You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

slarz.f 6.1 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233
  1. *> \brief \b SLARZ applies an elementary reflector (as returned by stzrzf) to a general matrix.
  2. *
  3. * =========== DOCUMENTATION ===========
  4. *
  5. * Online html documentation available at
  6. * http://www.netlib.org/lapack/explore-html/
  7. *
  8. *> \htmlonly
  9. *> Download SLARZ + dependencies
  10. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/slarz.f">
  11. *> [TGZ]</a>
  12. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/slarz.f">
  13. *> [ZIP]</a>
  14. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/slarz.f">
  15. *> [TXT]</a>
  16. *> \endhtmlonly
  17. *
  18. * Definition:
  19. * ===========
  20. *
  21. * SUBROUTINE SLARZ( SIDE, M, N, L, V, INCV, TAU, C, LDC, WORK )
  22. *
  23. * .. Scalar Arguments ..
  24. * CHARACTER SIDE
  25. * INTEGER INCV, L, LDC, M, N
  26. * REAL TAU
  27. * ..
  28. * .. Array Arguments ..
  29. * REAL C( LDC, * ), V( * ), WORK( * )
  30. * ..
  31. *
  32. *
  33. *> \par Purpose:
  34. * =============
  35. *>
  36. *> \verbatim
  37. *>
  38. *> SLARZ applies a real elementary reflector H to a real M-by-N
  39. *> matrix C, from either the left or the right. H is represented in the
  40. *> form
  41. *>
  42. *> H = I - tau * v * v**T
  43. *>
  44. *> where tau is a real scalar and v is a real vector.
  45. *>
  46. *> If tau = 0, then H is taken to be the unit matrix.
  47. *>
  48. *>
  49. *> H is a product of k elementary reflectors as returned by STZRZF.
  50. *> \endverbatim
  51. *
  52. * Arguments:
  53. * ==========
  54. *
  55. *> \param[in] SIDE
  56. *> \verbatim
  57. *> SIDE is CHARACTER*1
  58. *> = 'L': form H * C
  59. *> = 'R': form C * H
  60. *> \endverbatim
  61. *>
  62. *> \param[in] M
  63. *> \verbatim
  64. *> M is INTEGER
  65. *> The number of rows of the matrix C.
  66. *> \endverbatim
  67. *>
  68. *> \param[in] N
  69. *> \verbatim
  70. *> N is INTEGER
  71. *> The number of columns of the matrix C.
  72. *> \endverbatim
  73. *>
  74. *> \param[in] L
  75. *> \verbatim
  76. *> L is INTEGER
  77. *> The number of entries of the vector V containing
  78. *> the meaningful part of the Householder vectors.
  79. *> If SIDE = 'L', M >= L >= 0, if SIDE = 'R', N >= L >= 0.
  80. *> \endverbatim
  81. *>
  82. *> \param[in] V
  83. *> \verbatim
  84. *> V is REAL array, dimension (1+(L-1)*abs(INCV))
  85. *> The vector v in the representation of H as returned by
  86. *> STZRZF. V is not used if TAU = 0.
  87. *> \endverbatim
  88. *>
  89. *> \param[in] INCV
  90. *> \verbatim
  91. *> INCV is INTEGER
  92. *> The increment between elements of v. INCV <> 0.
  93. *> \endverbatim
  94. *>
  95. *> \param[in] TAU
  96. *> \verbatim
  97. *> TAU is REAL
  98. *> The value tau in the representation of H.
  99. *> \endverbatim
  100. *>
  101. *> \param[in,out] C
  102. *> \verbatim
  103. *> C is REAL array, dimension (LDC,N)
  104. *> On entry, the M-by-N matrix C.
  105. *> On exit, C is overwritten by the matrix H * C if SIDE = 'L',
  106. *> or C * H if SIDE = 'R'.
  107. *> \endverbatim
  108. *>
  109. *> \param[in] LDC
  110. *> \verbatim
  111. *> LDC is INTEGER
  112. *> The leading dimension of the array C. LDC >= max(1,M).
  113. *> \endverbatim
  114. *>
  115. *> \param[out] WORK
  116. *> \verbatim
  117. *> WORK is REAL array, dimension
  118. *> (N) if SIDE = 'L'
  119. *> or (M) if SIDE = 'R'
  120. *> \endverbatim
  121. *
  122. * Authors:
  123. * ========
  124. *
  125. *> \author Univ. of Tennessee
  126. *> \author Univ. of California Berkeley
  127. *> \author Univ. of Colorado Denver
  128. *> \author NAG Ltd.
  129. *
  130. *> \ingroup realOTHERcomputational
  131. *
  132. *> \par Contributors:
  133. * ==================
  134. *>
  135. *> A. Petitet, Computer Science Dept., Univ. of Tenn., Knoxville, USA
  136. *
  137. *> \par Further Details:
  138. * =====================
  139. *>
  140. *> \verbatim
  141. *> \endverbatim
  142. *>
  143. * =====================================================================
  144. SUBROUTINE SLARZ( SIDE, M, N, L, V, INCV, TAU, C, LDC, WORK )
  145. *
  146. * -- LAPACK computational routine --
  147. * -- LAPACK is a software package provided by Univ. of Tennessee, --
  148. * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
  149. *
  150. * .. Scalar Arguments ..
  151. CHARACTER SIDE
  152. INTEGER INCV, L, LDC, M, N
  153. REAL TAU
  154. * ..
  155. * .. Array Arguments ..
  156. REAL C( LDC, * ), V( * ), WORK( * )
  157. * ..
  158. *
  159. * =====================================================================
  160. *
  161. * .. Parameters ..
  162. REAL ONE, ZERO
  163. PARAMETER ( ONE = 1.0E+0, ZERO = 0.0E+0 )
  164. * ..
  165. * .. External Subroutines ..
  166. EXTERNAL SAXPY, SCOPY, SGEMV, SGER
  167. * ..
  168. * .. External Functions ..
  169. LOGICAL LSAME
  170. EXTERNAL LSAME
  171. * ..
  172. * .. Executable Statements ..
  173. *
  174. IF( LSAME( SIDE, 'L' ) ) THEN
  175. *
  176. * Form H * C
  177. *
  178. IF( TAU.NE.ZERO ) THEN
  179. *
  180. * w( 1:n ) = C( 1, 1:n )
  181. *
  182. CALL SCOPY( N, C, LDC, WORK, 1 )
  183. *
  184. * w( 1:n ) = w( 1:n ) + C( m-l+1:m, 1:n )**T * v( 1:l )
  185. *
  186. CALL SGEMV( 'Transpose', L, N, ONE, C( M-L+1, 1 ), LDC, V,
  187. $ INCV, ONE, WORK, 1 )
  188. *
  189. * C( 1, 1:n ) = C( 1, 1:n ) - tau * w( 1:n )
  190. *
  191. CALL SAXPY( N, -TAU, WORK, 1, C, LDC )
  192. *
  193. * C( m-l+1:m, 1:n ) = C( m-l+1:m, 1:n ) - ...
  194. * tau * v( 1:l ) * w( 1:n )**T
  195. *
  196. CALL SGER( L, N, -TAU, V, INCV, WORK, 1, C( M-L+1, 1 ),
  197. $ LDC )
  198. END IF
  199. *
  200. ELSE
  201. *
  202. * Form C * H
  203. *
  204. IF( TAU.NE.ZERO ) THEN
  205. *
  206. * w( 1:m ) = C( 1:m, 1 )
  207. *
  208. CALL SCOPY( M, C, 1, WORK, 1 )
  209. *
  210. * w( 1:m ) = w( 1:m ) + C( 1:m, n-l+1:n, 1:n ) * v( 1:l )
  211. *
  212. CALL SGEMV( 'No transpose', M, L, ONE, C( 1, N-L+1 ), LDC,
  213. $ V, INCV, ONE, WORK, 1 )
  214. *
  215. * C( 1:m, 1 ) = C( 1:m, 1 ) - tau * w( 1:m )
  216. *
  217. CALL SAXPY( M, -TAU, WORK, 1, C, 1 )
  218. *
  219. * C( 1:m, n-l+1:n ) = C( 1:m, n-l+1:n ) - ...
  220. * tau * w( 1:m ) * v( 1:l )**T
  221. *
  222. CALL SGER( M, L, -TAU, WORK, 1, V, INCV, C( 1, N-L+1 ),
  223. $ LDC )
  224. *
  225. END IF
  226. *
  227. END IF
  228. *
  229. RETURN
  230. *
  231. * End of SLARZ
  232. *
  233. END