You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

sposvx.f 17 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491
  1. *> \brief <b> SPOSVX computes the solution to system of linear equations A * X = B for PO matrices</b>
  2. *
  3. * =========== DOCUMENTATION ===========
  4. *
  5. * Online html documentation available at
  6. * http://www.netlib.org/lapack/explore-html/
  7. *
  8. *> \htmlonly
  9. *> Download SPOSVX + dependencies
  10. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/sposvx.f">
  11. *> [TGZ]</a>
  12. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/sposvx.f">
  13. *> [ZIP]</a>
  14. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/sposvx.f">
  15. *> [TXT]</a>
  16. *> \endhtmlonly
  17. *
  18. * Definition:
  19. * ===========
  20. *
  21. * SUBROUTINE SPOSVX( FACT, UPLO, N, NRHS, A, LDA, AF, LDAF, EQUED,
  22. * S, B, LDB, X, LDX, RCOND, FERR, BERR, WORK,
  23. * IWORK, INFO )
  24. *
  25. * .. Scalar Arguments ..
  26. * CHARACTER EQUED, FACT, UPLO
  27. * INTEGER INFO, LDA, LDAF, LDB, LDX, N, NRHS
  28. * REAL RCOND
  29. * ..
  30. * .. Array Arguments ..
  31. * INTEGER IWORK( * )
  32. * REAL A( LDA, * ), AF( LDAF, * ), B( LDB, * ),
  33. * $ BERR( * ), FERR( * ), S( * ), WORK( * ),
  34. * $ X( LDX, * )
  35. * ..
  36. *
  37. *
  38. *> \par Purpose:
  39. * =============
  40. *>
  41. *> \verbatim
  42. *>
  43. *> SPOSVX uses the Cholesky factorization A = U**T*U or A = L*L**T to
  44. *> compute the solution to a real system of linear equations
  45. *> A * X = B,
  46. *> where A is an N-by-N symmetric positive definite matrix and X and B
  47. *> are N-by-NRHS matrices.
  48. *>
  49. *> Error bounds on the solution and a condition estimate are also
  50. *> provided.
  51. *> \endverbatim
  52. *
  53. *> \par Description:
  54. * =================
  55. *>
  56. *> \verbatim
  57. *>
  58. *> The following steps are performed:
  59. *>
  60. *> 1. If FACT = 'E', real scaling factors are computed to equilibrate
  61. *> the system:
  62. *> diag(S) * A * diag(S) * inv(diag(S)) * X = diag(S) * B
  63. *> Whether or not the system will be equilibrated depends on the
  64. *> scaling of the matrix A, but if equilibration is used, A is
  65. *> overwritten by diag(S)*A*diag(S) and B by diag(S)*B.
  66. *>
  67. *> 2. If FACT = 'N' or 'E', the Cholesky decomposition is used to
  68. *> factor the matrix A (after equilibration if FACT = 'E') as
  69. *> A = U**T* U, if UPLO = 'U', or
  70. *> A = L * L**T, if UPLO = 'L',
  71. *> where U is an upper triangular matrix and L is a lower triangular
  72. *> matrix.
  73. *>
  74. *> 3. If the leading principal minor of order i is not positive,
  75. *> then the routine returns with INFO = i. Otherwise, the factored
  76. *> form of A is used to estimate the condition number of the matrix
  77. *> A. If the reciprocal of the condition number is less than machine
  78. *> precision, INFO = N+1 is returned as a warning, but the routine
  79. *> still goes on to solve for X and compute error bounds as
  80. *> described below.
  81. *>
  82. *> 4. The system of equations is solved for X using the factored form
  83. *> of A.
  84. *>
  85. *> 5. Iterative refinement is applied to improve the computed solution
  86. *> matrix and calculate error bounds and backward error estimates
  87. *> for it.
  88. *>
  89. *> 6. If equilibration was used, the matrix X is premultiplied by
  90. *> diag(S) so that it solves the original system before
  91. *> equilibration.
  92. *> \endverbatim
  93. *
  94. * Arguments:
  95. * ==========
  96. *
  97. *> \param[in] FACT
  98. *> \verbatim
  99. *> FACT is CHARACTER*1
  100. *> Specifies whether or not the factored form of the matrix A is
  101. *> supplied on entry, and if not, whether the matrix A should be
  102. *> equilibrated before it is factored.
  103. *> = 'F': On entry, AF contains the factored form of A.
  104. *> If EQUED = 'Y', the matrix A has been equilibrated
  105. *> with scaling factors given by S. A and AF will not
  106. *> be modified.
  107. *> = 'N': The matrix A will be copied to AF and factored.
  108. *> = 'E': The matrix A will be equilibrated if necessary, then
  109. *> copied to AF and factored.
  110. *> \endverbatim
  111. *>
  112. *> \param[in] UPLO
  113. *> \verbatim
  114. *> UPLO is CHARACTER*1
  115. *> = 'U': Upper triangle of A is stored;
  116. *> = 'L': Lower triangle of A is stored.
  117. *> \endverbatim
  118. *>
  119. *> \param[in] N
  120. *> \verbatim
  121. *> N is INTEGER
  122. *> The number of linear equations, i.e., the order of the
  123. *> matrix A. N >= 0.
  124. *> \endverbatim
  125. *>
  126. *> \param[in] NRHS
  127. *> \verbatim
  128. *> NRHS is INTEGER
  129. *> The number of right hand sides, i.e., the number of columns
  130. *> of the matrices B and X. NRHS >= 0.
  131. *> \endverbatim
  132. *>
  133. *> \param[in,out] A
  134. *> \verbatim
  135. *> A is REAL array, dimension (LDA,N)
  136. *> On entry, the symmetric matrix A, except if FACT = 'F' and
  137. *> EQUED = 'Y', then A must contain the equilibrated matrix
  138. *> diag(S)*A*diag(S). If UPLO = 'U', the leading
  139. *> N-by-N upper triangular part of A contains the upper
  140. *> triangular part of the matrix A, and the strictly lower
  141. *> triangular part of A is not referenced. If UPLO = 'L', the
  142. *> leading N-by-N lower triangular part of A contains the lower
  143. *> triangular part of the matrix A, and the strictly upper
  144. *> triangular part of A is not referenced. A is not modified if
  145. *> FACT = 'F' or 'N', or if FACT = 'E' and EQUED = 'N' on exit.
  146. *>
  147. *> On exit, if FACT = 'E' and EQUED = 'Y', A is overwritten by
  148. *> diag(S)*A*diag(S).
  149. *> \endverbatim
  150. *>
  151. *> \param[in] LDA
  152. *> \verbatim
  153. *> LDA is INTEGER
  154. *> The leading dimension of the array A. LDA >= max(1,N).
  155. *> \endverbatim
  156. *>
  157. *> \param[in,out] AF
  158. *> \verbatim
  159. *> AF is REAL array, dimension (LDAF,N)
  160. *> If FACT = 'F', then AF is an input argument and on entry
  161. *> contains the triangular factor U or L from the Cholesky
  162. *> factorization A = U**T*U or A = L*L**T, in the same storage
  163. *> format as A. If EQUED .ne. 'N', then AF is the factored form
  164. *> of the equilibrated matrix diag(S)*A*diag(S).
  165. *>
  166. *> If FACT = 'N', then AF is an output argument and on exit
  167. *> returns the triangular factor U or L from the Cholesky
  168. *> factorization A = U**T*U or A = L*L**T of the original
  169. *> matrix A.
  170. *>
  171. *> If FACT = 'E', then AF is an output argument and on exit
  172. *> returns the triangular factor U or L from the Cholesky
  173. *> factorization A = U**T*U or A = L*L**T of the equilibrated
  174. *> matrix A (see the description of A for the form of the
  175. *> equilibrated matrix).
  176. *> \endverbatim
  177. *>
  178. *> \param[in] LDAF
  179. *> \verbatim
  180. *> LDAF is INTEGER
  181. *> The leading dimension of the array AF. LDAF >= max(1,N).
  182. *> \endverbatim
  183. *>
  184. *> \param[in,out] EQUED
  185. *> \verbatim
  186. *> EQUED is CHARACTER*1
  187. *> Specifies the form of equilibration that was done.
  188. *> = 'N': No equilibration (always true if FACT = 'N').
  189. *> = 'Y': Equilibration was done, i.e., A has been replaced by
  190. *> diag(S) * A * diag(S).
  191. *> EQUED is an input argument if FACT = 'F'; otherwise, it is an
  192. *> output argument.
  193. *> \endverbatim
  194. *>
  195. *> \param[in,out] S
  196. *> \verbatim
  197. *> S is REAL array, dimension (N)
  198. *> The scale factors for A; not accessed if EQUED = 'N'. S is
  199. *> an input argument if FACT = 'F'; otherwise, S is an output
  200. *> argument. If FACT = 'F' and EQUED = 'Y', each element of S
  201. *> must be positive.
  202. *> \endverbatim
  203. *>
  204. *> \param[in,out] B
  205. *> \verbatim
  206. *> B is REAL array, dimension (LDB,NRHS)
  207. *> On entry, the N-by-NRHS right hand side matrix B.
  208. *> On exit, if EQUED = 'N', B is not modified; if EQUED = 'Y',
  209. *> B is overwritten by diag(S) * B.
  210. *> \endverbatim
  211. *>
  212. *> \param[in] LDB
  213. *> \verbatim
  214. *> LDB is INTEGER
  215. *> The leading dimension of the array B. LDB >= max(1,N).
  216. *> \endverbatim
  217. *>
  218. *> \param[out] X
  219. *> \verbatim
  220. *> X is REAL array, dimension (LDX,NRHS)
  221. *> If INFO = 0 or INFO = N+1, the N-by-NRHS solution matrix X to
  222. *> the original system of equations. Note that if EQUED = 'Y',
  223. *> A and B are modified on exit, and the solution to the
  224. *> equilibrated system is inv(diag(S))*X.
  225. *> \endverbatim
  226. *>
  227. *> \param[in] LDX
  228. *> \verbatim
  229. *> LDX is INTEGER
  230. *> The leading dimension of the array X. LDX >= max(1,N).
  231. *> \endverbatim
  232. *>
  233. *> \param[out] RCOND
  234. *> \verbatim
  235. *> RCOND is REAL
  236. *> The estimate of the reciprocal condition number of the matrix
  237. *> A after equilibration (if done). If RCOND is less than the
  238. *> machine precision (in particular, if RCOND = 0), the matrix
  239. *> is singular to working precision. This condition is
  240. *> indicated by a return code of INFO > 0.
  241. *> \endverbatim
  242. *>
  243. *> \param[out] FERR
  244. *> \verbatim
  245. *> FERR is REAL array, dimension (NRHS)
  246. *> The estimated forward error bound for each solution vector
  247. *> X(j) (the j-th column of the solution matrix X).
  248. *> If XTRUE is the true solution corresponding to X(j), FERR(j)
  249. *> is an estimated upper bound for the magnitude of the largest
  250. *> element in (X(j) - XTRUE) divided by the magnitude of the
  251. *> largest element in X(j). The estimate is as reliable as
  252. *> the estimate for RCOND, and is almost always a slight
  253. *> overestimate of the true error.
  254. *> \endverbatim
  255. *>
  256. *> \param[out] BERR
  257. *> \verbatim
  258. *> BERR is REAL array, dimension (NRHS)
  259. *> The componentwise relative backward error of each solution
  260. *> vector X(j) (i.e., the smallest relative change in
  261. *> any element of A or B that makes X(j) an exact solution).
  262. *> \endverbatim
  263. *>
  264. *> \param[out] WORK
  265. *> \verbatim
  266. *> WORK is REAL array, dimension (3*N)
  267. *> \endverbatim
  268. *>
  269. *> \param[out] IWORK
  270. *> \verbatim
  271. *> IWORK is INTEGER array, dimension (N)
  272. *> \endverbatim
  273. *>
  274. *> \param[out] INFO
  275. *> \verbatim
  276. *> INFO is INTEGER
  277. *> = 0: successful exit
  278. *> < 0: if INFO = -i, the i-th argument had an illegal value
  279. *> > 0: if INFO = i, and i is
  280. *> <= N: the leading principal minor of order i of A
  281. *> is not positive, so the factorization could not
  282. *> be completed, and the solution has not been
  283. *> computed. RCOND = 0 is returned.
  284. *> = N+1: U is nonsingular, but RCOND is less than machine
  285. *> precision, meaning that the matrix is singular
  286. *> to working precision. Nevertheless, the
  287. *> solution and error bounds are computed because
  288. *> there are a number of situations where the
  289. *> computed solution can be more accurate than the
  290. *> value of RCOND would suggest.
  291. *> \endverbatim
  292. *
  293. * Authors:
  294. * ========
  295. *
  296. *> \author Univ. of Tennessee
  297. *> \author Univ. of California Berkeley
  298. *> \author Univ. of Colorado Denver
  299. *> \author NAG Ltd.
  300. *
  301. *> \ingroup realPOsolve
  302. *
  303. * =====================================================================
  304. SUBROUTINE SPOSVX( FACT, UPLO, N, NRHS, A, LDA, AF, LDAF, EQUED,
  305. $ S, B, LDB, X, LDX, RCOND, FERR, BERR, WORK,
  306. $ IWORK, INFO )
  307. *
  308. * -- LAPACK driver routine --
  309. * -- LAPACK is a software package provided by Univ. of Tennessee, --
  310. * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
  311. *
  312. * .. Scalar Arguments ..
  313. CHARACTER EQUED, FACT, UPLO
  314. INTEGER INFO, LDA, LDAF, LDB, LDX, N, NRHS
  315. REAL RCOND
  316. * ..
  317. * .. Array Arguments ..
  318. INTEGER IWORK( * )
  319. REAL A( LDA, * ), AF( LDAF, * ), B( LDB, * ),
  320. $ BERR( * ), FERR( * ), S( * ), WORK( * ),
  321. $ X( LDX, * )
  322. * ..
  323. *
  324. * =====================================================================
  325. *
  326. * .. Parameters ..
  327. REAL ZERO, ONE
  328. PARAMETER ( ZERO = 0.0E+0, ONE = 1.0E+0 )
  329. * ..
  330. * .. Local Scalars ..
  331. LOGICAL EQUIL, NOFACT, RCEQU
  332. INTEGER I, INFEQU, J
  333. REAL AMAX, ANORM, BIGNUM, SCOND, SMAX, SMIN, SMLNUM
  334. * ..
  335. * .. External Functions ..
  336. LOGICAL LSAME
  337. REAL SLAMCH, SLANSY
  338. EXTERNAL LSAME, SLAMCH, SLANSY
  339. * ..
  340. * .. External Subroutines ..
  341. EXTERNAL SLACPY, SLAQSY, SPOCON, SPOEQU, SPORFS, SPOTRF,
  342. $ SPOTRS, XERBLA
  343. * ..
  344. * .. Intrinsic Functions ..
  345. INTRINSIC MAX, MIN
  346. * ..
  347. * .. Executable Statements ..
  348. *
  349. INFO = 0
  350. NOFACT = LSAME( FACT, 'N' )
  351. EQUIL = LSAME( FACT, 'E' )
  352. IF( NOFACT .OR. EQUIL ) THEN
  353. EQUED = 'N'
  354. RCEQU = .FALSE.
  355. ELSE
  356. RCEQU = LSAME( EQUED, 'Y' )
  357. SMLNUM = SLAMCH( 'Safe minimum' )
  358. BIGNUM = ONE / SMLNUM
  359. END IF
  360. *
  361. * Test the input parameters.
  362. *
  363. IF( .NOT.NOFACT .AND. .NOT.EQUIL .AND. .NOT.LSAME( FACT, 'F' ) )
  364. $ THEN
  365. INFO = -1
  366. ELSE IF( .NOT.LSAME( UPLO, 'U' ) .AND. .NOT.LSAME( UPLO, 'L' ) )
  367. $ THEN
  368. INFO = -2
  369. ELSE IF( N.LT.0 ) THEN
  370. INFO = -3
  371. ELSE IF( NRHS.LT.0 ) THEN
  372. INFO = -4
  373. ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
  374. INFO = -6
  375. ELSE IF( LDAF.LT.MAX( 1, N ) ) THEN
  376. INFO = -8
  377. ELSE IF( LSAME( FACT, 'F' ) .AND. .NOT.
  378. $ ( RCEQU .OR. LSAME( EQUED, 'N' ) ) ) THEN
  379. INFO = -9
  380. ELSE
  381. IF( RCEQU ) THEN
  382. SMIN = BIGNUM
  383. SMAX = ZERO
  384. DO 10 J = 1, N
  385. SMIN = MIN( SMIN, S( J ) )
  386. SMAX = MAX( SMAX, S( J ) )
  387. 10 CONTINUE
  388. IF( SMIN.LE.ZERO ) THEN
  389. INFO = -10
  390. ELSE IF( N.GT.0 ) THEN
  391. SCOND = MAX( SMIN, SMLNUM ) / MIN( SMAX, BIGNUM )
  392. ELSE
  393. SCOND = ONE
  394. END IF
  395. END IF
  396. IF( INFO.EQ.0 ) THEN
  397. IF( LDB.LT.MAX( 1, N ) ) THEN
  398. INFO = -12
  399. ELSE IF( LDX.LT.MAX( 1, N ) ) THEN
  400. INFO = -14
  401. END IF
  402. END IF
  403. END IF
  404. *
  405. IF( INFO.NE.0 ) THEN
  406. CALL XERBLA( 'SPOSVX', -INFO )
  407. RETURN
  408. END IF
  409. *
  410. IF( EQUIL ) THEN
  411. *
  412. * Compute row and column scalings to equilibrate the matrix A.
  413. *
  414. CALL SPOEQU( N, A, LDA, S, SCOND, AMAX, INFEQU )
  415. IF( INFEQU.EQ.0 ) THEN
  416. *
  417. * Equilibrate the matrix.
  418. *
  419. CALL SLAQSY( UPLO, N, A, LDA, S, SCOND, AMAX, EQUED )
  420. RCEQU = LSAME( EQUED, 'Y' )
  421. END IF
  422. END IF
  423. *
  424. * Scale the right hand side.
  425. *
  426. IF( RCEQU ) THEN
  427. DO 30 J = 1, NRHS
  428. DO 20 I = 1, N
  429. B( I, J ) = S( I )*B( I, J )
  430. 20 CONTINUE
  431. 30 CONTINUE
  432. END IF
  433. *
  434. IF( NOFACT .OR. EQUIL ) THEN
  435. *
  436. * Compute the Cholesky factorization A = U**T *U or A = L*L**T.
  437. *
  438. CALL SLACPY( UPLO, N, N, A, LDA, AF, LDAF )
  439. CALL SPOTRF( UPLO, N, AF, LDAF, INFO )
  440. *
  441. * Return if INFO is non-zero.
  442. *
  443. IF( INFO.GT.0 )THEN
  444. RCOND = ZERO
  445. RETURN
  446. END IF
  447. END IF
  448. *
  449. * Compute the norm of the matrix A.
  450. *
  451. ANORM = SLANSY( '1', UPLO, N, A, LDA, WORK )
  452. *
  453. * Compute the reciprocal of the condition number of A.
  454. *
  455. CALL SPOCON( UPLO, N, AF, LDAF, ANORM, RCOND, WORK, IWORK, INFO )
  456. *
  457. * Compute the solution matrix X.
  458. *
  459. CALL SLACPY( 'Full', N, NRHS, B, LDB, X, LDX )
  460. CALL SPOTRS( UPLO, N, NRHS, AF, LDAF, X, LDX, INFO )
  461. *
  462. * Use iterative refinement to improve the computed solution and
  463. * compute error bounds and backward error estimates for it.
  464. *
  465. CALL SPORFS( UPLO, N, NRHS, A, LDA, AF, LDAF, B, LDB, X, LDX,
  466. $ FERR, BERR, WORK, IWORK, INFO )
  467. *
  468. * Transform the solution matrix X to a solution of the original
  469. * system.
  470. *
  471. IF( RCEQU ) THEN
  472. DO 50 J = 1, NRHS
  473. DO 40 I = 1, N
  474. X( I, J ) = S( I )*X( I, J )
  475. 40 CONTINUE
  476. 50 CONTINUE
  477. DO 60 J = 1, NRHS
  478. FERR( J ) = FERR( J ) / SCOND
  479. 60 CONTINUE
  480. END IF
  481. *
  482. * Set INFO = N+1 if the matrix is singular to working precision.
  483. *
  484. IF( RCOND.LT.SLAMCH( 'Epsilon' ) )
  485. $ INFO = N + 1
  486. *
  487. RETURN
  488. *
  489. * End of SPOSVX
  490. *
  491. END