You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

dpotf2.f 6.5 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227
  1. *> \brief \b DPOTF2 computes the Cholesky factorization of a symmetric/Hermitian positive definite matrix (unblocked algorithm).
  2. *
  3. * =========== DOCUMENTATION ===========
  4. *
  5. * Online html documentation available at
  6. * http://www.netlib.org/lapack/explore-html/
  7. *
  8. *> \htmlonly
  9. *> Download DPOTF2 + dependencies
  10. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dpotf2.f">
  11. *> [TGZ]</a>
  12. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dpotf2.f">
  13. *> [ZIP]</a>
  14. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dpotf2.f">
  15. *> [TXT]</a>
  16. *> \endhtmlonly
  17. *
  18. * Definition:
  19. * ===========
  20. *
  21. * SUBROUTINE DPOTF2( UPLO, N, A, LDA, INFO )
  22. *
  23. * .. Scalar Arguments ..
  24. * CHARACTER UPLO
  25. * INTEGER INFO, LDA, N
  26. * ..
  27. * .. Array Arguments ..
  28. * DOUBLE PRECISION A( LDA, * )
  29. * ..
  30. *
  31. *
  32. *> \par Purpose:
  33. * =============
  34. *>
  35. *> \verbatim
  36. *>
  37. *> DPOTF2 computes the Cholesky factorization of a real symmetric
  38. *> positive definite matrix A.
  39. *>
  40. *> The factorization has the form
  41. *> A = U**T * U , if UPLO = 'U', or
  42. *> A = L * L**T, if UPLO = 'L',
  43. *> where U is an upper triangular matrix and L is lower triangular.
  44. *>
  45. *> This is the unblocked version of the algorithm, calling Level 2 BLAS.
  46. *> \endverbatim
  47. *
  48. * Arguments:
  49. * ==========
  50. *
  51. *> \param[in] UPLO
  52. *> \verbatim
  53. *> UPLO is CHARACTER*1
  54. *> Specifies whether the upper or lower triangular part of the
  55. *> symmetric matrix A is stored.
  56. *> = 'U': Upper triangular
  57. *> = 'L': Lower triangular
  58. *> \endverbatim
  59. *>
  60. *> \param[in] N
  61. *> \verbatim
  62. *> N is INTEGER
  63. *> The order of the matrix A. N >= 0.
  64. *> \endverbatim
  65. *>
  66. *> \param[in,out] A
  67. *> \verbatim
  68. *> A is DOUBLE PRECISION array, dimension (LDA,N)
  69. *> On entry, the symmetric matrix A. If UPLO = 'U', the leading
  70. *> n by n upper triangular part of A contains the upper
  71. *> triangular part of the matrix A, and the strictly lower
  72. *> triangular part of A is not referenced. If UPLO = 'L', the
  73. *> leading n by n lower triangular part of A contains the lower
  74. *> triangular part of the matrix A, and the strictly upper
  75. *> triangular part of A is not referenced.
  76. *>
  77. *> On exit, if INFO = 0, the factor U or L from the Cholesky
  78. *> factorization A = U**T *U or A = L*L**T.
  79. *> \endverbatim
  80. *>
  81. *> \param[in] LDA
  82. *> \verbatim
  83. *> LDA is INTEGER
  84. *> The leading dimension of the array A. LDA >= max(1,N).
  85. *> \endverbatim
  86. *>
  87. *> \param[out] INFO
  88. *> \verbatim
  89. *> INFO is INTEGER
  90. *> = 0: successful exit
  91. *> < 0: if INFO = -k, the k-th argument had an illegal value
  92. *> > 0: if INFO = k, the leading principal minor of order k
  93. *> is not positive, and the factorization could not be
  94. *> completed.
  95. *> \endverbatim
  96. *
  97. * Authors:
  98. * ========
  99. *
  100. *> \author Univ. of Tennessee
  101. *> \author Univ. of California Berkeley
  102. *> \author Univ. of Colorado Denver
  103. *> \author NAG Ltd.
  104. *
  105. *> \ingroup doublePOcomputational
  106. *
  107. * =====================================================================
  108. SUBROUTINE DPOTF2( UPLO, N, A, LDA, INFO )
  109. *
  110. * -- LAPACK computational routine --
  111. * -- LAPACK is a software package provided by Univ. of Tennessee, --
  112. * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
  113. *
  114. * .. Scalar Arguments ..
  115. CHARACTER UPLO
  116. INTEGER INFO, LDA, N
  117. * ..
  118. * .. Array Arguments ..
  119. DOUBLE PRECISION A( LDA, * )
  120. * ..
  121. *
  122. * =====================================================================
  123. *
  124. * .. Parameters ..
  125. DOUBLE PRECISION ONE, ZERO
  126. PARAMETER ( ONE = 1.0D+0, ZERO = 0.0D+0 )
  127. * ..
  128. * .. Local Scalars ..
  129. LOGICAL UPPER
  130. INTEGER J
  131. DOUBLE PRECISION AJJ
  132. * ..
  133. * .. External Functions ..
  134. LOGICAL LSAME, DISNAN
  135. DOUBLE PRECISION DDOT
  136. EXTERNAL LSAME, DDOT, DISNAN
  137. * ..
  138. * .. External Subroutines ..
  139. EXTERNAL DGEMV, DSCAL, XERBLA
  140. * ..
  141. * .. Intrinsic Functions ..
  142. INTRINSIC MAX, SQRT
  143. * ..
  144. * .. Executable Statements ..
  145. *
  146. * Test the input parameters.
  147. *
  148. INFO = 0
  149. UPPER = LSAME( UPLO, 'U' )
  150. IF( .NOT.UPPER .AND. .NOT.LSAME( UPLO, 'L' ) ) THEN
  151. INFO = -1
  152. ELSE IF( N.LT.0 ) THEN
  153. INFO = -2
  154. ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
  155. INFO = -4
  156. END IF
  157. IF( INFO.NE.0 ) THEN
  158. CALL XERBLA( 'DPOTF2', -INFO )
  159. RETURN
  160. END IF
  161. *
  162. * Quick return if possible
  163. *
  164. IF( N.EQ.0 )
  165. $ RETURN
  166. *
  167. IF( UPPER ) THEN
  168. *
  169. * Compute the Cholesky factorization A = U**T *U.
  170. *
  171. DO 10 J = 1, N
  172. *
  173. * Compute U(J,J) and test for non-positive-definiteness.
  174. *
  175. AJJ = A( J, J ) - DDOT( J-1, A( 1, J ), 1, A( 1, J ), 1 )
  176. IF( AJJ.LE.ZERO.OR.DISNAN( AJJ ) ) THEN
  177. A( J, J ) = AJJ
  178. GO TO 30
  179. END IF
  180. AJJ = SQRT( AJJ )
  181. A( J, J ) = AJJ
  182. *
  183. * Compute elements J+1:N of row J.
  184. *
  185. IF( J.LT.N ) THEN
  186. CALL DGEMV( 'Transpose', J-1, N-J, -ONE, A( 1, J+1 ),
  187. $ LDA, A( 1, J ), 1, ONE, A( J, J+1 ), LDA )
  188. CALL DSCAL( N-J, ONE / AJJ, A( J, J+1 ), LDA )
  189. END IF
  190. 10 CONTINUE
  191. ELSE
  192. *
  193. * Compute the Cholesky factorization A = L*L**T.
  194. *
  195. DO 20 J = 1, N
  196. *
  197. * Compute L(J,J) and test for non-positive-definiteness.
  198. *
  199. AJJ = A( J, J ) - DDOT( J-1, A( J, 1 ), LDA, A( J, 1 ),
  200. $ LDA )
  201. IF( AJJ.LE.ZERO.OR.DISNAN( AJJ ) ) THEN
  202. A( J, J ) = AJJ
  203. GO TO 30
  204. END IF
  205. AJJ = SQRT( AJJ )
  206. A( J, J ) = AJJ
  207. *
  208. * Compute elements J+1:N of column J.
  209. *
  210. IF( J.LT.N ) THEN
  211. CALL DGEMV( 'No transpose', N-J, J-1, -ONE, A( J+1, 1 ),
  212. $ LDA, A( J, 1 ), LDA, ONE, A( J+1, J ), 1 )
  213. CALL DSCAL( N-J, ONE / AJJ, A( J+1, J ), 1 )
  214. END IF
  215. 20 CONTINUE
  216. END IF
  217. GO TO 40
  218. *
  219. 30 CONTINUE
  220. INFO = J
  221. *
  222. 40 CONTINUE
  223. RETURN
  224. *
  225. * End of DPOTF2
  226. *
  227. END