You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

ssfrk.f 17 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540
  1. *> \brief \b SSFRK performs a symmetric rank-k operation for matrix in RFP format.
  2. *
  3. * =========== DOCUMENTATION ===========
  4. *
  5. * Online html documentation available at
  6. * http://www.netlib.org/lapack/explore-html/
  7. *
  8. *> \htmlonly
  9. *> Download SSFRK + dependencies
  10. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/ssfrk.f">
  11. *> [TGZ]</a>
  12. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/ssfrk.f">
  13. *> [ZIP]</a>
  14. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/ssfrk.f">
  15. *> [TXT]</a>
  16. *> \endhtmlonly
  17. *
  18. * Definition:
  19. * ===========
  20. *
  21. * SUBROUTINE SSFRK( TRANSR, UPLO, TRANS, N, K, ALPHA, A, LDA, BETA,
  22. * C )
  23. *
  24. * .. Scalar Arguments ..
  25. * REAL ALPHA, BETA
  26. * INTEGER K, LDA, N
  27. * CHARACTER TRANS, TRANSR, UPLO
  28. * ..
  29. * .. Array Arguments ..
  30. * REAL A( LDA, * ), C( * )
  31. * ..
  32. *
  33. *
  34. *> \par Purpose:
  35. * =============
  36. *>
  37. *> \verbatim
  38. *>
  39. *> Level 3 BLAS like routine for C in RFP Format.
  40. *>
  41. *> SSFRK performs one of the symmetric rank--k operations
  42. *>
  43. *> C := alpha*A*A**T + beta*C,
  44. *>
  45. *> or
  46. *>
  47. *> C := alpha*A**T*A + beta*C,
  48. *>
  49. *> where alpha and beta are real scalars, C is an n--by--n symmetric
  50. *> matrix and A is an n--by--k matrix in the first case and a k--by--n
  51. *> matrix in the second case.
  52. *> \endverbatim
  53. *
  54. * Arguments:
  55. * ==========
  56. *
  57. *> \param[in] TRANSR
  58. *> \verbatim
  59. *> TRANSR is CHARACTER*1
  60. *> = 'N': The Normal Form of RFP A is stored;
  61. *> = 'T': The Transpose Form of RFP A is stored.
  62. *> \endverbatim
  63. *>
  64. *> \param[in] UPLO
  65. *> \verbatim
  66. *> UPLO is CHARACTER*1
  67. *> On entry, UPLO specifies whether the upper or lower
  68. *> triangular part of the array C is to be referenced as
  69. *> follows:
  70. *>
  71. *> UPLO = 'U' or 'u' Only the upper triangular part of C
  72. *> is to be referenced.
  73. *>
  74. *> UPLO = 'L' or 'l' Only the lower triangular part of C
  75. *> is to be referenced.
  76. *>
  77. *> Unchanged on exit.
  78. *> \endverbatim
  79. *>
  80. *> \param[in] TRANS
  81. *> \verbatim
  82. *> TRANS is CHARACTER*1
  83. *> On entry, TRANS specifies the operation to be performed as
  84. *> follows:
  85. *>
  86. *> TRANS = 'N' or 'n' C := alpha*A*A**T + beta*C.
  87. *>
  88. *> TRANS = 'T' or 't' C := alpha*A**T*A + beta*C.
  89. *>
  90. *> Unchanged on exit.
  91. *> \endverbatim
  92. *>
  93. *> \param[in] N
  94. *> \verbatim
  95. *> N is INTEGER
  96. *> On entry, N specifies the order of the matrix C. N must be
  97. *> at least zero.
  98. *> Unchanged on exit.
  99. *> \endverbatim
  100. *>
  101. *> \param[in] K
  102. *> \verbatim
  103. *> K is INTEGER
  104. *> On entry with TRANS = 'N' or 'n', K specifies the number
  105. *> of columns of the matrix A, and on entry with TRANS = 'T'
  106. *> or 't', K specifies the number of rows of the matrix A. K
  107. *> must be at least zero.
  108. *> Unchanged on exit.
  109. *> \endverbatim
  110. *>
  111. *> \param[in] ALPHA
  112. *> \verbatim
  113. *> ALPHA is REAL
  114. *> On entry, ALPHA specifies the scalar alpha.
  115. *> Unchanged on exit.
  116. *> \endverbatim
  117. *>
  118. *> \param[in] A
  119. *> \verbatim
  120. *> A is REAL array, dimension (LDA,ka)
  121. *> where KA
  122. *> is K when TRANS = 'N' or 'n', and is N otherwise. Before
  123. *> entry with TRANS = 'N' or 'n', the leading N--by--K part of
  124. *> the array A must contain the matrix A, otherwise the leading
  125. *> K--by--N part of the array A must contain the matrix A.
  126. *> Unchanged on exit.
  127. *> \endverbatim
  128. *>
  129. *> \param[in] LDA
  130. *> \verbatim
  131. *> LDA is INTEGER
  132. *> On entry, LDA specifies the first dimension of A as declared
  133. *> in the calling (sub) program. When TRANS = 'N' or 'n'
  134. *> then LDA must be at least max( 1, n ), otherwise LDA must
  135. *> be at least max( 1, k ).
  136. *> Unchanged on exit.
  137. *> \endverbatim
  138. *>
  139. *> \param[in] BETA
  140. *> \verbatim
  141. *> BETA is REAL
  142. *> On entry, BETA specifies the scalar beta.
  143. *> Unchanged on exit.
  144. *> \endverbatim
  145. *>
  146. *> \param[in,out] C
  147. *> \verbatim
  148. *> C is REAL array, dimension (NT)
  149. *> NT = N*(N+1)/2. On entry, the symmetric matrix C in RFP
  150. *> Format. RFP Format is described by TRANSR, UPLO and N.
  151. *> \endverbatim
  152. *
  153. * Authors:
  154. * ========
  155. *
  156. *> \author Univ. of Tennessee
  157. *> \author Univ. of California Berkeley
  158. *> \author Univ. of Colorado Denver
  159. *> \author NAG Ltd.
  160. *
  161. *> \ingroup realOTHERcomputational
  162. *
  163. * =====================================================================
  164. SUBROUTINE SSFRK( TRANSR, UPLO, TRANS, N, K, ALPHA, A, LDA, BETA,
  165. $ C )
  166. *
  167. * -- LAPACK computational routine --
  168. * -- LAPACK is a software package provided by Univ. of Tennessee, --
  169. * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
  170. *
  171. * .. Scalar Arguments ..
  172. REAL ALPHA, BETA
  173. INTEGER K, LDA, N
  174. CHARACTER TRANS, TRANSR, UPLO
  175. * ..
  176. * .. Array Arguments ..
  177. REAL A( LDA, * ), C( * )
  178. * ..
  179. *
  180. * =====================================================================
  181. *
  182. * .. Parameters ..
  183. REAL ONE, ZERO
  184. PARAMETER ( ONE = 1.0E+0, ZERO = 0.0E+0 )
  185. * ..
  186. * .. Local Scalars ..
  187. LOGICAL LOWER, NORMALTRANSR, NISODD, NOTRANS
  188. INTEGER INFO, NROWA, J, NK, N1, N2
  189. * ..
  190. * .. External Functions ..
  191. LOGICAL LSAME
  192. EXTERNAL LSAME
  193. * ..
  194. * .. External Subroutines ..
  195. EXTERNAL SGEMM, SSYRK, XERBLA
  196. * ..
  197. * .. Intrinsic Functions ..
  198. INTRINSIC MAX
  199. * ..
  200. * .. Executable Statements ..
  201. *
  202. * Test the input parameters.
  203. *
  204. INFO = 0
  205. NORMALTRANSR = LSAME( TRANSR, 'N' )
  206. LOWER = LSAME( UPLO, 'L' )
  207. NOTRANS = LSAME( TRANS, 'N' )
  208. *
  209. IF( NOTRANS ) THEN
  210. NROWA = N
  211. ELSE
  212. NROWA = K
  213. END IF
  214. *
  215. IF( .NOT.NORMALTRANSR .AND. .NOT.LSAME( TRANSR, 'T' ) ) THEN
  216. INFO = -1
  217. ELSE IF( .NOT.LOWER .AND. .NOT.LSAME( UPLO, 'U' ) ) THEN
  218. INFO = -2
  219. ELSE IF( .NOT.NOTRANS .AND. .NOT.LSAME( TRANS, 'T' ) ) THEN
  220. INFO = -3
  221. ELSE IF( N.LT.0 ) THEN
  222. INFO = -4
  223. ELSE IF( K.LT.0 ) THEN
  224. INFO = -5
  225. ELSE IF( LDA.LT.MAX( 1, NROWA ) ) THEN
  226. INFO = -8
  227. END IF
  228. IF( INFO.NE.0 ) THEN
  229. CALL XERBLA( 'SSFRK ', -INFO )
  230. RETURN
  231. END IF
  232. *
  233. * Quick return if possible.
  234. *
  235. * The quick return case: ((ALPHA.EQ.0).AND.(BETA.NE.ZERO)) is not
  236. * done (it is in SSYRK for example) and left in the general case.
  237. *
  238. IF( ( N.EQ.0 ) .OR. ( ( ( ALPHA.EQ.ZERO ) .OR. ( K.EQ.0 ) ) .AND.
  239. $ ( BETA.EQ.ONE ) ) )RETURN
  240. *
  241. IF( ( ALPHA.EQ.ZERO ) .AND. ( BETA.EQ.ZERO ) ) THEN
  242. DO J = 1, ( ( N*( N+1 ) ) / 2 )
  243. C( J ) = ZERO
  244. END DO
  245. RETURN
  246. END IF
  247. *
  248. * C is N-by-N.
  249. * If N is odd, set NISODD = .TRUE., and N1 and N2.
  250. * If N is even, NISODD = .FALSE., and NK.
  251. *
  252. IF( MOD( N, 2 ).EQ.0 ) THEN
  253. NISODD = .FALSE.
  254. NK = N / 2
  255. ELSE
  256. NISODD = .TRUE.
  257. IF( LOWER ) THEN
  258. N2 = N / 2
  259. N1 = N - N2
  260. ELSE
  261. N1 = N / 2
  262. N2 = N - N1
  263. END IF
  264. END IF
  265. *
  266. IF( NISODD ) THEN
  267. *
  268. * N is odd
  269. *
  270. IF( NORMALTRANSR ) THEN
  271. *
  272. * N is odd and TRANSR = 'N'
  273. *
  274. IF( LOWER ) THEN
  275. *
  276. * N is odd, TRANSR = 'N', and UPLO = 'L'
  277. *
  278. IF( NOTRANS ) THEN
  279. *
  280. * N is odd, TRANSR = 'N', UPLO = 'L', and TRANS = 'N'
  281. *
  282. CALL SSYRK( 'L', 'N', N1, K, ALPHA, A( 1, 1 ), LDA,
  283. $ BETA, C( 1 ), N )
  284. CALL SSYRK( 'U', 'N', N2, K, ALPHA, A( N1+1, 1 ), LDA,
  285. $ BETA, C( N+1 ), N )
  286. CALL SGEMM( 'N', 'T', N2, N1, K, ALPHA, A( N1+1, 1 ),
  287. $ LDA, A( 1, 1 ), LDA, BETA, C( N1+1 ), N )
  288. *
  289. ELSE
  290. *
  291. * N is odd, TRANSR = 'N', UPLO = 'L', and TRANS = 'T'
  292. *
  293. CALL SSYRK( 'L', 'T', N1, K, ALPHA, A( 1, 1 ), LDA,
  294. $ BETA, C( 1 ), N )
  295. CALL SSYRK( 'U', 'T', N2, K, ALPHA, A( 1, N1+1 ), LDA,
  296. $ BETA, C( N+1 ), N )
  297. CALL SGEMM( 'T', 'N', N2, N1, K, ALPHA, A( 1, N1+1 ),
  298. $ LDA, A( 1, 1 ), LDA, BETA, C( N1+1 ), N )
  299. *
  300. END IF
  301. *
  302. ELSE
  303. *
  304. * N is odd, TRANSR = 'N', and UPLO = 'U'
  305. *
  306. IF( NOTRANS ) THEN
  307. *
  308. * N is odd, TRANSR = 'N', UPLO = 'U', and TRANS = 'N'
  309. *
  310. CALL SSYRK( 'L', 'N', N1, K, ALPHA, A( 1, 1 ), LDA,
  311. $ BETA, C( N2+1 ), N )
  312. CALL SSYRK( 'U', 'N', N2, K, ALPHA, A( N2, 1 ), LDA,
  313. $ BETA, C( N1+1 ), N )
  314. CALL SGEMM( 'N', 'T', N1, N2, K, ALPHA, A( 1, 1 ),
  315. $ LDA, A( N2, 1 ), LDA, BETA, C( 1 ), N )
  316. *
  317. ELSE
  318. *
  319. * N is odd, TRANSR = 'N', UPLO = 'U', and TRANS = 'T'
  320. *
  321. CALL SSYRK( 'L', 'T', N1, K, ALPHA, A( 1, 1 ), LDA,
  322. $ BETA, C( N2+1 ), N )
  323. CALL SSYRK( 'U', 'T', N2, K, ALPHA, A( 1, N2 ), LDA,
  324. $ BETA, C( N1+1 ), N )
  325. CALL SGEMM( 'T', 'N', N1, N2, K, ALPHA, A( 1, 1 ),
  326. $ LDA, A( 1, N2 ), LDA, BETA, C( 1 ), N )
  327. *
  328. END IF
  329. *
  330. END IF
  331. *
  332. ELSE
  333. *
  334. * N is odd, and TRANSR = 'T'
  335. *
  336. IF( LOWER ) THEN
  337. *
  338. * N is odd, TRANSR = 'T', and UPLO = 'L'
  339. *
  340. IF( NOTRANS ) THEN
  341. *
  342. * N is odd, TRANSR = 'T', UPLO = 'L', and TRANS = 'N'
  343. *
  344. CALL SSYRK( 'U', 'N', N1, K, ALPHA, A( 1, 1 ), LDA,
  345. $ BETA, C( 1 ), N1 )
  346. CALL SSYRK( 'L', 'N', N2, K, ALPHA, A( N1+1, 1 ), LDA,
  347. $ BETA, C( 2 ), N1 )
  348. CALL SGEMM( 'N', 'T', N1, N2, K, ALPHA, A( 1, 1 ),
  349. $ LDA, A( N1+1, 1 ), LDA, BETA,
  350. $ C( N1*N1+1 ), N1 )
  351. *
  352. ELSE
  353. *
  354. * N is odd, TRANSR = 'T', UPLO = 'L', and TRANS = 'T'
  355. *
  356. CALL SSYRK( 'U', 'T', N1, K, ALPHA, A( 1, 1 ), LDA,
  357. $ BETA, C( 1 ), N1 )
  358. CALL SSYRK( 'L', 'T', N2, K, ALPHA, A( 1, N1+1 ), LDA,
  359. $ BETA, C( 2 ), N1 )
  360. CALL SGEMM( 'T', 'N', N1, N2, K, ALPHA, A( 1, 1 ),
  361. $ LDA, A( 1, N1+1 ), LDA, BETA,
  362. $ C( N1*N1+1 ), N1 )
  363. *
  364. END IF
  365. *
  366. ELSE
  367. *
  368. * N is odd, TRANSR = 'T', and UPLO = 'U'
  369. *
  370. IF( NOTRANS ) THEN
  371. *
  372. * N is odd, TRANSR = 'T', UPLO = 'U', and TRANS = 'N'
  373. *
  374. CALL SSYRK( 'U', 'N', N1, K, ALPHA, A( 1, 1 ), LDA,
  375. $ BETA, C( N2*N2+1 ), N2 )
  376. CALL SSYRK( 'L', 'N', N2, K, ALPHA, A( N1+1, 1 ), LDA,
  377. $ BETA, C( N1*N2+1 ), N2 )
  378. CALL SGEMM( 'N', 'T', N2, N1, K, ALPHA, A( N1+1, 1 ),
  379. $ LDA, A( 1, 1 ), LDA, BETA, C( 1 ), N2 )
  380. *
  381. ELSE
  382. *
  383. * N is odd, TRANSR = 'T', UPLO = 'U', and TRANS = 'T'
  384. *
  385. CALL SSYRK( 'U', 'T', N1, K, ALPHA, A( 1, 1 ), LDA,
  386. $ BETA, C( N2*N2+1 ), N2 )
  387. CALL SSYRK( 'L', 'T', N2, K, ALPHA, A( 1, N1+1 ), LDA,
  388. $ BETA, C( N1*N2+1 ), N2 )
  389. CALL SGEMM( 'T', 'N', N2, N1, K, ALPHA, A( 1, N1+1 ),
  390. $ LDA, A( 1, 1 ), LDA, BETA, C( 1 ), N2 )
  391. *
  392. END IF
  393. *
  394. END IF
  395. *
  396. END IF
  397. *
  398. ELSE
  399. *
  400. * N is even
  401. *
  402. IF( NORMALTRANSR ) THEN
  403. *
  404. * N is even and TRANSR = 'N'
  405. *
  406. IF( LOWER ) THEN
  407. *
  408. * N is even, TRANSR = 'N', and UPLO = 'L'
  409. *
  410. IF( NOTRANS ) THEN
  411. *
  412. * N is even, TRANSR = 'N', UPLO = 'L', and TRANS = 'N'
  413. *
  414. CALL SSYRK( 'L', 'N', NK, K, ALPHA, A( 1, 1 ), LDA,
  415. $ BETA, C( 2 ), N+1 )
  416. CALL SSYRK( 'U', 'N', NK, K, ALPHA, A( NK+1, 1 ), LDA,
  417. $ BETA, C( 1 ), N+1 )
  418. CALL SGEMM( 'N', 'T', NK, NK, K, ALPHA, A( NK+1, 1 ),
  419. $ LDA, A( 1, 1 ), LDA, BETA, C( NK+2 ),
  420. $ N+1 )
  421. *
  422. ELSE
  423. *
  424. * N is even, TRANSR = 'N', UPLO = 'L', and TRANS = 'T'
  425. *
  426. CALL SSYRK( 'L', 'T', NK, K, ALPHA, A( 1, 1 ), LDA,
  427. $ BETA, C( 2 ), N+1 )
  428. CALL SSYRK( 'U', 'T', NK, K, ALPHA, A( 1, NK+1 ), LDA,
  429. $ BETA, C( 1 ), N+1 )
  430. CALL SGEMM( 'T', 'N', NK, NK, K, ALPHA, A( 1, NK+1 ),
  431. $ LDA, A( 1, 1 ), LDA, BETA, C( NK+2 ),
  432. $ N+1 )
  433. *
  434. END IF
  435. *
  436. ELSE
  437. *
  438. * N is even, TRANSR = 'N', and UPLO = 'U'
  439. *
  440. IF( NOTRANS ) THEN
  441. *
  442. * N is even, TRANSR = 'N', UPLO = 'U', and TRANS = 'N'
  443. *
  444. CALL SSYRK( 'L', 'N', NK, K, ALPHA, A( 1, 1 ), LDA,
  445. $ BETA, C( NK+2 ), N+1 )
  446. CALL SSYRK( 'U', 'N', NK, K, ALPHA, A( NK+1, 1 ), LDA,
  447. $ BETA, C( NK+1 ), N+1 )
  448. CALL SGEMM( 'N', 'T', NK, NK, K, ALPHA, A( 1, 1 ),
  449. $ LDA, A( NK+1, 1 ), LDA, BETA, C( 1 ),
  450. $ N+1 )
  451. *
  452. ELSE
  453. *
  454. * N is even, TRANSR = 'N', UPLO = 'U', and TRANS = 'T'
  455. *
  456. CALL SSYRK( 'L', 'T', NK, K, ALPHA, A( 1, 1 ), LDA,
  457. $ BETA, C( NK+2 ), N+1 )
  458. CALL SSYRK( 'U', 'T', NK, K, ALPHA, A( 1, NK+1 ), LDA,
  459. $ BETA, C( NK+1 ), N+1 )
  460. CALL SGEMM( 'T', 'N', NK, NK, K, ALPHA, A( 1, 1 ),
  461. $ LDA, A( 1, NK+1 ), LDA, BETA, C( 1 ),
  462. $ N+1 )
  463. *
  464. END IF
  465. *
  466. END IF
  467. *
  468. ELSE
  469. *
  470. * N is even, and TRANSR = 'T'
  471. *
  472. IF( LOWER ) THEN
  473. *
  474. * N is even, TRANSR = 'T', and UPLO = 'L'
  475. *
  476. IF( NOTRANS ) THEN
  477. *
  478. * N is even, TRANSR = 'T', UPLO = 'L', and TRANS = 'N'
  479. *
  480. CALL SSYRK( 'U', 'N', NK, K, ALPHA, A( 1, 1 ), LDA,
  481. $ BETA, C( NK+1 ), NK )
  482. CALL SSYRK( 'L', 'N', NK, K, ALPHA, A( NK+1, 1 ), LDA,
  483. $ BETA, C( 1 ), NK )
  484. CALL SGEMM( 'N', 'T', NK, NK, K, ALPHA, A( 1, 1 ),
  485. $ LDA, A( NK+1, 1 ), LDA, BETA,
  486. $ C( ( ( NK+1 )*NK )+1 ), NK )
  487. *
  488. ELSE
  489. *
  490. * N is even, TRANSR = 'T', UPLO = 'L', and TRANS = 'T'
  491. *
  492. CALL SSYRK( 'U', 'T', NK, K, ALPHA, A( 1, 1 ), LDA,
  493. $ BETA, C( NK+1 ), NK )
  494. CALL SSYRK( 'L', 'T', NK, K, ALPHA, A( 1, NK+1 ), LDA,
  495. $ BETA, C( 1 ), NK )
  496. CALL SGEMM( 'T', 'N', NK, NK, K, ALPHA, A( 1, 1 ),
  497. $ LDA, A( 1, NK+1 ), LDA, BETA,
  498. $ C( ( ( NK+1 )*NK )+1 ), NK )
  499. *
  500. END IF
  501. *
  502. ELSE
  503. *
  504. * N is even, TRANSR = 'T', and UPLO = 'U'
  505. *
  506. IF( NOTRANS ) THEN
  507. *
  508. * N is even, TRANSR = 'T', UPLO = 'U', and TRANS = 'N'
  509. *
  510. CALL SSYRK( 'U', 'N', NK, K, ALPHA, A( 1, 1 ), LDA,
  511. $ BETA, C( NK*( NK+1 )+1 ), NK )
  512. CALL SSYRK( 'L', 'N', NK, K, ALPHA, A( NK+1, 1 ), LDA,
  513. $ BETA, C( NK*NK+1 ), NK )
  514. CALL SGEMM( 'N', 'T', NK, NK, K, ALPHA, A( NK+1, 1 ),
  515. $ LDA, A( 1, 1 ), LDA, BETA, C( 1 ), NK )
  516. *
  517. ELSE
  518. *
  519. * N is even, TRANSR = 'T', UPLO = 'U', and TRANS = 'T'
  520. *
  521. CALL SSYRK( 'U', 'T', NK, K, ALPHA, A( 1, 1 ), LDA,
  522. $ BETA, C( NK*( NK+1 )+1 ), NK )
  523. CALL SSYRK( 'L', 'T', NK, K, ALPHA, A( 1, NK+1 ), LDA,
  524. $ BETA, C( NK*NK+1 ), NK )
  525. CALL SGEMM( 'T', 'N', NK, NK, K, ALPHA, A( 1, NK+1 ),
  526. $ LDA, A( 1, 1 ), LDA, BETA, C( 1 ), NK )
  527. *
  528. END IF
  529. *
  530. END IF
  531. *
  532. END IF
  533. *
  534. END IF
  535. *
  536. RETURN
  537. *
  538. * End of SSFRK
  539. *
  540. END