You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

dlaqz2.f 9.7 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317
  1. *> \brief \b DLAQZ2
  2. *
  3. * =========== DOCUMENTATION ===========
  4. *
  5. * Online html documentation available at
  6. * http://www.netlib.org/lapack/explore-html/
  7. *
  8. *> \htmlonly
  9. *> Download DLAQZ2 + dependencies
  10. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dlaqz2.f">
  11. *> [TGZ]</a>
  12. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dlaqz2.f">
  13. *> [ZIP]</a>
  14. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dlaqz2.f">
  15. *> [TXT]</a>
  16. *> \endhtmlonly
  17. *
  18. * Definition:
  19. * ===========
  20. *
  21. * SUBROUTINE DLAQZ2( ILQ, ILZ, K, ISTARTM, ISTOPM, IHI, A, LDA, B,
  22. * $ LDB, NQ, QSTART, Q, LDQ, NZ, ZSTART, Z, LDZ )
  23. * IMPLICIT NONE
  24. *
  25. * Arguments
  26. * LOGICAL, INTENT( IN ) :: ILQ, ILZ
  27. * INTEGER, INTENT( IN ) :: K, LDA, LDB, LDQ, LDZ, ISTARTM, ISTOPM,
  28. * $ NQ, NZ, QSTART, ZSTART, IHI
  29. * DOUBLE PRECISION :: A( LDA, * ), B( LDB, * ), Q( LDQ, * ), Z( LDZ,
  30. * $ * )
  31. * ..
  32. *
  33. *
  34. *> \par Purpose:
  35. * =============
  36. *>
  37. *> \verbatim
  38. *>
  39. *> DLAQZ2 chases a 2x2 shift bulge in a matrix pencil down a single position
  40. *> \endverbatim
  41. *
  42. *
  43. * Arguments:
  44. * ==========
  45. *
  46. *>
  47. *> \param[in] ILQ
  48. *> \verbatim
  49. *> ILQ is LOGICAL
  50. *> Determines whether or not to update the matrix Q
  51. *> \endverbatim
  52. *>
  53. *> \param[in] ILZ
  54. *> \verbatim
  55. *> ILZ is LOGICAL
  56. *> Determines whether or not to update the matrix Z
  57. *> \endverbatim
  58. *>
  59. *> \param[in] K
  60. *> \verbatim
  61. *> K is INTEGER
  62. *> Index indicating the position of the bulge.
  63. *> On entry, the bulge is located in
  64. *> (A(k+1:k+2,k:k+1),B(k+1:k+2,k:k+1)).
  65. *> On exit, the bulge is located in
  66. *> (A(k+2:k+3,k+1:k+2),B(k+2:k+3,k+1:k+2)).
  67. *> \endverbatim
  68. *>
  69. *> \param[in] ISTARTM
  70. *> \verbatim
  71. *> ISTARTM is INTEGER
  72. *> \endverbatim
  73. *>
  74. *> \param[in] ISTOPM
  75. *> \verbatim
  76. *> ISTOPM is INTEGER
  77. *> Updates to (A,B) are restricted to
  78. *> (istartm:k+3,k:istopm). It is assumed
  79. *> without checking that istartm <= k+1 and
  80. *> k+2 <= istopm
  81. *> \endverbatim
  82. *>
  83. *> \param[in] IHI
  84. *> \verbatim
  85. *> IHI is INTEGER
  86. *> \endverbatim
  87. *>
  88. *> \param[inout] A
  89. *> \verbatim
  90. *> A is DOUBLE PRECISION array, dimension (LDA,N)
  91. *> \endverbatim
  92. *>
  93. *> \param[in] LDA
  94. *> \verbatim
  95. *> LDA is INTEGER
  96. *> The leading dimension of A as declared in
  97. *> the calling procedure.
  98. *> \endverbatim
  99. *
  100. *> \param[inout] B
  101. *> \verbatim
  102. *> B is DOUBLE PRECISION array, dimension (LDB,N)
  103. *> \endverbatim
  104. *>
  105. *> \param[in] LDB
  106. *> \verbatim
  107. *> LDB is INTEGER
  108. *> The leading dimension of B as declared in
  109. *> the calling procedure.
  110. *> \endverbatim
  111. *>
  112. *> \param[in] NQ
  113. *> \verbatim
  114. *> NQ is INTEGER
  115. *> The order of the matrix Q
  116. *> \endverbatim
  117. *>
  118. *> \param[in] QSTART
  119. *> \verbatim
  120. *> QSTART is INTEGER
  121. *> Start index of the matrix Q. Rotations are applied
  122. *> To columns k+2-qStart:k+4-qStart of Q.
  123. *> \endverbatim
  124. *
  125. *> \param[inout] Q
  126. *> \verbatim
  127. *> Q is DOUBLE PRECISION array, dimension (LDQ,NQ)
  128. *> \endverbatim
  129. *>
  130. *> \param[in] LDQ
  131. *> \verbatim
  132. *> LDQ is INTEGER
  133. *> The leading dimension of Q as declared in
  134. *> the calling procedure.
  135. *> \endverbatim
  136. *>
  137. *> \param[in] NZ
  138. *> \verbatim
  139. *> NZ is INTEGER
  140. *> The order of the matrix Z
  141. *> \endverbatim
  142. *>
  143. *> \param[in] ZSTART
  144. *> \verbatim
  145. *> ZSTART is INTEGER
  146. *> Start index of the matrix Z. Rotations are applied
  147. *> To columns k+1-qStart:k+3-qStart of Z.
  148. *> \endverbatim
  149. *
  150. *> \param[inout] Z
  151. *> \verbatim
  152. *> Z is DOUBLE PRECISION array, dimension (LDZ,NZ)
  153. *> \endverbatim
  154. *>
  155. *> \param[in] LDZ
  156. *> \verbatim
  157. *> LDZ is INTEGER
  158. *> The leading dimension of Q as declared in
  159. *> the calling procedure.
  160. *> \endverbatim
  161. *
  162. * Authors:
  163. * ========
  164. *
  165. *> \author Thijs Steel, KU Leuven
  166. *
  167. *> \date May 2020
  168. *
  169. *> \ingroup doubleGEcomputational
  170. *>
  171. * =====================================================================
  172. SUBROUTINE DLAQZ2( ILQ, ILZ, K, ISTARTM, ISTOPM, IHI, A, LDA, B,
  173. $ LDB, NQ, QSTART, Q, LDQ, NZ, ZSTART, Z, LDZ )
  174. IMPLICIT NONE
  175. *
  176. * Arguments
  177. LOGICAL, INTENT( IN ) :: ILQ, ILZ
  178. INTEGER, INTENT( IN ) :: K, LDA, LDB, LDQ, LDZ, ISTARTM, ISTOPM,
  179. $ NQ, NZ, QSTART, ZSTART, IHI
  180. DOUBLE PRECISION :: A( LDA, * ), B( LDB, * ), Q( LDQ, * ), Z( LDZ,
  181. $ * )
  182. *
  183. * Parameters
  184. DOUBLE PRECISION :: ZERO, ONE, HALF
  185. PARAMETER( ZERO = 0.0D0, ONE = 1.0D0, HALF = 0.5D0 )
  186. *
  187. * Local variables
  188. DOUBLE PRECISION :: H( 2, 3 ), C1, S1, C2, S2, TEMP
  189. *
  190. * External functions
  191. EXTERNAL :: DLARTG, DROT
  192. *
  193. IF( K+2 .EQ. IHI ) THEN
  194. * Shift is located on the edge of the matrix, remove it
  195. H = B( IHI-1:IHI, IHI-2:IHI )
  196. * Make H upper triangular
  197. CALL DLARTG( H( 1, 1 ), H( 2, 1 ), C1, S1, TEMP )
  198. H( 2, 1 ) = ZERO
  199. H( 1, 1 ) = TEMP
  200. CALL DROT( 2, H( 1, 2 ), 2, H( 2, 2 ), 2, C1, S1 )
  201. *
  202. CALL DLARTG( H( 2, 3 ), H( 2, 2 ), C1, S1, TEMP )
  203. CALL DROT( 1, H( 1, 3 ), 1, H( 1, 2 ), 1, C1, S1 )
  204. CALL DLARTG( H( 1, 2 ), H( 1, 1 ), C2, S2, TEMP )
  205. *
  206. CALL DROT( IHI-ISTARTM+1, B( ISTARTM, IHI ), 1, B( ISTARTM,
  207. $ IHI-1 ), 1, C1, S1 )
  208. CALL DROT( IHI-ISTARTM+1, B( ISTARTM, IHI-1 ), 1, B( ISTARTM,
  209. $ IHI-2 ), 1, C2, S2 )
  210. B( IHI-1, IHI-2 ) = ZERO
  211. B( IHI, IHI-2 ) = ZERO
  212. CALL DROT( IHI-ISTARTM+1, A( ISTARTM, IHI ), 1, A( ISTARTM,
  213. $ IHI-1 ), 1, C1, S1 )
  214. CALL DROT( IHI-ISTARTM+1, A( ISTARTM, IHI-1 ), 1, A( ISTARTM,
  215. $ IHI-2 ), 1, C2, S2 )
  216. IF ( ILZ ) THEN
  217. CALL DROT( NZ, Z( 1, IHI-ZSTART+1 ), 1, Z( 1, IHI-1-ZSTART+
  218. $ 1 ), 1, C1, S1 )
  219. CALL DROT( NZ, Z( 1, IHI-1-ZSTART+1 ), 1, Z( 1,
  220. $ IHI-2-ZSTART+1 ), 1, C2, S2 )
  221. END IF
  222. *
  223. CALL DLARTG( A( IHI-1, IHI-2 ), A( IHI, IHI-2 ), C1, S1,
  224. $ TEMP )
  225. A( IHI-1, IHI-2 ) = TEMP
  226. A( IHI, IHI-2 ) = ZERO
  227. CALL DROT( ISTOPM-IHI+2, A( IHI-1, IHI-1 ), LDA, A( IHI,
  228. $ IHI-1 ), LDA, C1, S1 )
  229. CALL DROT( ISTOPM-IHI+2, B( IHI-1, IHI-1 ), LDB, B( IHI,
  230. $ IHI-1 ), LDB, C1, S1 )
  231. IF ( ILQ ) THEN
  232. CALL DROT( NQ, Q( 1, IHI-1-QSTART+1 ), 1, Q( 1, IHI-QSTART+
  233. $ 1 ), 1, C1, S1 )
  234. END IF
  235. *
  236. CALL DLARTG( B( IHI, IHI ), B( IHI, IHI-1 ), C1, S1, TEMP )
  237. B( IHI, IHI ) = TEMP
  238. B( IHI, IHI-1 ) = ZERO
  239. CALL DROT( IHI-ISTARTM, B( ISTARTM, IHI ), 1, B( ISTARTM,
  240. $ IHI-1 ), 1, C1, S1 )
  241. CALL DROT( IHI-ISTARTM+1, A( ISTARTM, IHI ), 1, A( ISTARTM,
  242. $ IHI-1 ), 1, C1, S1 )
  243. IF ( ILZ ) THEN
  244. CALL DROT( NZ, Z( 1, IHI-ZSTART+1 ), 1, Z( 1, IHI-1-ZSTART+
  245. $ 1 ), 1, C1, S1 )
  246. END IF
  247. *
  248. ELSE
  249. *
  250. * Normal operation, move bulge down
  251. *
  252. H = B( K+1:K+2, K:K+2 )
  253. *
  254. * Make H upper triangular
  255. *
  256. CALL DLARTG( H( 1, 1 ), H( 2, 1 ), C1, S1, TEMP )
  257. H( 2, 1 ) = ZERO
  258. H( 1, 1 ) = TEMP
  259. CALL DROT( 2, H( 1, 2 ), 2, H( 2, 2 ), 2, C1, S1 )
  260. *
  261. * Calculate Z1 and Z2
  262. *
  263. CALL DLARTG( H( 2, 3 ), H( 2, 2 ), C1, S1, TEMP )
  264. CALL DROT( 1, H( 1, 3 ), 1, H( 1, 2 ), 1, C1, S1 )
  265. CALL DLARTG( H( 1, 2 ), H( 1, 1 ), C2, S2, TEMP )
  266. *
  267. * Apply transformations from the right
  268. *
  269. CALL DROT( K+3-ISTARTM+1, A( ISTARTM, K+2 ), 1, A( ISTARTM,
  270. $ K+1 ), 1, C1, S1 )
  271. CALL DROT( K+3-ISTARTM+1, A( ISTARTM, K+1 ), 1, A( ISTARTM,
  272. $ K ), 1, C2, S2 )
  273. CALL DROT( K+2-ISTARTM+1, B( ISTARTM, K+2 ), 1, B( ISTARTM,
  274. $ K+1 ), 1, C1, S1 )
  275. CALL DROT( K+2-ISTARTM+1, B( ISTARTM, K+1 ), 1, B( ISTARTM,
  276. $ K ), 1, C2, S2 )
  277. IF ( ILZ ) THEN
  278. CALL DROT( NZ, Z( 1, K+2-ZSTART+1 ), 1, Z( 1, K+1-ZSTART+
  279. $ 1 ), 1, C1, S1 )
  280. CALL DROT( NZ, Z( 1, K+1-ZSTART+1 ), 1, Z( 1, K-ZSTART+1 ),
  281. $ 1, C2, S2 )
  282. END IF
  283. B( K+1, K ) = ZERO
  284. B( K+2, K ) = ZERO
  285. *
  286. * Calculate Q1 and Q2
  287. *
  288. CALL DLARTG( A( K+2, K ), A( K+3, K ), C1, S1, TEMP )
  289. A( K+2, K ) = TEMP
  290. A( K+3, K ) = ZERO
  291. CALL DLARTG( A( K+1, K ), A( K+2, K ), C2, S2, TEMP )
  292. A( K+1, K ) = TEMP
  293. A( K+2, K ) = ZERO
  294. *
  295. * Apply transformations from the left
  296. *
  297. CALL DROT( ISTOPM-K, A( K+2, K+1 ), LDA, A( K+3, K+1 ), LDA,
  298. $ C1, S1 )
  299. CALL DROT( ISTOPM-K, A( K+1, K+1 ), LDA, A( K+2, K+1 ), LDA,
  300. $ C2, S2 )
  301. *
  302. CALL DROT( ISTOPM-K, B( K+2, K+1 ), LDB, B( K+3, K+1 ), LDB,
  303. $ C1, S1 )
  304. CALL DROT( ISTOPM-K, B( K+1, K+1 ), LDB, B( K+2, K+1 ), LDB,
  305. $ C2, S2 )
  306. IF ( ILQ ) THEN
  307. CALL DROT( NQ, Q( 1, K+2-QSTART+1 ), 1, Q( 1, K+3-QSTART+
  308. $ 1 ), 1, C1, S1 )
  309. CALL DROT( NQ, Q( 1, K+1-QSTART+1 ), 1, Q( 1, K+2-QSTART+
  310. $ 1 ), 1, C2, S2 )
  311. END IF
  312. *
  313. END IF
  314. *
  315. * End of DLAQZ2
  316. *
  317. END SUBROUTINE