'FULL', MAX( M, N ), NRHS, CZERO, CZERO,
  295. $ B, LDB )
  296. RETURN
  297. END IF
  298. *
  299. * Get machine parameters
  300. *
  301. SMLNUM = DLAMCH( 'S' ) / DLAMCH( 'P' )
  302. BIGNUM = ONE / SMLNUM
  303. *
  304. * Scale A, B if max element outside range [SMLNUM,BIGNUM]
  305. *
  306. ANRM = ZLANGE( 'M', M, N, A, LDA, DUM )
  307. IASCL = 0
  308. IF( ANRM.GT.ZERO .AND. ANRM.LT.SMLNUM ) THEN
  309. *
  310. * Scale matrix norm up to SMLNUM
  311. *
  312. CALL ZLASCL( 'G', 0, 0, ANRM, SMLNUM, M, N, A, LDA, INFO )
  313. IASCL = 1
  314. ELSE IF( ANRM.GT.BIGNUM ) THEN
  315. *
  316. * Scale matrix norm down to BIGNUM
  317. *
  318. CALL ZLASCL( 'G', 0, 0, ANRM, BIGNUM, M, N, A, LDA, INFO )
  319. IASCL = 2
  320. ELSE IF( ANRM.EQ.ZERO ) THEN
  321. *
  322. * Matrix all zero. Return zero solution.
  323. *
  324. CALL ZLASET( 'F', MAXMN, NRHS, CZERO, CZERO, B, LDB )
  325. GO TO 50
  326. END IF
  327. *
  328. BROW = M
  329. IF ( TRAN ) THEN
  330. BROW = N
  331. END IF
  332. BNRM = ZLANGE( 'M', BROW, NRHS, B, LDB, DUM )
  333. IBSCL = 0
  334. IF( BNRM.GT.ZERO .AND. BNRM.LT.SMLNUM ) THEN
  335. *
  336. * Scale matrix norm up to SMLNUM
  337. *
  338. CALL ZLASCL( 'G', 0, 0, BNRM, SMLNUM, BROW, NRHS, B, LDB,
  339. $ INFO )
  340. IBSCL = 1
  341. ELSE IF( BNRM.GT.BIGNUM ) THEN
  342. *
  343. * Scale matrix norm down to BIGNUM
  344. *
  345. CALL ZLASCL( 'G', 0, 0, BNRM, BIGNUM, BROW, NRHS, B, LDB,
  346. $ INFO )
  347. IBSCL = 2
  348. END IF
  349. *
  350. IF ( M.GE.N ) THEN
  351. *
  352. * compute QR factorization of A
  353. *
  354. CALL ZGEQR( M, N, A, LDA, WORK( LW2+1 ), LW1,
  355. $ WORK( 1 ), LW2, INFO )
  356. IF ( .NOT.TRAN ) THEN
  357. *
  358. * Least-Squares Problem min || A * X - B ||
  359. *
  360. * B(1:M,1:NRHS) := Q**T * B(1:M,1:NRHS)
  361. *
  362. CALL ZGEMQR( 'L' , 'C', M, NRHS, N, A, LDA,
  363. $ WORK( LW2+1 ), LW1, B, LDB, WORK( 1 ), LW2,
  364. $ INFO )
  365. *
  366. * B(1:N,1:NRHS) := inv(R) * B(1:N,1:NRHS)
  367. *
  368. CALL ZTRTRS( 'U', 'N', 'N', N, NRHS,
  369. $ A, LDA, B, LDB, INFO )
  370. IF( INFO.GT.0 ) THEN
  371. RETURN
  372. END IF
  373. SCLLEN = N
  374. ELSE
  375. *
  376. * Overdetermined system of equations A**T * X = B
  377. *
  378. * B(1:N,1:NRHS) := inv(R**T) * B(1:N,1:NRHS)
  379. *
  380. CALL ZTRTRS( 'U', 'C', 'N', N, NRHS,
  381. $ A, LDA, B, LDB, INFO )
  382. *
  383. IF( INFO.GT.0 ) THEN
  384. RETURN
  385. END IF
  386. *
  387. * B(N+1:M,1:NRHS) = CZERO
  388. *
  389. DO 20 J = 1, NRHS
  390. DO 10 I = N + 1, M
  391. B( I, J ) = CZERO
  392. 10 CONTINUE
  393. 20 CONTINUE
  394. *
  395. * B(1:M,1:NRHS) := Q(1:N,:) * B(1:N,1:NRHS)
  396. *
  397. CALL ZGEMQR( 'L', 'N', M, NRHS, N, A, LDA,
  398. $ WORK( LW2+1 ), LW1, B, LDB, WORK( 1 ), LW2,
  399. $ INFO )
  400. *
  401. SCLLEN = M
  402. *
  403. END IF
  404. *
  405. ELSE
  406. *
  407. * Compute LQ factorization of A
  408. *
  409. CALL ZGELQ( M, N, A, LDA, WORK( LW2+1 ), LW1,
  410. $ WORK( 1 ), LW2, INFO )
  411. *
  412. * workspace at least M, optimally M*NB.
  413. *
  414. IF( .NOT.TRAN ) THEN
  415. *
  416. * underdetermined system of equations A * X = B
  417. *
  418. * B(1:M,1:NRHS) := inv(L) * B(1:M,1:NRHS)
  419. *
  420. CALL ZTRTRS( 'L', 'N', 'N', M, NRHS,
  421. $ A, LDA, B, LDB, INFO )
  422. *
  423. IF( INFO.GT.0 ) THEN
  424. RETURN
  425. END IF
  426. *
  427. * B(M+1:N,1:NRHS) = 0
  428. *
  429. DO 40 J = 1, NRHS
  430. DO 30 I = M + 1, N
  431. B( I, J ) = CZERO
  432. 30 CONTINUE
  433. 40 CONTINUE
  434. *
  435. * B(1:N,1:NRHS) := Q(1:N,:)**T * B(1:M,1:NRHS)
  436. *
  437. CALL ZGEMLQ( 'L', 'C', N, NRHS, M, A, LDA,
  438. $ WORK( LW2+1 ), LW1, B, LDB, WORK( 1 ), LW2,
  439. $ INFO )
  440. *
  441. * workspace at least NRHS, optimally NRHS*NB
  442. *
  443. SCLLEN = N
  444. *
  445. ELSE
  446. *
  447. * overdetermined system min || A**T * X - B ||
  448. *
  449. * B(1:N,1:NRHS) := Q * B(1:N,1:NRHS)
  450. *
  451. CALL ZGEMLQ( 'L', 'N', N, NRHS, M, A, LDA,
  452. $ WORK( LW2+1 ), LW1, B, LDB, WORK( 1 ), LW2,
  453. $ INFO )
  454. *
  455. * workspace at least NRHS, optimally NRHS*NB
  456. *
  457. * B(1:M,1:NRHS) := inv(L**T) * B(1:M,1:NRHS)
  458. *
  459. CALL ZTRTRS( 'L', 'C', 'N', M, NRHS,
  460. $ A, LDA, B, LDB, INFO )
  461. *
  462. IF( INFO.GT.0 ) THEN
  463. RETURN
  464. END IF
  465. *
  466. SCLLEN = M
  467. *
  468. END IF
  469. *
  470. END IF
  471. *
  472. * Undo scaling
  473. *
  474. IF( IASCL.EQ.1 ) THEN
  475. CALL ZLASCL( 'G', 0, 0, ANRM, SMLNUM, SCLLEN, NRHS, B, LDB,
  476. $ INFO )
  477. ELSE IF( IASCL.EQ.2 ) THEN
  478. CALL ZLASCL( 'G', 0, 0, ANRM, BIGNUM, SCLLEN, NRHS, B, LDB,
  479. $ INFO )
  480. END IF
  481. IF( IBSCL.EQ.1 ) THEN
  482. CALL ZLASCL( 'G', 0, 0, SMLNUM, BNRM, SCLLEN, NRHS, B, LDB,
  483. $ INFO )
  484. ELSE IF( IBSCL.EQ.2 ) THEN
  485. CALL ZLASCL( 'G', 0, 0, BIGNUM, BNRM, SCLLEN, NRHS, B, LDB,
  486. $ INFO )
  487. END IF
  488. *
  489. 50 CONTINUE
  490. WORK( 1 ) = DBLE( TSZO + LWO )
  491. RETURN
  492. *
  493. * End of ZGETSLS
  494. *
  495. END