|
123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113 |
- #include <math.h>
- #include <stdlib.h>
- #include <string.h>
- #include <stdio.h>
- #include <complex.h>
- #ifdef complex
- #undef complex
- #endif
- #ifdef I
- #undef I
- #endif
-
- #if defined(_WIN64)
- typedef long long BLASLONG;
- typedef unsigned long long BLASULONG;
- #else
- typedef long BLASLONG;
- typedef unsigned long BLASULONG;
- #endif
-
- #ifdef LAPACK_ILP64
- typedef BLASLONG blasint;
- #if defined(_WIN64)
- #define blasabs(x) llabs(x)
- #else
- #define blasabs(x) labs(x)
- #endif
- #else
- typedef int blasint;
- #define blasabs(x) abs(x)
- #endif
-
- typedef blasint integer;
-
- typedef unsigned int uinteger;
- typedef char *address;
- typedef short int shortint;
- typedef float real;
- typedef double doublereal;
- typedef struct { real r, i; } complex;
- typedef struct { doublereal r, i; } doublecomplex;
- #ifdef _MSC_VER
- static inline _Fcomplex Cf(complex *z) {_Fcomplex zz={z->r , z->i}; return zz;}
- static inline _Dcomplex Cd(doublecomplex *z) {_Dcomplex zz={z->r , z->i};return zz;}
- static inline _Fcomplex * _pCf(complex *z) {return (_Fcomplex*)z;}
- static inline _Dcomplex * _pCd(doublecomplex *z) {return (_Dcomplex*)z;}
- #else
- static inline _Complex float Cf(complex *z) {return z->r + z->i*_Complex_I;}
- static inline _Complex double Cd(doublecomplex *z) {return z->r + z->i*_Complex_I;}
- static inline _Complex float * _pCf(complex *z) {return (_Complex float*)z;}
- static inline _Complex double * _pCd(doublecomplex *z) {return (_Complex double*)z;}
- #endif
- #define pCf(z) (*_pCf(z))
- #define pCd(z) (*_pCd(z))
- typedef int logical;
- typedef short int shortlogical;
- typedef char logical1;
- typedef char integer1;
-
- #define TRUE_ (1)
- #define FALSE_ (0)
-
- /* Extern is for use with -E */
- #ifndef Extern
- #define Extern extern
- #endif
-
- /* I/O stuff */
-
- typedef int flag;
- typedef int ftnlen;
- typedef int ftnint;
-
- /*external read, write*/
- typedef struct
- { flag cierr;
- ftnint ciunit;
- flag ciend;
- char *cifmt;
- ftnint cirec;
- } cilist;
-
- /*internal read, write*/
- typedef struct
- { flag icierr;
- char *iciunit;
- flag iciend;
- char *icifmt;
- ftnint icirlen;
- ftnint icirnum;
- } icilist;
-
- /*open*/
- typedef struct
- { flag oerr;
- ftnint ounit;
- char *ofnm;
- ftnlen ofnmlen;
- char *osta;
- char *oacc;
- char *ofm;
- ftnint orl;
- char *oblnk;
- } olist;
-
- /*close*/
- typedef struct
- { flag cerr;
- ftnint cunit;
- char *csta;
- } cllist;
-
- /*rewind, backspace, endfile*/
- typedef struct
- { flag aerr;
- ftnint aunit;
- } alist;
-
- /* inquire */
- typedef struct
- { flag inerr;
- ftnint inunit;
- char *infile;
- ftnlen infilen;
- ftnint *inex; /*parameters in standard's order*/
- ftnint *inopen;
- ftnint *innum;
- ftnint *innamed;
- char *inname;
- ftnlen innamlen;
- char *inacc;
- ftnlen inacclen;
- char *inseq;
- ftnlen inseqlen;
- char *indir;
- ftnlen indirlen;
- char *infmt;
- ftnlen infmtlen;
- char *inform;
- ftnint informlen;
- char *inunf;
- ftnlen inunflen;
- ftnint *inrecl;
- ftnint *innrec;
- char *inblank;
- ftnlen inblanklen;
- } inlist;
-
- #define VOID void
-
- union Multitype { /* for multiple entry points */
- integer1 g;
- shortint h;
- integer i;
- /* longint j; */
- real r;
- doublereal d;
- complex c;
- doublecomplex z;
- };
-
- typedef union Multitype Multitype;
-
- struct Vardesc { /* for Namelist */
- char *name;
- char *addr;
- ftnlen *dims;
- int type;
- };
- typedef struct Vardesc Vardesc;
-
- struct Namelist {
- char *name;
- Vardesc **vars;
- int nvars;
- };
- typedef struct Namelist Namelist;
-
- #define abs(x) ((x) >= 0 ? (x) : -(x))
- #define dabs(x) (fabs(x))
- #define f2cmin(a,b) ((a) <= (b) ? (a) : (b))
- #define f2cmax(a,b) ((a) >= (b) ? (a) : (b))
- #define dmin(a,b) (f2cmin(a,b))
- #define dmax(a,b) (f2cmax(a,b))
- #define bit_test(a,b) ((a) >> (b) & 1)
- #define bit_clear(a,b) ((a) & ~((uinteger)1 << (b)))
- #define bit_set(a,b) ((a) | ((uinteger)1 << (b)))
-
- #define abort_() { sig_die("Fortran abort routine called", 1); }
- #define c_abs(z) (cabsf(Cf(z)))
- #define c_cos(R,Z) { pCf(R)=ccos(Cf(Z)); }
- #ifdef _MSC_VER
- #define c_div(c, a, b) {Cf(c)._Val[0] = (Cf(a)._Val[0]/Cf(b)._Val[0]); Cf(c)._Val[1]=(Cf(a)._Val[1]/Cf(b)._Val[1]);}
- #define z_div(c, a, b) {Cd(c)._Val[0] = (Cd(a)._Val[0]/Cd(b)._Val[0]); Cd(c)._Val[1]=(Cd(a)._Val[1]/Cd(b)._Val[1]);}
- #else
- #define c_div(c, a, b) {pCf(c) = Cf(a)/Cf(b);}
- #define z_div(c, a, b) {pCd(c) = Cd(a)/Cd(b);}
- #endif
- #define c_exp(R, Z) {pCf(R) = cexpf(Cf(Z));}
- #define c_log(R, Z) {pCf(R) = clogf(Cf(Z));}
- #define c_sin(R, Z) {pCf(R) = csinf(Cf(Z));}
- //#define c_sqrt(R, Z) {*(R) = csqrtf(Cf(Z));}
- #define c_sqrt(R, Z) {pCf(R) = csqrtf(Cf(Z));}
- #define d_abs(x) (fabs(*(x)))
- #define d_acos(x) (acos(*(x)))
- #define d_asin(x) (asin(*(x)))
- #define d_atan(x) (atan(*(x)))
- #define d_atn2(x, y) (atan2(*(x),*(y)))
- #define d_cnjg(R, Z) { pCd(R) = conj(Cd(Z)); }
- #define r_cnjg(R, Z) { pCf(R) = conjf(Cf(Z)); }
- #define d_cos(x) (cos(*(x)))
- #define d_cosh(x) (cosh(*(x)))
- #define d_dim(__a, __b) ( *(__a) > *(__b) ? *(__a) - *(__b) : 0.0 )
- #define d_exp(x) (exp(*(x)))
- #define d_imag(z) (cimag(Cd(z)))
- #define r_imag(z) (cimagf(Cf(z)))
- #define d_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
- #define r_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
- #define d_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
- #define r_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
- #define d_log(x) (log(*(x)))
- #define d_mod(x, y) (fmod(*(x), *(y)))
- #define u_nint(__x) ((__x)>=0 ? floor((__x) + .5) : -floor(.5 - (__x)))
- #define d_nint(x) u_nint(*(x))
- #define u_sign(__a,__b) ((__b) >= 0 ? ((__a) >= 0 ? (__a) : -(__a)) : -((__a) >= 0 ? (__a) : -(__a)))
- #define d_sign(a,b) u_sign(*(a),*(b))
- #define r_sign(a,b) u_sign(*(a),*(b))
- #define d_sin(x) (sin(*(x)))
- #define d_sinh(x) (sinh(*(x)))
- #define d_sqrt(x) (sqrt(*(x)))
- #define d_tan(x) (tan(*(x)))
- #define d_tanh(x) (tanh(*(x)))
- #define i_abs(x) abs(*(x))
- #define i_dnnt(x) ((integer)u_nint(*(x)))
- #define i_len(s, n) (n)
- #define i_nint(x) ((integer)u_nint(*(x)))
- #define i_sign(a,b) ((integer)u_sign((integer)*(a),(integer)*(b)))
- #define pow_dd(ap, bp) ( pow(*(ap), *(bp)))
- #define pow_si(B,E) spow_ui(*(B),*(E))
- #define pow_ri(B,E) spow_ui(*(B),*(E))
- #define pow_di(B,E) dpow_ui(*(B),*(E))
- #define pow_zi(p, a, b) {pCd(p) = zpow_ui(Cd(a), *(b));}
- #define pow_ci(p, a, b) {pCf(p) = cpow_ui(Cf(a), *(b));}
- #define pow_zz(R,A,B) {pCd(R) = cpow(Cd(A),*(B));}
- #define s_cat(lpp, rpp, rnp, np, llp) { ftnlen i, nc, ll; char *f__rp, *lp; ll = (llp); lp = (lpp); for(i=0; i < (int)*(np); ++i) { nc = ll; if((rnp)[i] < nc) nc = (rnp)[i]; ll -= nc; f__rp = (rpp)[i]; while(--nc >= 0) *lp++ = *(f__rp)++; } while(--ll >= 0) *lp++ = ' '; }
- #define s_cmp(a,b,c,d) ((integer)strncmp((a),(b),f2cmin((c),(d))))
- #define s_copy(A,B,C,D) { int __i,__m; for (__i=0, __m=f2cmin((C),(D)); __i<__m && (B)[__i] != 0; ++__i) (A)[__i] = (B)[__i]; }
- #define sig_die(s, kill) { exit(1); }
- #define s_stop(s, n) {exit(0);}
- static char junk[] = "\n@(#)LIBF77 VERSION 19990503\n";
- #define z_abs(z) (cabs(Cd(z)))
- #define z_exp(R, Z) {pCd(R) = cexp(Cd(Z));}
- #define z_sqrt(R, Z) {pCd(R) = csqrt(Cd(Z));}
- #define myexit_() break;
- #define mycycle_() continue;
- #define myceiling_(w) {ceil(w)}
- #define myhuge_(w) {HUGE_VAL}
- //#define mymaxloc_(w,s,e,n) {if (sizeof(*(w)) == sizeof(double)) dmaxloc_((w),*(s),*(e),n); else dmaxloc_((w),*(s),*(e),n);}
- #define mymaxloc_(w,s,e,n) dmaxloc_(w,*(s),*(e),n)
-
- /* procedure parameter types for -A and -C++ */
-
- #define F2C_proc_par_types 1
- #ifdef __cplusplus
- typedef logical (*L_fp)(...);
- #else
- typedef logical (*L_fp)();
- #endif
-
- static float spow_ui(float x, integer n) {
- float pow=1.0; unsigned long int u;
- if(n != 0) {
- if(n < 0) n = -n, x = 1/x;
- for(u = n; ; ) {
- if(u & 01) pow *= x;
- if(u >>= 1) x *= x;
- else break;
- }
- }
- return pow;
- }
- static double dpow_ui(double x, integer n) {
- double pow=1.0; unsigned long int u;
- if(n != 0) {
- if(n < 0) n = -n, x = 1/x;
- for(u = n; ; ) {
- if(u & 01) pow *= x;
- if(u >>= 1) x *= x;
- else break;
- }
- }
- return pow;
- }
- #ifdef _MSC_VER
- static _Fcomplex cpow_ui(complex x, integer n) {
- complex pow={1.0,0.0}; unsigned long int u;
- if(n != 0) {
- if(n < 0) n = -n, x.r = 1/x.r, x.i=1/x.i;
- for(u = n; ; ) {
- if(u & 01) pow.r *= x.r, pow.i *= x.i;
- if(u >>= 1) x.r *= x.r, x.i *= x.i;
- else break;
- }
- }
- _Fcomplex p={pow.r, pow.i};
- return p;
- }
- #else
- static _Complex float cpow_ui(_Complex float x, integer n) {
- _Complex float pow=1.0; unsigned long int u;
- if(n != 0) {
- if(n < 0) n = -n, x = 1/x;
- for(u = n; ; ) {
- if(u & 01) pow *= x;
- if(u >>= 1) x *= x;
- else break;
- }
- }
- return pow;
- }
- #endif
- #ifdef _MSC_VER
- static _Dcomplex zpow_ui(_Dcomplex x, integer n) {
- _Dcomplex pow={1.0,0.0}; unsigned long int u;
- if(n != 0) {
- if(n < 0) n = -n, x._Val[0] = 1/x._Val[0], x._Val[1] =1/x._Val[1];
- for(u = n; ; ) {
- if(u & 01) pow._Val[0] *= x._Val[0], pow._Val[1] *= x._Val[1];
- if(u >>= 1) x._Val[0] *= x._Val[0], x._Val[1] *= x._Val[1];
- else break;
- }
- }
- _Dcomplex p = {pow._Val[0], pow._Val[1]};
- return p;
- }
- #else
- static _Complex double zpow_ui(_Complex double x, integer n) {
- _Complex double pow=1.0; unsigned long int u;
- if(n != 0) {
- if(n < 0) n = -n, x = 1/x;
- for(u = n; ; ) {
- if(u & 01) pow *= x;
- if(u >>= 1) x *= x;
- else break;
- }
- }
- return pow;
- }
- #endif
- static integer pow_ii(integer x, integer n) {
- integer pow; unsigned long int u;
- if (n <= 0) {
- if (n == 0 || x == 1) pow = 1;
- else if (x != -1) pow = x == 0 ? 1/x : 0;
- else n = -n;
- }
- if ((n > 0) || !(n == 0 || x == 1 || x != -1)) {
- u = n;
- for(pow = 1; ; ) {
- if(u & 01) pow *= x;
- if(u >>= 1) x *= x;
- else break;
- }
- }
- return pow;
- }
- static integer dmaxloc_(double *w, integer s, integer e, integer *n)
- {
- double m; integer i, mi;
- for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
- if (w[i-1]>m) mi=i ,m=w[i-1];
- return mi-s+1;
- }
- static integer smaxloc_(float *w, integer s, integer e, integer *n)
- {
- float m; integer i, mi;
- for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
- if (w[i-1]>m) mi=i ,m=w[i-1];
- return mi-s+1;
- }
- static inline void cdotc_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
- integer n = *n_, incx = *incx_, incy = *incy_, i;
- #ifdef _MSC_VER
- _Fcomplex zdotc = {0.0, 0.0};
- if (incx == 1 && incy == 1) {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc._Val[0] += conjf(Cf(&x[i]))._Val[0] * Cf(&y[i])._Val[0];
- zdotc._Val[1] += conjf(Cf(&x[i]))._Val[1] * Cf(&y[i])._Val[1];
- }
- } else {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc._Val[0] += conjf(Cf(&x[i*incx]))._Val[0] * Cf(&y[i*incy])._Val[0];
- zdotc._Val[1] += conjf(Cf(&x[i*incx]))._Val[1] * Cf(&y[i*incy])._Val[1];
- }
- }
- pCf(z) = zdotc;
- }
- #else
- _Complex float zdotc = 0.0;
- if (incx == 1 && incy == 1) {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc += conjf(Cf(&x[i])) * Cf(&y[i]);
- }
- } else {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc += conjf(Cf(&x[i*incx])) * Cf(&y[i*incy]);
- }
- }
- pCf(z) = zdotc;
- }
- #endif
- static inline void zdotc_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
- integer n = *n_, incx = *incx_, incy = *incy_, i;
- #ifdef _MSC_VER
- _Dcomplex zdotc = {0.0, 0.0};
- if (incx == 1 && incy == 1) {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc._Val[0] += conj(Cd(&x[i]))._Val[0] * Cd(&y[i])._Val[0];
- zdotc._Val[1] += conj(Cd(&x[i]))._Val[1] * Cd(&y[i])._Val[1];
- }
- } else {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc._Val[0] += conj(Cd(&x[i*incx]))._Val[0] * Cd(&y[i*incy])._Val[0];
- zdotc._Val[1] += conj(Cd(&x[i*incx]))._Val[1] * Cd(&y[i*incy])._Val[1];
- }
- }
- pCd(z) = zdotc;
- }
- #else
- _Complex double zdotc = 0.0;
- if (incx == 1 && incy == 1) {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc += conj(Cd(&x[i])) * Cd(&y[i]);
- }
- } else {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc += conj(Cd(&x[i*incx])) * Cd(&y[i*incy]);
- }
- }
- pCd(z) = zdotc;
- }
- #endif
- static inline void cdotu_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
- integer n = *n_, incx = *incx_, incy = *incy_, i;
- #ifdef _MSC_VER
- _Fcomplex zdotc = {0.0, 0.0};
- if (incx == 1 && incy == 1) {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc._Val[0] += Cf(&x[i])._Val[0] * Cf(&y[i])._Val[0];
- zdotc._Val[1] += Cf(&x[i])._Val[1] * Cf(&y[i])._Val[1];
- }
- } else {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc._Val[0] += Cf(&x[i*incx])._Val[0] * Cf(&y[i*incy])._Val[0];
- zdotc._Val[1] += Cf(&x[i*incx])._Val[1] * Cf(&y[i*incy])._Val[1];
- }
- }
- pCf(z) = zdotc;
- }
- #else
- _Complex float zdotc = 0.0;
- if (incx == 1 && incy == 1) {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc += Cf(&x[i]) * Cf(&y[i]);
- }
- } else {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc += Cf(&x[i*incx]) * Cf(&y[i*incy]);
- }
- }
- pCf(z) = zdotc;
- }
- #endif
- static inline void zdotu_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
- integer n = *n_, incx = *incx_, incy = *incy_, i;
- #ifdef _MSC_VER
- _Dcomplex zdotc = {0.0, 0.0};
- if (incx == 1 && incy == 1) {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc._Val[0] += Cd(&x[i])._Val[0] * Cd(&y[i])._Val[0];
- zdotc._Val[1] += Cd(&x[i])._Val[1] * Cd(&y[i])._Val[1];
- }
- } else {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc._Val[0] += Cd(&x[i*incx])._Val[0] * Cd(&y[i*incy])._Val[0];
- zdotc._Val[1] += Cd(&x[i*incx])._Val[1] * Cd(&y[i*incy])._Val[1];
- }
- }
- pCd(z) = zdotc;
- }
- #else
- _Complex double zdotc = 0.0;
- if (incx == 1 && incy == 1) {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc += Cd(&x[i]) * Cd(&y[i]);
- }
- } else {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc += Cd(&x[i*incx]) * Cd(&y[i*incy]);
- }
- }
- pCd(z) = zdotc;
- }
- #endif
- /* -- translated by f2c (version 20000121).
- You must link the resulting object file with the libraries:
- -lf2c -lm (in that order)
- */
-
-
-
- /* -- translated by f2c (version 20000121).
- You must link the resulting object file with the libraries:
- -lf2c -lm (in that order)
- */
-
-
-
- /* Table of constant values */
-
- static integer c__1 = 1;
- static doublereal c_b7 = -1.;
- static doublereal c_b8 = 1.;
- static doublereal c_b30 = 0.;
-
- /* Subroutine */ int dlaqp3rk_(integer *m, integer *n, integer *nrhs, integer
- *ioffset, integer *nb, doublereal *abstol, doublereal *reltol,
- integer *kp1, doublereal *maxc2nrm, doublereal *a, integer *lda,
- logical *done, integer *kb, doublereal *maxc2nrmk, doublereal *
- relmaxc2nrmk, integer *jpiv, doublereal *tau, doublereal *vn1,
- doublereal *vn2, doublereal *auxv, doublereal *f, integer *ldf,
- integer *iwork, integer *info)
- {
- /* System generated locals */
- integer a_dim1, a_offset, f_dim1, f_offset, i__1, i__2;
- doublereal d__1, d__2;
-
- /* Local variables */
- doublereal temp;
- extern doublereal dnrm2_(integer *, doublereal *, integer *);
- doublereal temp2;
- integer i__, j, k;
- doublereal tol3z;
- extern /* Subroutine */ int dgemm_(char *, char *, integer *, integer *,
- integer *, doublereal *, doublereal *, integer *, doublereal *,
- integer *, doublereal *, doublereal *, integer *),
- dgemv_(char *, integer *, integer *, doublereal *, doublereal *,
- integer *, doublereal *, integer *, doublereal *, doublereal *,
- integer *);
- integer itemp;
- extern /* Subroutine */ int dswap_(integer *, doublereal *, integer *,
- doublereal *, integer *);
- integer minmnfact;
- doublereal myhugeval;
- integer minmnupdt, if__;
- extern doublereal dlamch_(char *);
- integer kp;
- extern /* Subroutine */ int dlarfg_(integer *, doublereal *, doublereal *,
- integer *, doublereal *);
- extern integer idamax_(integer *, doublereal *, integer *);
- extern logical disnan_(doublereal *);
- integer lsticc;
- doublereal aik;
-
-
- /* -- LAPACK auxiliary routine -- */
- /* -- LAPACK is a software package provided by Univ. of Tennessee, -- */
- /* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */
-
-
- /* ===================================================================== */
-
-
- /* Initialize INFO */
-
- /* Parameter adjustments */
- a_dim1 = *lda;
- a_offset = 1 + a_dim1 * 1;
- a -= a_offset;
- --jpiv;
- --tau;
- --vn1;
- --vn2;
- --auxv;
- f_dim1 = *ldf;
- f_offset = 1 + f_dim1 * 1;
- f -= f_offset;
- --iwork;
-
- /* Function Body */
- *info = 0;
-
- /* MINMNFACT in the smallest dimension of the submatrix */
- /* A(IOFFSET+1:M,1:N) to be factorized. */
-
- /* Computing MIN */
- i__1 = *m - *ioffset;
- minmnfact = f2cmin(i__1,*n);
- /* Computing MIN */
- i__1 = *m - *ioffset, i__2 = *n + *nrhs;
- minmnupdt = f2cmin(i__1,i__2);
- *nb = f2cmin(*nb,minmnfact);
- tol3z = sqrt(dlamch_("Epsilon"));
- myhugeval = dlamch_("Overflow");
-
- /* Compute factorization in a while loop over NB columns, */
- /* K is the column index in the block A(1:M,1:N). */
-
- k = 0;
- lsticc = 0;
- *done = FALSE_;
-
- while(k < *nb && lsticc == 0) {
- ++k;
- i__ = *ioffset + k;
-
- if (i__ == 1) {
-
- /* We are at the first column of the original whole matrix A_orig, */
- /* therefore we use the computed KP1 and MAXC2NRM from the */
- /* main routine. */
-
- kp = *kp1;
-
- } else {
-
- /* Determine the pivot column in K-th step, i.e. the index */
- /* of the column with the maximum 2-norm in the */
- /* submatrix A(I:M,K:N). */
-
- i__1 = *n - k + 1;
- kp = k - 1 + idamax_(&i__1, &vn1[k], &c__1);
-
- /* Determine the maximum column 2-norm and the relative maximum */
- /* column 2-norm of the submatrix A(I:M,K:N) in step K. */
-
- *maxc2nrmk = vn1[kp];
-
- /* ============================================================ */
-
- /* Check if the submatrix A(I:M,K:N) contains NaN, set */
- /* INFO parameter to the column number, where the first NaN */
- /* is found and return from the routine. */
- /* We need to check the condition only if the */
- /* column index (same as row index) of the original whole */
- /* matrix is larger than 1, since the condition for whole */
- /* original matrix is checked in the main routine. */
-
- if (disnan_(maxc2nrmk)) {
-
- *done = TRUE_;
-
- /* Set KB, the number of factorized partial columns */
- /* that are non-zero in each step in the block, */
- /* i.e. the rank of the factor R. */
- /* Set IF, the number of processed rows in the block, which */
- /* is the same as the number of processed rows in */
- /* the original whole matrix A_orig. */
-
- *kb = k - 1;
- if__ = i__ - 1;
- *info = *kb + kp;
-
- /* Set RELMAXC2NRMK to NaN. */
-
- *relmaxc2nrmk = *maxc2nrmk;
-
- /* There is no need to apply the block reflector to the */
- /* residual of the matrix A stored in A(KB+1:M,KB+1:N), */
- /* since the submatrix contains NaN and we stop */
- /* the computation. */
- /* But, we need to apply the block reflector to the residual */
- /* right hand sides stored in A(KB+1:M,N+1:N+NRHS), if the */
- /* residual right hand sides exist. This occurs */
- /* when ( NRHS != 0 AND KB <= (M-IOFFSET) ): */
-
- /* A(I+1:M,N+1:N+NRHS) := A(I+1:M,N+1:N+NRHS) - */
- /* A(I+1:M,1:KB) * F(N+1:N+NRHS,1:KB)**T. */
- if (*nrhs > 0 && *kb < *m - *ioffset) {
- i__1 = *m - if__;
- dgemm_("No transpose", "Transpose", &i__1, nrhs, kb, &
- c_b7, &a[if__ + 1 + a_dim1], lda, &f[*n + 1 +
- f_dim1], ldf, &c_b8, &a[if__ + 1 + (*n + 1) *
- a_dim1], lda);
- }
-
- /* There is no need to recompute the 2-norm of the */
- /* difficult columns, since we stop the factorization. */
-
- /* Array TAU(KF+1:MINMNFACT) is not set and contains */
- /* undefined elements. */
-
- /* Return from the routine. */
-
- return 0;
- }
-
- /* Quick return, if the submatrix A(I:M,K:N) is */
- /* a zero matrix. We need to check it only if the column index */
- /* (same as row index) is larger than 1, since the condition */
- /* for the whole original matrix A_orig is checked in the main */
- /* routine. */
-
- if (*maxc2nrmk == 0.) {
-
- *done = TRUE_;
-
- /* Set KB, the number of factorized partial columns */
- /* that are non-zero in each step in the block, */
- /* i.e. the rank of the factor R. */
- /* Set IF, the number of processed rows in the block, which */
- /* is the same as the number of processed rows in */
- /* the original whole matrix A_orig. */
-
- *kb = k - 1;
- if__ = i__ - 1;
- *relmaxc2nrmk = 0.;
-
- /* There is no need to apply the block reflector to the */
- /* residual of the matrix A stored in A(KB+1:M,KB+1:N), */
- /* since the submatrix is zero and we stop the computation. */
- /* But, we need to apply the block reflector to the residual */
- /* right hand sides stored in A(KB+1:M,N+1:N+NRHS), if the */
- /* residual right hand sides exist. This occurs */
- /* when ( NRHS != 0 AND KB <= (M-IOFFSET) ): */
-
- /* A(I+1:M,N+1:N+NRHS) := A(I+1:M,N+1:N+NRHS) - */
- /* A(I+1:M,1:KB) * F(N+1:N+NRHS,1:KB)**T. */
-
- if (*nrhs > 0 && *kb < *m - *ioffset) {
- i__1 = *m - if__;
- dgemm_("No transpose", "Transpose", &i__1, nrhs, kb, &
- c_b7, &a[if__ + 1 + a_dim1], lda, &f[*n + 1 +
- f_dim1], ldf, &c_b8, &a[if__ + 1 + (*n + 1) *
- a_dim1], lda);
- }
-
- /* There is no need to recompute the 2-norm of the */
- /* difficult columns, since we stop the factorization. */
-
- /* Set TAUs corresponding to the columns that were not */
- /* factorized to ZERO, i.e. set TAU(KB+1:MINMNFACT) = ZERO, */
- /* which is equivalent to seting TAU(K:MINMNFACT) = ZERO. */
-
- i__1 = minmnfact;
- for (j = k; j <= i__1; ++j) {
- tau[j] = 0.;
- }
-
- /* Return from the routine. */
-
- return 0;
-
- }
-
- /* ============================================================ */
-
- /* Check if the submatrix A(I:M,K:N) contains Inf, */
- /* set INFO parameter to the column number, where */
- /* the first Inf is found plus N, and continue */
- /* the computation. */
- /* We need to check the condition only if the */
- /* column index (same as row index) of the original whole */
- /* matrix is larger than 1, since the condition for whole */
- /* original matrix is checked in the main routine. */
-
- if (*info == 0 && *maxc2nrmk > myhugeval) {
- *info = *n + k - 1 + kp;
- }
-
- /* ============================================================ */
-
- /* Test for the second and third tolerance stopping criteria. */
- /* NOTE: There is no need to test for ABSTOL.GE.ZERO, since */
- /* MAXC2NRMK is non-negative. Similarly, there is no need */
- /* to test for RELTOL.GE.ZERO, since RELMAXC2NRMK is */
- /* non-negative. */
- /* We need to check the condition only if the */
- /* column index (same as row index) of the original whole */
- /* matrix is larger than 1, since the condition for whole */
- /* original matrix is checked in the main routine. */
-
- *relmaxc2nrmk = *maxc2nrmk / *maxc2nrm;
-
- if (*maxc2nrmk <= *abstol || *relmaxc2nrmk <= *reltol) {
-
- *done = TRUE_;
-
- /* Set KB, the number of factorized partial columns */
- /* that are non-zero in each step in the block, */
- /* i.e. the rank of the factor R. */
- /* Set IF, the number of processed rows in the block, which */
- /* is the same as the number of processed rows in */
- /* the original whole matrix A_orig; */
-
- *kb = k - 1;
- if__ = i__ - 1;
-
- /* Apply the block reflector to the residual of the */
- /* matrix A and the residual of the right hand sides B, if */
- /* the residual matrix and and/or the residual of the right */
- /* hand sides exist, i.e. if the submatrix */
- /* A(I+1:M,KB+1:N+NRHS) exists. This occurs when */
- /* KB < MINMNUPDT = f2cmin( M-IOFFSET, N+NRHS ): */
-
- /* A(IF+1:M,K+1:N+NRHS) := A(IF+1:M,KB+1:N+NRHS) - */
- /* A(IF+1:M,1:KB) * F(KB+1:N+NRHS,1:KB)**T. */
-
- if (*kb < minmnupdt) {
- i__1 = *m - if__;
- i__2 = *n + *nrhs - *kb;
- dgemm_("No transpose", "Transpose", &i__1, &i__2, kb, &
- c_b7, &a[if__ + 1 + a_dim1], lda, &f[*kb + 1 +
- f_dim1], ldf, &c_b8, &a[if__ + 1 + (*kb + 1) *
- a_dim1], lda);
- }
-
- /* There is no need to recompute the 2-norm of the */
- /* difficult columns, since we stop the factorization. */
-
- /* Set TAUs corresponding to the columns that were not */
- /* factorized to ZERO, i.e. set TAU(KB+1:MINMNFACT) = ZERO, */
- /* which is equivalent to seting TAU(K:MINMNFACT) = ZERO. */
-
- i__1 = minmnfact;
- for (j = k; j <= i__1; ++j) {
- tau[j] = 0.;
- }
-
- /* Return from the routine. */
-
- return 0;
-
- }
-
- /* ============================================================ */
-
- /* End ELSE of IF(I.EQ.1) */
-
- }
-
- /* =============================================================== */
-
- /* If the pivot column is not the first column of the */
- /* subblock A(1:M,K:N): */
- /* 1) swap the K-th column and the KP-th pivot column */
- /* in A(1:M,1:N); */
- /* 2) swap the K-th row and the KP-th row in F(1:N,1:K-1) */
- /* 3) copy the K-th element into the KP-th element of the partial */
- /* and exact 2-norm vectors VN1 and VN2. (Swap is not needed */
- /* for VN1 and VN2 since we use the element with the index */
- /* larger than K in the next loop step.) */
- /* 4) Save the pivot interchange with the indices relative to the */
- /* the original matrix A_orig, not the block A(1:M,1:N). */
-
- if (kp != k) {
- dswap_(m, &a[kp * a_dim1 + 1], &c__1, &a[k * a_dim1 + 1], &c__1);
- i__1 = k - 1;
- dswap_(&i__1, &f[kp + f_dim1], ldf, &f[k + f_dim1], ldf);
- vn1[kp] = vn1[k];
- vn2[kp] = vn2[k];
- itemp = jpiv[kp];
- jpiv[kp] = jpiv[k];
- jpiv[k] = itemp;
- }
-
- /* Apply previous Householder reflectors to column K: */
- /* A(I:M,K) := A(I:M,K) - A(I:M,1:K-1)*F(K,1:K-1)**T. */
-
- if (k > 1) {
- i__1 = *m - i__ + 1;
- i__2 = k - 1;
- dgemv_("No transpose", &i__1, &i__2, &c_b7, &a[i__ + a_dim1], lda,
- &f[k + f_dim1], ldf, &c_b8, &a[i__ + k * a_dim1], &c__1);
- }
-
- /* Generate elementary reflector H(k) using the column A(I:M,K). */
-
- if (i__ < *m) {
- i__1 = *m - i__ + 1;
- dlarfg_(&i__1, &a[i__ + k * a_dim1], &a[i__ + 1 + k * a_dim1], &
- c__1, &tau[k]);
- } else {
- tau[k] = 0.;
- }
-
- /* Check if TAU(K) contains NaN, set INFO parameter */
- /* to the column number where NaN is found and return from */
- /* the routine. */
- /* NOTE: There is no need to check TAU(K) for Inf, */
- /* since DLARFG cannot produce TAU(K) or Householder vector */
- /* below the diagonal containing Inf. Only BETA on the diagonal, */
- /* returned by DLARFG can contain Inf, which requires */
- /* TAU(K) to contain NaN. Therefore, this case of generating Inf */
- /* by DLARFG is covered by checking TAU(K) for NaN. */
-
- if (disnan_(&tau[k])) {
-
- *done = TRUE_;
-
- /* Set KB, the number of factorized partial columns */
- /* that are non-zero in each step in the block, */
- /* i.e. the rank of the factor R. */
- /* Set IF, the number of processed rows in the block, which */
- /* is the same as the number of processed rows in */
- /* the original whole matrix A_orig. */
-
- *kb = k - 1;
- if__ = i__ - 1;
- *info = k;
-
- /* Set MAXC2NRMK and RELMAXC2NRMK to NaN. */
-
- *maxc2nrmk = tau[k];
- *relmaxc2nrmk = tau[k];
-
- /* There is no need to apply the block reflector to the */
- /* residual of the matrix A stored in A(KB+1:M,KB+1:N), */
- /* since the submatrix contains NaN and we stop */
- /* the computation. */
- /* But, we need to apply the block reflector to the residual */
- /* right hand sides stored in A(KB+1:M,N+1:N+NRHS), if the */
- /* residual right hand sides exist. This occurs */
- /* when ( NRHS != 0 AND KB <= (M-IOFFSET) ): */
-
- /* A(I+1:M,N+1:N+NRHS) := A(I+1:M,N+1:N+NRHS) - */
- /* A(I+1:M,1:KB) * F(N+1:N+NRHS,1:KB)**T. */
-
- if (*nrhs > 0 && *kb < *m - *ioffset) {
- i__1 = *m - if__;
- dgemm_("No transpose", "Transpose", &i__1, nrhs, kb, &c_b7, &
- a[if__ + 1 + a_dim1], lda, &f[*n + 1 + f_dim1], ldf, &
- c_b8, &a[if__ + 1 + (*n + 1) * a_dim1], lda);
- }
-
- /* There is no need to recompute the 2-norm of the */
- /* difficult columns, since we stop the factorization. */
-
- /* Array TAU(KF+1:MINMNFACT) is not set and contains */
- /* undefined elements. */
-
- /* Return from the routine. */
-
- return 0;
- }
-
- /* =============================================================== */
-
- aik = a[i__ + k * a_dim1];
- a[i__ + k * a_dim1] = 1.;
-
- /* =============================================================== */
-
- /* Compute the current K-th column of F: */
- /* 1) F(K+1:N,K) := tau(K) * A(I:M,K+1:N)**T * A(I:M,K). */
-
- if (k < *n + *nrhs) {
- i__1 = *m - i__ + 1;
- i__2 = *n + *nrhs - k;
- dgemv_("Transpose", &i__1, &i__2, &tau[k], &a[i__ + (k + 1) *
- a_dim1], lda, &a[i__ + k * a_dim1], &c__1, &c_b30, &f[k +
- 1 + k * f_dim1], &c__1);
- }
-
- /* 2) Zero out elements above and on the diagonal of the */
- /* column K in matrix F, i.e elements F(1:K,K). */
-
- i__1 = k;
- for (j = 1; j <= i__1; ++j) {
- f[j + k * f_dim1] = 0.;
- }
-
- /* 3) Incremental updating of the K-th column of F: */
- /* F(1:N,K) := F(1:N,K) - tau(K) * F(1:N,1:K-1) * A(I:M,1:K-1)**T */
- /* * A(I:M,K). */
-
- if (k > 1) {
- i__1 = *m - i__ + 1;
- i__2 = k - 1;
- d__1 = -tau[k];
- dgemv_("Transpose", &i__1, &i__2, &d__1, &a[i__ + a_dim1], lda, &
- a[i__ + k * a_dim1], &c__1, &c_b30, &auxv[1], &c__1);
-
- i__1 = *n + *nrhs;
- i__2 = k - 1;
- dgemv_("No transpose", &i__1, &i__2, &c_b8, &f[f_dim1 + 1], ldf, &
- auxv[1], &c__1, &c_b8, &f[k * f_dim1 + 1], &c__1);
- }
-
- /* =============================================================== */
-
- /* Update the current I-th row of A: */
- /* A(I,K+1:N+NRHS) := A(I,K+1:N+NRHS) */
- /* - A(I,1:K)*F(K+1:N+NRHS,1:K)**T. */
-
- if (k < *n + *nrhs) {
- i__1 = *n + *nrhs - k;
- dgemv_("No transpose", &i__1, &k, &c_b7, &f[k + 1 + f_dim1], ldf,
- &a[i__ + a_dim1], lda, &c_b8, &a[i__ + (k + 1) * a_dim1],
- lda);
- }
-
- a[i__ + k * a_dim1] = aik;
-
- /* Update the partial column 2-norms for the residual matrix, */
- /* only if the residual matrix A(I+1:M,K+1:N) exists, i.e. */
- /* when K < MINMNFACT = f2cmin( M-IOFFSET, N ). */
-
- if (k < minmnfact) {
-
- i__1 = *n;
- for (j = k + 1; j <= i__1; ++j) {
- if (vn1[j] != 0.) {
-
- /* NOTE: The following lines follow from the analysis in */
- /* Lapack Working Note 176. */
-
- temp = (d__1 = a[i__ + j * a_dim1], abs(d__1)) / vn1[j];
- /* Computing MAX */
- d__1 = 0., d__2 = (temp + 1.) * (1. - temp);
- temp = f2cmax(d__1,d__2);
- /* Computing 2nd power */
- d__1 = vn1[j] / vn2[j];
- temp2 = temp * (d__1 * d__1);
- if (temp2 <= tol3z) {
-
- /* At J-index, we have a difficult column for the */
- /* update of the 2-norm. Save the index of the previous */
- /* difficult column in IWORK(J-1). */
- /* NOTE: ILSTCC > 1, threfore we can use IWORK only */
- /* with N-1 elements, where the elements are */
- /* shifted by 1 to the left. */
-
- iwork[j - 1] = lsticc;
-
- /* Set the index of the last difficult column LSTICC. */
-
- lsticc = j;
-
- } else {
- vn1[j] *= sqrt(temp);
- }
- }
- }
-
- }
-
- /* End of while loop. */
-
- }
-
- /* Now, afler the loop: */
- /* Set KB, the number of factorized columns in the block; */
- /* Set IF, the number of processed rows in the block, which */
- /* is the same as the number of processed rows in */
- /* the original whole matrix A_orig, IF = IOFFSET + KB. */
-
- *kb = k;
- if__ = i__;
-
- /* Apply the block reflector to the residual of the matrix A */
- /* and the residual of the right hand sides B, if the residual */
- /* matrix and and/or the residual of the right hand sides */
- /* exist, i.e. if the submatrix A(I+1:M,KB+1:N+NRHS) exists. */
- /* This occurs when KB < MINMNUPDT = f2cmin( M-IOFFSET, N+NRHS ): */
-
- /* A(IF+1:M,K+1:N+NRHS) := A(IF+1:M,KB+1:N+NRHS) - */
- /* A(IF+1:M,1:KB) * F(KB+1:N+NRHS,1:KB)**T. */
-
- if (*kb < minmnupdt) {
- i__1 = *m - if__;
- i__2 = *n + *nrhs - *kb;
- dgemm_("No transpose", "Transpose", &i__1, &i__2, kb, &c_b7, &a[if__
- + 1 + a_dim1], lda, &f[*kb + 1 + f_dim1], ldf, &c_b8, &a[if__
- + 1 + (*kb + 1) * a_dim1], lda);
- }
-
- /* Recompute the 2-norm of the difficult columns. */
- /* Loop over the index of the difficult columns from the largest */
- /* to the smallest index. */
-
- while(lsticc > 0) {
-
- /* LSTICC is the index of the last difficult column is greater */
- /* than 1. */
- /* ITEMP is the index of the previous difficult column. */
-
- itemp = iwork[lsticc - 1];
-
- /* Compute the 2-norm explicilty for the last difficult column and */
- /* save it in the partial and exact 2-norm vectors VN1 and VN2. */
-
- /* NOTE: The computation of VN1( LSTICC ) relies on the fact that */
- /* DNRM2 does not fail on vectors with norm below the value of */
- /* SQRT(DLAMCH('S')) */
-
- i__1 = *m - if__;
- vn1[lsticc] = dnrm2_(&i__1, &a[if__ + 1 + lsticc * a_dim1], &c__1);
- vn2[lsticc] = vn1[lsticc];
-
- /* Downdate the index of the last difficult column to */
- /* the index of the previous difficult column. */
-
- lsticc = itemp;
-
- }
-
- return 0;
-
- /* End of DLAQP3RK */
-
- } /* dlaqp3rk_ */
-
|