You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

ssytrd.f 11 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374
  1. *> \brief \b SSYTRD
  2. *
  3. * =========== DOCUMENTATION ===========
  4. *
  5. * Online html documentation available at
  6. * http://www.netlib.org/lapack/explore-html/
  7. *
  8. *> \htmlonly
  9. *> Download SSYTRD + dependencies
  10. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/ssytrd.f">
  11. *> [TGZ]</a>
  12. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/ssytrd.f">
  13. *> [ZIP]</a>
  14. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/ssytrd.f">
  15. *> [TXT]</a>
  16. *> \endhtmlonly
  17. *
  18. * Definition:
  19. * ===========
  20. *
  21. * SUBROUTINE SSYTRD( UPLO, N, A, LDA, D, E, TAU, WORK, LWORK, INFO )
  22. *
  23. * .. Scalar Arguments ..
  24. * CHARACTER UPLO
  25. * INTEGER INFO, LDA, LWORK, N
  26. * ..
  27. * .. Array Arguments ..
  28. * REAL A( LDA, * ), D( * ), E( * ), TAU( * ),
  29. * $ WORK( * )
  30. * ..
  31. *
  32. *
  33. *> \par Purpose:
  34. * =============
  35. *>
  36. *> \verbatim
  37. *>
  38. *> SSYTRD reduces a real symmetric matrix A to real symmetric
  39. *> tridiagonal form T by an orthogonal similarity transformation:
  40. *> Q**T * A * Q = T.
  41. *> \endverbatim
  42. *
  43. * Arguments:
  44. * ==========
  45. *
  46. *> \param[in] UPLO
  47. *> \verbatim
  48. *> UPLO is CHARACTER*1
  49. *> = 'U': Upper triangle of A is stored;
  50. *> = 'L': Lower triangle of A is stored.
  51. *> \endverbatim
  52. *>
  53. *> \param[in] N
  54. *> \verbatim
  55. *> N is INTEGER
  56. *> The order of the matrix A. N >= 0.
  57. *> \endverbatim
  58. *>
  59. *> \param[in,out] A
  60. *> \verbatim
  61. *> A is REAL array, dimension (LDA,N)
  62. *> On entry, the symmetric matrix A. If UPLO = 'U', the leading
  63. *> N-by-N upper triangular part of A contains the upper
  64. *> triangular part of the matrix A, and the strictly lower
  65. *> triangular part of A is not referenced. If UPLO = 'L', the
  66. *> leading N-by-N lower triangular part of A contains the lower
  67. *> triangular part of the matrix A, and the strictly upper
  68. *> triangular part of A is not referenced.
  69. *> On exit, if UPLO = 'U', the diagonal and first superdiagonal
  70. *> of A are overwritten by the corresponding elements of the
  71. *> tridiagonal matrix T, and the elements above the first
  72. *> superdiagonal, with the array TAU, represent the orthogonal
  73. *> matrix Q as a product of elementary reflectors; if UPLO
  74. *> = 'L', the diagonal and first subdiagonal of A are over-
  75. *> written by the corresponding elements of the tridiagonal
  76. *> matrix T, and the elements below the first subdiagonal, with
  77. *> the array TAU, represent the orthogonal matrix Q as a product
  78. *> of elementary reflectors. See Further Details.
  79. *> \endverbatim
  80. *>
  81. *> \param[in] LDA
  82. *> \verbatim
  83. *> LDA is INTEGER
  84. *> The leading dimension of the array A. LDA >= max(1,N).
  85. *> \endverbatim
  86. *>
  87. *> \param[out] D
  88. *> \verbatim
  89. *> D is REAL array, dimension (N)
  90. *> The diagonal elements of the tridiagonal matrix T:
  91. *> D(i) = A(i,i).
  92. *> \endverbatim
  93. *>
  94. *> \param[out] E
  95. *> \verbatim
  96. *> E is REAL array, dimension (N-1)
  97. *> The off-diagonal elements of the tridiagonal matrix T:
  98. *> E(i) = A(i,i+1) if UPLO = 'U', E(i) = A(i+1,i) if UPLO = 'L'.
  99. *> \endverbatim
  100. *>
  101. *> \param[out] TAU
  102. *> \verbatim
  103. *> TAU is REAL array, dimension (N-1)
  104. *> The scalar factors of the elementary reflectors (see Further
  105. *> Details).
  106. *> \endverbatim
  107. *>
  108. *> \param[out] WORK
  109. *> \verbatim
  110. *> WORK is REAL array, dimension (MAX(1,LWORK))
  111. *> On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
  112. *> \endverbatim
  113. *>
  114. *> \param[in] LWORK
  115. *> \verbatim
  116. *> LWORK is INTEGER
  117. *> The dimension of the array WORK. LWORK >= 1.
  118. *> For optimum performance LWORK >= N*NB, where NB is the
  119. *> optimal blocksize.
  120. *>
  121. *> If LWORK = -1, then a workspace query is assumed; the routine
  122. *> only calculates the optimal size of the WORK array, returns
  123. *> this value as the first entry of the WORK array, and no error
  124. *> message related to LWORK is issued by XERBLA.
  125. *> \endverbatim
  126. *>
  127. *> \param[out] INFO
  128. *> \verbatim
  129. *> INFO is INTEGER
  130. *> = 0: successful exit
  131. *> < 0: if INFO = -i, the i-th argument had an illegal value
  132. *> \endverbatim
  133. *
  134. * Authors:
  135. * ========
  136. *
  137. *> \author Univ. of Tennessee
  138. *> \author Univ. of California Berkeley
  139. *> \author Univ. of Colorado Denver
  140. *> \author NAG Ltd.
  141. *
  142. *> \ingroup hetrd
  143. *
  144. *> \par Further Details:
  145. * =====================
  146. *>
  147. *> \verbatim
  148. *>
  149. *> If UPLO = 'U', the matrix Q is represented as a product of elementary
  150. *> reflectors
  151. *>
  152. *> Q = H(n-1) . . . H(2) H(1).
  153. *>
  154. *> Each H(i) has the form
  155. *>
  156. *> H(i) = I - tau * v * v**T
  157. *>
  158. *> where tau is a real scalar, and v is a real vector with
  159. *> v(i+1:n) = 0 and v(i) = 1; v(1:i-1) is stored on exit in
  160. *> A(1:i-1,i+1), and tau in TAU(i).
  161. *>
  162. *> If UPLO = 'L', the matrix Q is represented as a product of elementary
  163. *> reflectors
  164. *>
  165. *> Q = H(1) H(2) . . . H(n-1).
  166. *>
  167. *> Each H(i) has the form
  168. *>
  169. *> H(i) = I - tau * v * v**T
  170. *>
  171. *> where tau is a real scalar, and v is a real vector with
  172. *> v(1:i) = 0 and v(i+1) = 1; v(i+2:n) is stored on exit in A(i+2:n,i),
  173. *> and tau in TAU(i).
  174. *>
  175. *> The contents of A on exit are illustrated by the following examples
  176. *> with n = 5:
  177. *>
  178. *> if UPLO = 'U': if UPLO = 'L':
  179. *>
  180. *> ( d e v2 v3 v4 ) ( d )
  181. *> ( d e v3 v4 ) ( e d )
  182. *> ( d e v4 ) ( v1 e d )
  183. *> ( d e ) ( v1 v2 e d )
  184. *> ( d ) ( v1 v2 v3 e d )
  185. *>
  186. *> where d and e denote diagonal and off-diagonal elements of T, and vi
  187. *> denotes an element of the vector defining H(i).
  188. *> \endverbatim
  189. *>
  190. * =====================================================================
  191. SUBROUTINE SSYTRD( UPLO, N, A, LDA, D, E, TAU, WORK, LWORK, INFO )
  192. *
  193. * -- LAPACK computational routine --
  194. * -- LAPACK is a software package provided by Univ. of Tennessee, --
  195. * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
  196. *
  197. * .. Scalar Arguments ..
  198. CHARACTER UPLO
  199. INTEGER INFO, LDA, LWORK, N
  200. * ..
  201. * .. Array Arguments ..
  202. REAL A( LDA, * ), D( * ), E( * ), TAU( * ),
  203. $ WORK( * )
  204. * ..
  205. *
  206. * =====================================================================
  207. *
  208. * .. Parameters ..
  209. REAL ONE
  210. PARAMETER ( ONE = 1.0E+0 )
  211. * ..
  212. * .. Local Scalars ..
  213. LOGICAL LQUERY, UPPER
  214. INTEGER I, IINFO, IWS, J, KK, LDWORK, LWKOPT, NB,
  215. $ NBMIN, NX
  216. * ..
  217. * .. External Subroutines ..
  218. EXTERNAL SLATRD, SSYR2K, SSYTD2, XERBLA
  219. * ..
  220. * .. Intrinsic Functions ..
  221. INTRINSIC MAX
  222. * ..
  223. * .. External Functions ..
  224. LOGICAL LSAME
  225. INTEGER ILAENV
  226. REAL SROUNDUP_LWORK
  227. EXTERNAL LSAME, ILAENV, SROUNDUP_LWORK
  228. * ..
  229. * .. Executable Statements ..
  230. *
  231. * Test the input parameters
  232. *
  233. INFO = 0
  234. UPPER = LSAME( UPLO, 'U' )
  235. LQUERY = ( LWORK.EQ.-1 )
  236. IF( .NOT.UPPER .AND. .NOT.LSAME( UPLO, 'L' ) ) THEN
  237. INFO = -1
  238. ELSE IF( N.LT.0 ) THEN
  239. INFO = -2
  240. ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
  241. INFO = -4
  242. ELSE IF( LWORK.LT.1 .AND. .NOT.LQUERY ) THEN
  243. INFO = -9
  244. END IF
  245. *
  246. IF( INFO.EQ.0 ) THEN
  247. *
  248. * Determine the block size.
  249. *
  250. NB = ILAENV( 1, 'SSYTRD', UPLO, N, -1, -1, -1 )
  251. LWKOPT = N*NB
  252. WORK( 1 ) = SROUNDUP_LWORK(LWKOPT)
  253. END IF
  254. *
  255. IF( INFO.NE.0 ) THEN
  256. CALL XERBLA( 'SSYTRD', -INFO )
  257. RETURN
  258. ELSE IF( LQUERY ) THEN
  259. RETURN
  260. END IF
  261. *
  262. * Quick return if possible
  263. *
  264. IF( N.EQ.0 ) THEN
  265. WORK( 1 ) = 1
  266. RETURN
  267. END IF
  268. *
  269. NX = N
  270. IWS = 1
  271. IF( NB.GT.1 .AND. NB.LT.N ) THEN
  272. *
  273. * Determine when to cross over from blocked to unblocked code
  274. * (last block is always handled by unblocked code).
  275. *
  276. NX = MAX( NB, ILAENV( 3, 'SSYTRD', UPLO, N, -1, -1, -1 ) )
  277. IF( NX.LT.N ) THEN
  278. *
  279. * Determine if workspace is large enough for blocked code.
  280. *
  281. LDWORK = N
  282. IWS = LDWORK*NB
  283. IF( LWORK.LT.IWS ) THEN
  284. *
  285. * Not enough workspace to use optimal NB: determine the
  286. * minimum value of NB, and reduce NB or force use of
  287. * unblocked code by setting NX = N.
  288. *
  289. NB = MAX( LWORK / LDWORK, 1 )
  290. NBMIN = ILAENV( 2, 'SSYTRD', UPLO, N, -1, -1, -1 )
  291. IF( NB.LT.NBMIN )
  292. $ NX = N
  293. END IF
  294. ELSE
  295. NX = N
  296. END IF
  297. ELSE
  298. NB = 1
  299. END IF
  300. *
  301. IF( UPPER ) THEN
  302. *
  303. * Reduce the upper triangle of A.
  304. * Columns 1:kk are handled by the unblocked method.
  305. *
  306. KK = N - ( ( N-NX+NB-1 ) / NB )*NB
  307. DO 20 I = N - NB + 1, KK + 1, -NB
  308. *
  309. * Reduce columns i:i+nb-1 to tridiagonal form and form the
  310. * matrix W which is needed to update the unreduced part of
  311. * the matrix
  312. *
  313. CALL SLATRD( UPLO, I+NB-1, NB, A, LDA, E, TAU, WORK,
  314. $ LDWORK )
  315. *
  316. * Update the unreduced submatrix A(1:i-1,1:i-1), using an
  317. * update of the form: A := A - V*W**T - W*V**T
  318. *
  319. CALL SSYR2K( UPLO, 'No transpose', I-1, NB, -ONE, A( 1, I ),
  320. $ LDA, WORK, LDWORK, ONE, A, LDA )
  321. *
  322. * Copy superdiagonal elements back into A, and diagonal
  323. * elements into D
  324. *
  325. DO 10 J = I, I + NB - 1
  326. A( J-1, J ) = E( J-1 )
  327. D( J ) = A( J, J )
  328. 10 CONTINUE
  329. 20 CONTINUE
  330. *
  331. * Use unblocked code to reduce the last or only block
  332. *
  333. CALL SSYTD2( UPLO, KK, A, LDA, D, E, TAU, IINFO )
  334. ELSE
  335. *
  336. * Reduce the lower triangle of A
  337. *
  338. DO 40 I = 1, N - NX, NB
  339. *
  340. * Reduce columns i:i+nb-1 to tridiagonal form and form the
  341. * matrix W which is needed to update the unreduced part of
  342. * the matrix
  343. *
  344. CALL SLATRD( UPLO, N-I+1, NB, A( I, I ), LDA, E( I ),
  345. $ TAU( I ), WORK, LDWORK )
  346. *
  347. * Update the unreduced submatrix A(i+ib:n,i+ib:n), using
  348. * an update of the form: A := A - V*W**T - W*V**T
  349. *
  350. CALL SSYR2K( UPLO, 'No transpose', N-I-NB+1, NB, -ONE,
  351. $ A( I+NB, I ), LDA, WORK( NB+1 ), LDWORK, ONE,
  352. $ A( I+NB, I+NB ), LDA )
  353. *
  354. * Copy subdiagonal elements back into A, and diagonal
  355. * elements into D
  356. *
  357. DO 30 J = I, I + NB - 1
  358. A( J+1, J ) = E( J )
  359. D( J ) = A( J, J )
  360. 30 CONTINUE
  361. 40 CONTINUE
  362. *
  363. * Use unblocked code to reduce the last or only block
  364. *
  365. CALL SSYTD2( UPLO, N-I+1, A( I, I ), LDA, D( I ), E( I ),
  366. $ TAU( I ), IINFO )
  367. END IF
  368. *
  369. WORK( 1 ) = SROUNDUP_LWORK(LWKOPT)
  370. RETURN
  371. *
  372. * End of SSYTRD
  373. *
  374. END