You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

dlaqp3rk.c 35 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113
  1. #include <math.h>
  2. #include <stdlib.h>
  3. #include <string.h>
  4. #include <stdio.h>
  5. #include <complex.h>
  6. #ifdef complex
  7. #undef complex
  8. #endif
  9. #ifdef I
  10. #undef I
  11. #endif
  12. #if defined(_WIN64)
  13. typedef long long BLASLONG;
  14. typedef unsigned long long BLASULONG;
  15. #else
  16. typedef long BLASLONG;
  17. typedef unsigned long BLASULONG;
  18. #endif
  19. #ifdef LAPACK_ILP64
  20. typedef BLASLONG blasint;
  21. #if defined(_WIN64)
  22. #define blasabs(x) llabs(x)
  23. #else
  24. #define blasabs(x) labs(x)
  25. #endif
  26. #else
  27. typedef int blasint;
  28. #define blasabs(x) abs(x)
  29. #endif
  30. typedef blasint integer;
  31. typedef unsigned int uinteger;
  32. typedef char *address;
  33. typedef short int shortint;
  34. typedef float real;
  35. typedef double doublereal;
  36. typedef struct { real r, i; } complex;
  37. typedef struct { doublereal r, i; } doublecomplex;
  38. #ifdef _MSC_VER
  39. static inline _Fcomplex Cf(complex *z) {_Fcomplex zz={z->r , z->i}; return zz;}
  40. static inline _Dcomplex Cd(doublecomplex *z) {_Dcomplex zz={z->r , z->i};return zz;}
  41. static inline _Fcomplex * _pCf(complex *z) {return (_Fcomplex*)z;}
  42. static inline _Dcomplex * _pCd(doublecomplex *z) {return (_Dcomplex*)z;}
  43. #else
  44. static inline _Complex float Cf(complex *z) {return z->r + z->i*_Complex_I;}
  45. static inline _Complex double Cd(doublecomplex *z) {return z->r + z->i*_Complex_I;}
  46. static inline _Complex float * _pCf(complex *z) {return (_Complex float*)z;}
  47. static inline _Complex double * _pCd(doublecomplex *z) {return (_Complex double*)z;}
  48. #endif
  49. #define pCf(z) (*_pCf(z))
  50. #define pCd(z) (*_pCd(z))
  51. typedef int logical;
  52. typedef short int shortlogical;
  53. typedef char logical1;
  54. typedef char integer1;
  55. #define TRUE_ (1)
  56. #define FALSE_ (0)
  57. /* Extern is for use with -E */
  58. #ifndef Extern
  59. #define Extern extern
  60. #endif
  61. /* I/O stuff */
  62. typedef int flag;
  63. typedef int ftnlen;
  64. typedef int ftnint;
  65. /*external read, write*/
  66. typedef struct
  67. { flag cierr;
  68. ftnint ciunit;
  69. flag ciend;
  70. char *cifmt;
  71. ftnint cirec;
  72. } cilist;
  73. /*internal read, write*/
  74. typedef struct
  75. { flag icierr;
  76. char *iciunit;
  77. flag iciend;
  78. char *icifmt;
  79. ftnint icirlen;
  80. ftnint icirnum;
  81. } icilist;
  82. /*open*/
  83. typedef struct
  84. { flag oerr;
  85. ftnint ounit;
  86. char *ofnm;
  87. ftnlen ofnmlen;
  88. char *osta;
  89. char *oacc;
  90. char *ofm;
  91. ftnint orl;
  92. char *oblnk;
  93. } olist;
  94. /*close*/
  95. typedef struct
  96. { flag cerr;
  97. ftnint cunit;
  98. char *csta;
  99. } cllist;
  100. /*rewind, backspace, endfile*/
  101. typedef struct
  102. { flag aerr;
  103. ftnint aunit;
  104. } alist;
  105. /* inquire */
  106. typedef struct
  107. { flag inerr;
  108. ftnint inunit;
  109. char *infile;
  110. ftnlen infilen;
  111. ftnint *inex; /*parameters in standard's order*/
  112. ftnint *inopen;
  113. ftnint *innum;
  114. ftnint *innamed;
  115. char *inname;
  116. ftnlen innamlen;
  117. char *inacc;
  118. ftnlen inacclen;
  119. char *inseq;
  120. ftnlen inseqlen;
  121. char *indir;
  122. ftnlen indirlen;
  123. char *infmt;
  124. ftnlen infmtlen;
  125. char *inform;
  126. ftnint informlen;
  127. char *inunf;
  128. ftnlen inunflen;
  129. ftnint *inrecl;
  130. ftnint *innrec;
  131. char *inblank;
  132. ftnlen inblanklen;
  133. } inlist;
  134. #define VOID void
  135. union Multitype { /* for multiple entry points */
  136. integer1 g;
  137. shortint h;
  138. integer i;
  139. /* longint j; */
  140. real r;
  141. doublereal d;
  142. complex c;
  143. doublecomplex z;
  144. };
  145. typedef union Multitype Multitype;
  146. struct Vardesc { /* for Namelist */
  147. char *name;
  148. char *addr;
  149. ftnlen *dims;
  150. int type;
  151. };
  152. typedef struct Vardesc Vardesc;
  153. struct Namelist {
  154. char *name;
  155. Vardesc **vars;
  156. int nvars;
  157. };
  158. typedef struct Namelist Namelist;
  159. #define abs(x) ((x) >= 0 ? (x) : -(x))
  160. #define dabs(x) (fabs(x))
  161. #define f2cmin(a,b) ((a) <= (b) ? (a) : (b))
  162. #define f2cmax(a,b) ((a) >= (b) ? (a) : (b))
  163. #define dmin(a,b) (f2cmin(a,b))
  164. #define dmax(a,b) (f2cmax(a,b))
  165. #define bit_test(a,b) ((a) >> (b) & 1)
  166. #define bit_clear(a,b) ((a) & ~((uinteger)1 << (b)))
  167. #define bit_set(a,b) ((a) | ((uinteger)1 << (b)))
  168. #define abort_() { sig_die("Fortran abort routine called", 1); }
  169. #define c_abs(z) (cabsf(Cf(z)))
  170. #define c_cos(R,Z) { pCf(R)=ccos(Cf(Z)); }
  171. #ifdef _MSC_VER
  172. #define c_div(c, a, b) {Cf(c)._Val[0] = (Cf(a)._Val[0]/Cf(b)._Val[0]); Cf(c)._Val[1]=(Cf(a)._Val[1]/Cf(b)._Val[1]);}
  173. #define z_div(c, a, b) {Cd(c)._Val[0] = (Cd(a)._Val[0]/Cd(b)._Val[0]); Cd(c)._Val[1]=(Cd(a)._Val[1]/Cd(b)._Val[1]);}
  174. #else
  175. #define c_div(c, a, b) {pCf(c) = Cf(a)/Cf(b);}
  176. #define z_div(c, a, b) {pCd(c) = Cd(a)/Cd(b);}
  177. #endif
  178. #define c_exp(R, Z) {pCf(R) = cexpf(Cf(Z));}
  179. #define c_log(R, Z) {pCf(R) = clogf(Cf(Z));}
  180. #define c_sin(R, Z) {pCf(R) = csinf(Cf(Z));}
  181. //#define c_sqrt(R, Z) {*(R) = csqrtf(Cf(Z));}
  182. #define c_sqrt(R, Z) {pCf(R) = csqrtf(Cf(Z));}
  183. #define d_abs(x) (fabs(*(x)))
  184. #define d_acos(x) (acos(*(x)))
  185. #define d_asin(x) (asin(*(x)))
  186. #define d_atan(x) (atan(*(x)))
  187. #define d_atn2(x, y) (atan2(*(x),*(y)))
  188. #define d_cnjg(R, Z) { pCd(R) = conj(Cd(Z)); }
  189. #define r_cnjg(R, Z) { pCf(R) = conjf(Cf(Z)); }
  190. #define d_cos(x) (cos(*(x)))
  191. #define d_cosh(x) (cosh(*(x)))
  192. #define d_dim(__a, __b) ( *(__a) > *(__b) ? *(__a) - *(__b) : 0.0 )
  193. #define d_exp(x) (exp(*(x)))
  194. #define d_imag(z) (cimag(Cd(z)))
  195. #define r_imag(z) (cimagf(Cf(z)))
  196. #define d_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
  197. #define r_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
  198. #define d_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
  199. #define r_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
  200. #define d_log(x) (log(*(x)))
  201. #define d_mod(x, y) (fmod(*(x), *(y)))
  202. #define u_nint(__x) ((__x)>=0 ? floor((__x) + .5) : -floor(.5 - (__x)))
  203. #define d_nint(x) u_nint(*(x))
  204. #define u_sign(__a,__b) ((__b) >= 0 ? ((__a) >= 0 ? (__a) : -(__a)) : -((__a) >= 0 ? (__a) : -(__a)))
  205. #define d_sign(a,b) u_sign(*(a),*(b))
  206. #define r_sign(a,b) u_sign(*(a),*(b))
  207. #define d_sin(x) (sin(*(x)))
  208. #define d_sinh(x) (sinh(*(x)))
  209. #define d_sqrt(x) (sqrt(*(x)))
  210. #define d_tan(x) (tan(*(x)))
  211. #define d_tanh(x) (tanh(*(x)))
  212. #define i_abs(x) abs(*(x))
  213. #define i_dnnt(x) ((integer)u_nint(*(x)))
  214. #define i_len(s, n) (n)
  215. #define i_nint(x) ((integer)u_nint(*(x)))
  216. #define i_sign(a,b) ((integer)u_sign((integer)*(a),(integer)*(b)))
  217. #define pow_dd(ap, bp) ( pow(*(ap), *(bp)))
  218. #define pow_si(B,E) spow_ui(*(B),*(E))
  219. #define pow_ri(B,E) spow_ui(*(B),*(E))
  220. #define pow_di(B,E) dpow_ui(*(B),*(E))
  221. #define pow_zi(p, a, b) {pCd(p) = zpow_ui(Cd(a), *(b));}
  222. #define pow_ci(p, a, b) {pCf(p) = cpow_ui(Cf(a), *(b));}
  223. #define pow_zz(R,A,B) {pCd(R) = cpow(Cd(A),*(B));}
  224. #define s_cat(lpp, rpp, rnp, np, llp) { ftnlen i, nc, ll; char *f__rp, *lp; ll = (llp); lp = (lpp); for(i=0; i < (int)*(np); ++i) { nc = ll; if((rnp)[i] < nc) nc = (rnp)[i]; ll -= nc; f__rp = (rpp)[i]; while(--nc >= 0) *lp++ = *(f__rp)++; } while(--ll >= 0) *lp++ = ' '; }
  225. #define s_cmp(a,b,c,d) ((integer)strncmp((a),(b),f2cmin((c),(d))))
  226. #define s_copy(A,B,C,D) { int __i,__m; for (__i=0, __m=f2cmin((C),(D)); __i<__m && (B)[__i] != 0; ++__i) (A)[__i] = (B)[__i]; }
  227. #define sig_die(s, kill) { exit(1); }
  228. #define s_stop(s, n) {exit(0);}
  229. static char junk[] = "\n@(#)LIBF77 VERSION 19990503\n";
  230. #define z_abs(z) (cabs(Cd(z)))
  231. #define z_exp(R, Z) {pCd(R) = cexp(Cd(Z));}
  232. #define z_sqrt(R, Z) {pCd(R) = csqrt(Cd(Z));}
  233. #define myexit_() break;
  234. #define mycycle_() continue;
  235. #define myceiling_(w) {ceil(w)}
  236. #define myhuge_(w) {HUGE_VAL}
  237. //#define mymaxloc_(w,s,e,n) {if (sizeof(*(w)) == sizeof(double)) dmaxloc_((w),*(s),*(e),n); else dmaxloc_((w),*(s),*(e),n);}
  238. #define mymaxloc_(w,s,e,n) dmaxloc_(w,*(s),*(e),n)
  239. /* procedure parameter types for -A and -C++ */
  240. #define F2C_proc_par_types 1
  241. #ifdef __cplusplus
  242. typedef logical (*L_fp)(...);
  243. #else
  244. typedef logical (*L_fp)();
  245. #endif
  246. static float spow_ui(float x, integer n) {
  247. float pow=1.0; unsigned long int u;
  248. if(n != 0) {
  249. if(n < 0) n = -n, x = 1/x;
  250. for(u = n; ; ) {
  251. if(u & 01) pow *= x;
  252. if(u >>= 1) x *= x;
  253. else break;
  254. }
  255. }
  256. return pow;
  257. }
  258. static double dpow_ui(double x, integer n) {
  259. double pow=1.0; unsigned long int u;
  260. if(n != 0) {
  261. if(n < 0) n = -n, x = 1/x;
  262. for(u = n; ; ) {
  263. if(u & 01) pow *= x;
  264. if(u >>= 1) x *= x;
  265. else break;
  266. }
  267. }
  268. return pow;
  269. }
  270. #ifdef _MSC_VER
  271. static _Fcomplex cpow_ui(complex x, integer n) {
  272. complex pow={1.0,0.0}; unsigned long int u;
  273. if(n != 0) {
  274. if(n < 0) n = -n, x.r = 1/x.r, x.i=1/x.i;
  275. for(u = n; ; ) {
  276. if(u & 01) pow.r *= x.r, pow.i *= x.i;
  277. if(u >>= 1) x.r *= x.r, x.i *= x.i;
  278. else break;
  279. }
  280. }
  281. _Fcomplex p={pow.r, pow.i};
  282. return p;
  283. }
  284. #else
  285. static _Complex float cpow_ui(_Complex float x, integer n) {
  286. _Complex float pow=1.0; unsigned long int u;
  287. if(n != 0) {
  288. if(n < 0) n = -n, x = 1/x;
  289. for(u = n; ; ) {
  290. if(u & 01) pow *= x;
  291. if(u >>= 1) x *= x;
  292. else break;
  293. }
  294. }
  295. return pow;
  296. }
  297. #endif
  298. #ifdef _MSC_VER
  299. static _Dcomplex zpow_ui(_Dcomplex x, integer n) {
  300. _Dcomplex pow={1.0,0.0}; unsigned long int u;
  301. if(n != 0) {
  302. if(n < 0) n = -n, x._Val[0] = 1/x._Val[0], x._Val[1] =1/x._Val[1];
  303. for(u = n; ; ) {
  304. if(u & 01) pow._Val[0] *= x._Val[0], pow._Val[1] *= x._Val[1];
  305. if(u >>= 1) x._Val[0] *= x._Val[0], x._Val[1] *= x._Val[1];
  306. else break;
  307. }
  308. }
  309. _Dcomplex p = {pow._Val[0], pow._Val[1]};
  310. return p;
  311. }
  312. #else
  313. static _Complex double zpow_ui(_Complex double x, integer n) {
  314. _Complex double pow=1.0; unsigned long int u;
  315. if(n != 0) {
  316. if(n < 0) n = -n, x = 1/x;
  317. for(u = n; ; ) {
  318. if(u & 01) pow *= x;
  319. if(u >>= 1) x *= x;
  320. else break;
  321. }
  322. }
  323. return pow;
  324. }
  325. #endif
  326. static integer pow_ii(integer x, integer n) {
  327. integer pow; unsigned long int u;
  328. if (n <= 0) {
  329. if (n == 0 || x == 1) pow = 1;
  330. else if (x != -1) pow = x == 0 ? 1/x : 0;
  331. else n = -n;
  332. }
  333. if ((n > 0) || !(n == 0 || x == 1 || x != -1)) {
  334. u = n;
  335. for(pow = 1; ; ) {
  336. if(u & 01) pow *= x;
  337. if(u >>= 1) x *= x;
  338. else break;
  339. }
  340. }
  341. return pow;
  342. }
  343. static integer dmaxloc_(double *w, integer s, integer e, integer *n)
  344. {
  345. double m; integer i, mi;
  346. for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
  347. if (w[i-1]>m) mi=i ,m=w[i-1];
  348. return mi-s+1;
  349. }
  350. static integer smaxloc_(float *w, integer s, integer e, integer *n)
  351. {
  352. float m; integer i, mi;
  353. for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
  354. if (w[i-1]>m) mi=i ,m=w[i-1];
  355. return mi-s+1;
  356. }
  357. static inline void cdotc_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
  358. integer n = *n_, incx = *incx_, incy = *incy_, i;
  359. #ifdef _MSC_VER
  360. _Fcomplex zdotc = {0.0, 0.0};
  361. if (incx == 1 && incy == 1) {
  362. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  363. zdotc._Val[0] += conjf(Cf(&x[i]))._Val[0] * Cf(&y[i])._Val[0];
  364. zdotc._Val[1] += conjf(Cf(&x[i]))._Val[1] * Cf(&y[i])._Val[1];
  365. }
  366. } else {
  367. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  368. zdotc._Val[0] += conjf(Cf(&x[i*incx]))._Val[0] * Cf(&y[i*incy])._Val[0];
  369. zdotc._Val[1] += conjf(Cf(&x[i*incx]))._Val[1] * Cf(&y[i*incy])._Val[1];
  370. }
  371. }
  372. pCf(z) = zdotc;
  373. }
  374. #else
  375. _Complex float zdotc = 0.0;
  376. if (incx == 1 && incy == 1) {
  377. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  378. zdotc += conjf(Cf(&x[i])) * Cf(&y[i]);
  379. }
  380. } else {
  381. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  382. zdotc += conjf(Cf(&x[i*incx])) * Cf(&y[i*incy]);
  383. }
  384. }
  385. pCf(z) = zdotc;
  386. }
  387. #endif
  388. static inline void zdotc_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
  389. integer n = *n_, incx = *incx_, incy = *incy_, i;
  390. #ifdef _MSC_VER
  391. _Dcomplex zdotc = {0.0, 0.0};
  392. if (incx == 1 && incy == 1) {
  393. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  394. zdotc._Val[0] += conj(Cd(&x[i]))._Val[0] * Cd(&y[i])._Val[0];
  395. zdotc._Val[1] += conj(Cd(&x[i]))._Val[1] * Cd(&y[i])._Val[1];
  396. }
  397. } else {
  398. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  399. zdotc._Val[0] += conj(Cd(&x[i*incx]))._Val[0] * Cd(&y[i*incy])._Val[0];
  400. zdotc._Val[1] += conj(Cd(&x[i*incx]))._Val[1] * Cd(&y[i*incy])._Val[1];
  401. }
  402. }
  403. pCd(z) = zdotc;
  404. }
  405. #else
  406. _Complex double zdotc = 0.0;
  407. if (incx == 1 && incy == 1) {
  408. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  409. zdotc += conj(Cd(&x[i])) * Cd(&y[i]);
  410. }
  411. } else {
  412. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  413. zdotc += conj(Cd(&x[i*incx])) * Cd(&y[i*incy]);
  414. }
  415. }
  416. pCd(z) = zdotc;
  417. }
  418. #endif
  419. static inline void cdotu_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
  420. integer n = *n_, incx = *incx_, incy = *incy_, i;
  421. #ifdef _MSC_VER
  422. _Fcomplex zdotc = {0.0, 0.0};
  423. if (incx == 1 && incy == 1) {
  424. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  425. zdotc._Val[0] += Cf(&x[i])._Val[0] * Cf(&y[i])._Val[0];
  426. zdotc._Val[1] += Cf(&x[i])._Val[1] * Cf(&y[i])._Val[1];
  427. }
  428. } else {
  429. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  430. zdotc._Val[0] += Cf(&x[i*incx])._Val[0] * Cf(&y[i*incy])._Val[0];
  431. zdotc._Val[1] += Cf(&x[i*incx])._Val[1] * Cf(&y[i*incy])._Val[1];
  432. }
  433. }
  434. pCf(z) = zdotc;
  435. }
  436. #else
  437. _Complex float zdotc = 0.0;
  438. if (incx == 1 && incy == 1) {
  439. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  440. zdotc += Cf(&x[i]) * Cf(&y[i]);
  441. }
  442. } else {
  443. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  444. zdotc += Cf(&x[i*incx]) * Cf(&y[i*incy]);
  445. }
  446. }
  447. pCf(z) = zdotc;
  448. }
  449. #endif
  450. static inline void zdotu_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
  451. integer n = *n_, incx = *incx_, incy = *incy_, i;
  452. #ifdef _MSC_VER
  453. _Dcomplex zdotc = {0.0, 0.0};
  454. if (incx == 1 && incy == 1) {
  455. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  456. zdotc._Val[0] += Cd(&x[i])._Val[0] * Cd(&y[i])._Val[0];
  457. zdotc._Val[1] += Cd(&x[i])._Val[1] * Cd(&y[i])._Val[1];
  458. }
  459. } else {
  460. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  461. zdotc._Val[0] += Cd(&x[i*incx])._Val[0] * Cd(&y[i*incy])._Val[0];
  462. zdotc._Val[1] += Cd(&x[i*incx])._Val[1] * Cd(&y[i*incy])._Val[1];
  463. }
  464. }
  465. pCd(z) = zdotc;
  466. }
  467. #else
  468. _Complex double zdotc = 0.0;
  469. if (incx == 1 && incy == 1) {
  470. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  471. zdotc += Cd(&x[i]) * Cd(&y[i]);
  472. }
  473. } else {
  474. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  475. zdotc += Cd(&x[i*incx]) * Cd(&y[i*incy]);
  476. }
  477. }
  478. pCd(z) = zdotc;
  479. }
  480. #endif
  481. /* -- translated by f2c (version 20000121).
  482. You must link the resulting object file with the libraries:
  483. -lf2c -lm (in that order)
  484. */
  485. /* -- translated by f2c (version 20000121).
  486. You must link the resulting object file with the libraries:
  487. -lf2c -lm (in that order)
  488. */
  489. /* Table of constant values */
  490. static integer c__1 = 1;
  491. static doublereal c_b7 = -1.;
  492. static doublereal c_b8 = 1.;
  493. static doublereal c_b30 = 0.;
  494. /* Subroutine */ int dlaqp3rk_(integer *m, integer *n, integer *nrhs, integer
  495. *ioffset, integer *nb, doublereal *abstol, doublereal *reltol,
  496. integer *kp1, doublereal *maxc2nrm, doublereal *a, integer *lda,
  497. logical *done, integer *kb, doublereal *maxc2nrmk, doublereal *
  498. relmaxc2nrmk, integer *jpiv, doublereal *tau, doublereal *vn1,
  499. doublereal *vn2, doublereal *auxv, doublereal *f, integer *ldf,
  500. integer *iwork, integer *info)
  501. {
  502. /* System generated locals */
  503. integer a_dim1, a_offset, f_dim1, f_offset, i__1, i__2;
  504. doublereal d__1, d__2;
  505. /* Local variables */
  506. doublereal temp;
  507. extern doublereal dnrm2_(integer *, doublereal *, integer *);
  508. doublereal temp2;
  509. integer i__, j, k;
  510. doublereal tol3z;
  511. extern /* Subroutine */ int dgemm_(char *, char *, integer *, integer *,
  512. integer *, doublereal *, doublereal *, integer *, doublereal *,
  513. integer *, doublereal *, doublereal *, integer *),
  514. dgemv_(char *, integer *, integer *, doublereal *, doublereal *,
  515. integer *, doublereal *, integer *, doublereal *, doublereal *,
  516. integer *);
  517. integer itemp;
  518. extern /* Subroutine */ int dswap_(integer *, doublereal *, integer *,
  519. doublereal *, integer *);
  520. integer minmnfact;
  521. doublereal myhugeval;
  522. integer minmnupdt, if__;
  523. extern doublereal dlamch_(char *);
  524. integer kp;
  525. extern /* Subroutine */ int dlarfg_(integer *, doublereal *, doublereal *,
  526. integer *, doublereal *);
  527. extern integer idamax_(integer *, doublereal *, integer *);
  528. extern logical disnan_(doublereal *);
  529. integer lsticc;
  530. doublereal aik;
  531. /* -- LAPACK auxiliary routine -- */
  532. /* -- LAPACK is a software package provided by Univ. of Tennessee, -- */
  533. /* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */
  534. /* ===================================================================== */
  535. /* Initialize INFO */
  536. /* Parameter adjustments */
  537. a_dim1 = *lda;
  538. a_offset = 1 + a_dim1 * 1;
  539. a -= a_offset;
  540. --jpiv;
  541. --tau;
  542. --vn1;
  543. --vn2;
  544. --auxv;
  545. f_dim1 = *ldf;
  546. f_offset = 1 + f_dim1 * 1;
  547. f -= f_offset;
  548. --iwork;
  549. /* Function Body */
  550. *info = 0;
  551. /* MINMNFACT in the smallest dimension of the submatrix */
  552. /* A(IOFFSET+1:M,1:N) to be factorized. */
  553. /* Computing MIN */
  554. i__1 = *m - *ioffset;
  555. minmnfact = f2cmin(i__1,*n);
  556. /* Computing MIN */
  557. i__1 = *m - *ioffset, i__2 = *n + *nrhs;
  558. minmnupdt = f2cmin(i__1,i__2);
  559. *nb = f2cmin(*nb,minmnfact);
  560. tol3z = sqrt(dlamch_("Epsilon"));
  561. myhugeval = dlamch_("Overflow");
  562. /* Compute factorization in a while loop over NB columns, */
  563. /* K is the column index in the block A(1:M,1:N). */
  564. k = 0;
  565. lsticc = 0;
  566. *done = FALSE_;
  567. while(k < *nb && lsticc == 0) {
  568. ++k;
  569. i__ = *ioffset + k;
  570. if (i__ == 1) {
  571. /* We are at the first column of the original whole matrix A_orig, */
  572. /* therefore we use the computed KP1 and MAXC2NRM from the */
  573. /* main routine. */
  574. kp = *kp1;
  575. } else {
  576. /* Determine the pivot column in K-th step, i.e. the index */
  577. /* of the column with the maximum 2-norm in the */
  578. /* submatrix A(I:M,K:N). */
  579. i__1 = *n - k + 1;
  580. kp = k - 1 + idamax_(&i__1, &vn1[k], &c__1);
  581. /* Determine the maximum column 2-norm and the relative maximum */
  582. /* column 2-norm of the submatrix A(I:M,K:N) in step K. */
  583. *maxc2nrmk = vn1[kp];
  584. /* ============================================================ */
  585. /* Check if the submatrix A(I:M,K:N) contains NaN, set */
  586. /* INFO parameter to the column number, where the first NaN */
  587. /* is found and return from the routine. */
  588. /* We need to check the condition only if the */
  589. /* column index (same as row index) of the original whole */
  590. /* matrix is larger than 1, since the condition for whole */
  591. /* original matrix is checked in the main routine. */
  592. if (disnan_(maxc2nrmk)) {
  593. *done = TRUE_;
  594. /* Set KB, the number of factorized partial columns */
  595. /* that are non-zero in each step in the block, */
  596. /* i.e. the rank of the factor R. */
  597. /* Set IF, the number of processed rows in the block, which */
  598. /* is the same as the number of processed rows in */
  599. /* the original whole matrix A_orig. */
  600. *kb = k - 1;
  601. if__ = i__ - 1;
  602. *info = *kb + kp;
  603. /* Set RELMAXC2NRMK to NaN. */
  604. *relmaxc2nrmk = *maxc2nrmk;
  605. /* There is no need to apply the block reflector to the */
  606. /* residual of the matrix A stored in A(KB+1:M,KB+1:N), */
  607. /* since the submatrix contains NaN and we stop */
  608. /* the computation. */
  609. /* But, we need to apply the block reflector to the residual */
  610. /* right hand sides stored in A(KB+1:M,N+1:N+NRHS), if the */
  611. /* residual right hand sides exist. This occurs */
  612. /* when ( NRHS != 0 AND KB <= (M-IOFFSET) ): */
  613. /* A(I+1:M,N+1:N+NRHS) := A(I+1:M,N+1:N+NRHS) - */
  614. /* A(I+1:M,1:KB) * F(N+1:N+NRHS,1:KB)**T. */
  615. if (*nrhs > 0 && *kb < *m - *ioffset) {
  616. i__1 = *m - if__;
  617. dgemm_("No transpose", "Transpose", &i__1, nrhs, kb, &
  618. c_b7, &a[if__ + 1 + a_dim1], lda, &f[*n + 1 +
  619. f_dim1], ldf, &c_b8, &a[if__ + 1 + (*n + 1) *
  620. a_dim1], lda);
  621. }
  622. /* There is no need to recompute the 2-norm of the */
  623. /* difficult columns, since we stop the factorization. */
  624. /* Array TAU(KF+1:MINMNFACT) is not set and contains */
  625. /* undefined elements. */
  626. /* Return from the routine. */
  627. return 0;
  628. }
  629. /* Quick return, if the submatrix A(I:M,K:N) is */
  630. /* a zero matrix. We need to check it only if the column index */
  631. /* (same as row index) is larger than 1, since the condition */
  632. /* for the whole original matrix A_orig is checked in the main */
  633. /* routine. */
  634. if (*maxc2nrmk == 0.) {
  635. *done = TRUE_;
  636. /* Set KB, the number of factorized partial columns */
  637. /* that are non-zero in each step in the block, */
  638. /* i.e. the rank of the factor R. */
  639. /* Set IF, the number of processed rows in the block, which */
  640. /* is the same as the number of processed rows in */
  641. /* the original whole matrix A_orig. */
  642. *kb = k - 1;
  643. if__ = i__ - 1;
  644. *relmaxc2nrmk = 0.;
  645. /* There is no need to apply the block reflector to the */
  646. /* residual of the matrix A stored in A(KB+1:M,KB+1:N), */
  647. /* since the submatrix is zero and we stop the computation. */
  648. /* But, we need to apply the block reflector to the residual */
  649. /* right hand sides stored in A(KB+1:M,N+1:N+NRHS), if the */
  650. /* residual right hand sides exist. This occurs */
  651. /* when ( NRHS != 0 AND KB <= (M-IOFFSET) ): */
  652. /* A(I+1:M,N+1:N+NRHS) := A(I+1:M,N+1:N+NRHS) - */
  653. /* A(I+1:M,1:KB) * F(N+1:N+NRHS,1:KB)**T. */
  654. if (*nrhs > 0 && *kb < *m - *ioffset) {
  655. i__1 = *m - if__;
  656. dgemm_("No transpose", "Transpose", &i__1, nrhs, kb, &
  657. c_b7, &a[if__ + 1 + a_dim1], lda, &f[*n + 1 +
  658. f_dim1], ldf, &c_b8, &a[if__ + 1 + (*n + 1) *
  659. a_dim1], lda);
  660. }
  661. /* There is no need to recompute the 2-norm of the */
  662. /* difficult columns, since we stop the factorization. */
  663. /* Set TAUs corresponding to the columns that were not */
  664. /* factorized to ZERO, i.e. set TAU(KB+1:MINMNFACT) = ZERO, */
  665. /* which is equivalent to seting TAU(K:MINMNFACT) = ZERO. */
  666. i__1 = minmnfact;
  667. for (j = k; j <= i__1; ++j) {
  668. tau[j] = 0.;
  669. }
  670. /* Return from the routine. */
  671. return 0;
  672. }
  673. /* ============================================================ */
  674. /* Check if the submatrix A(I:M,K:N) contains Inf, */
  675. /* set INFO parameter to the column number, where */
  676. /* the first Inf is found plus N, and continue */
  677. /* the computation. */
  678. /* We need to check the condition only if the */
  679. /* column index (same as row index) of the original whole */
  680. /* matrix is larger than 1, since the condition for whole */
  681. /* original matrix is checked in the main routine. */
  682. if (*info == 0 && *maxc2nrmk > myhugeval) {
  683. *info = *n + k - 1 + kp;
  684. }
  685. /* ============================================================ */
  686. /* Test for the second and third tolerance stopping criteria. */
  687. /* NOTE: There is no need to test for ABSTOL.GE.ZERO, since */
  688. /* MAXC2NRMK is non-negative. Similarly, there is no need */
  689. /* to test for RELTOL.GE.ZERO, since RELMAXC2NRMK is */
  690. /* non-negative. */
  691. /* We need to check the condition only if the */
  692. /* column index (same as row index) of the original whole */
  693. /* matrix is larger than 1, since the condition for whole */
  694. /* original matrix is checked in the main routine. */
  695. *relmaxc2nrmk = *maxc2nrmk / *maxc2nrm;
  696. if (*maxc2nrmk <= *abstol || *relmaxc2nrmk <= *reltol) {
  697. *done = TRUE_;
  698. /* Set KB, the number of factorized partial columns */
  699. /* that are non-zero in each step in the block, */
  700. /* i.e. the rank of the factor R. */
  701. /* Set IF, the number of processed rows in the block, which */
  702. /* is the same as the number of processed rows in */
  703. /* the original whole matrix A_orig; */
  704. *kb = k - 1;
  705. if__ = i__ - 1;
  706. /* Apply the block reflector to the residual of the */
  707. /* matrix A and the residual of the right hand sides B, if */
  708. /* the residual matrix and and/or the residual of the right */
  709. /* hand sides exist, i.e. if the submatrix */
  710. /* A(I+1:M,KB+1:N+NRHS) exists. This occurs when */
  711. /* KB < MINMNUPDT = f2cmin( M-IOFFSET, N+NRHS ): */
  712. /* A(IF+1:M,K+1:N+NRHS) := A(IF+1:M,KB+1:N+NRHS) - */
  713. /* A(IF+1:M,1:KB) * F(KB+1:N+NRHS,1:KB)**T. */
  714. if (*kb < minmnupdt) {
  715. i__1 = *m - if__;
  716. i__2 = *n + *nrhs - *kb;
  717. dgemm_("No transpose", "Transpose", &i__1, &i__2, kb, &
  718. c_b7, &a[if__ + 1 + a_dim1], lda, &f[*kb + 1 +
  719. f_dim1], ldf, &c_b8, &a[if__ + 1 + (*kb + 1) *
  720. a_dim1], lda);
  721. }
  722. /* There is no need to recompute the 2-norm of the */
  723. /* difficult columns, since we stop the factorization. */
  724. /* Set TAUs corresponding to the columns that were not */
  725. /* factorized to ZERO, i.e. set TAU(KB+1:MINMNFACT) = ZERO, */
  726. /* which is equivalent to seting TAU(K:MINMNFACT) = ZERO. */
  727. i__1 = minmnfact;
  728. for (j = k; j <= i__1; ++j) {
  729. tau[j] = 0.;
  730. }
  731. /* Return from the routine. */
  732. return 0;
  733. }
  734. /* ============================================================ */
  735. /* End ELSE of IF(I.EQ.1) */
  736. }
  737. /* =============================================================== */
  738. /* If the pivot column is not the first column of the */
  739. /* subblock A(1:M,K:N): */
  740. /* 1) swap the K-th column and the KP-th pivot column */
  741. /* in A(1:M,1:N); */
  742. /* 2) swap the K-th row and the KP-th row in F(1:N,1:K-1) */
  743. /* 3) copy the K-th element into the KP-th element of the partial */
  744. /* and exact 2-norm vectors VN1 and VN2. (Swap is not needed */
  745. /* for VN1 and VN2 since we use the element with the index */
  746. /* larger than K in the next loop step.) */
  747. /* 4) Save the pivot interchange with the indices relative to the */
  748. /* the original matrix A_orig, not the block A(1:M,1:N). */
  749. if (kp != k) {
  750. dswap_(m, &a[kp * a_dim1 + 1], &c__1, &a[k * a_dim1 + 1], &c__1);
  751. i__1 = k - 1;
  752. dswap_(&i__1, &f[kp + f_dim1], ldf, &f[k + f_dim1], ldf);
  753. vn1[kp] = vn1[k];
  754. vn2[kp] = vn2[k];
  755. itemp = jpiv[kp];
  756. jpiv[kp] = jpiv[k];
  757. jpiv[k] = itemp;
  758. }
  759. /* Apply previous Householder reflectors to column K: */
  760. /* A(I:M,K) := A(I:M,K) - A(I:M,1:K-1)*F(K,1:K-1)**T. */
  761. if (k > 1) {
  762. i__1 = *m - i__ + 1;
  763. i__2 = k - 1;
  764. dgemv_("No transpose", &i__1, &i__2, &c_b7, &a[i__ + a_dim1], lda,
  765. &f[k + f_dim1], ldf, &c_b8, &a[i__ + k * a_dim1], &c__1);
  766. }
  767. /* Generate elementary reflector H(k) using the column A(I:M,K). */
  768. if (i__ < *m) {
  769. i__1 = *m - i__ + 1;
  770. dlarfg_(&i__1, &a[i__ + k * a_dim1], &a[i__ + 1 + k * a_dim1], &
  771. c__1, &tau[k]);
  772. } else {
  773. tau[k] = 0.;
  774. }
  775. /* Check if TAU(K) contains NaN, set INFO parameter */
  776. /* to the column number where NaN is found and return from */
  777. /* the routine. */
  778. /* NOTE: There is no need to check TAU(K) for Inf, */
  779. /* since DLARFG cannot produce TAU(K) or Householder vector */
  780. /* below the diagonal containing Inf. Only BETA on the diagonal, */
  781. /* returned by DLARFG can contain Inf, which requires */
  782. /* TAU(K) to contain NaN. Therefore, this case of generating Inf */
  783. /* by DLARFG is covered by checking TAU(K) for NaN. */
  784. if (disnan_(&tau[k])) {
  785. *done = TRUE_;
  786. /* Set KB, the number of factorized partial columns */
  787. /* that are non-zero in each step in the block, */
  788. /* i.e. the rank of the factor R. */
  789. /* Set IF, the number of processed rows in the block, which */
  790. /* is the same as the number of processed rows in */
  791. /* the original whole matrix A_orig. */
  792. *kb = k - 1;
  793. if__ = i__ - 1;
  794. *info = k;
  795. /* Set MAXC2NRMK and RELMAXC2NRMK to NaN. */
  796. *maxc2nrmk = tau[k];
  797. *relmaxc2nrmk = tau[k];
  798. /* There is no need to apply the block reflector to the */
  799. /* residual of the matrix A stored in A(KB+1:M,KB+1:N), */
  800. /* since the submatrix contains NaN and we stop */
  801. /* the computation. */
  802. /* But, we need to apply the block reflector to the residual */
  803. /* right hand sides stored in A(KB+1:M,N+1:N+NRHS), if the */
  804. /* residual right hand sides exist. This occurs */
  805. /* when ( NRHS != 0 AND KB <= (M-IOFFSET) ): */
  806. /* A(I+1:M,N+1:N+NRHS) := A(I+1:M,N+1:N+NRHS) - */
  807. /* A(I+1:M,1:KB) * F(N+1:N+NRHS,1:KB)**T. */
  808. if (*nrhs > 0 && *kb < *m - *ioffset) {
  809. i__1 = *m - if__;
  810. dgemm_("No transpose", "Transpose", &i__1, nrhs, kb, &c_b7, &
  811. a[if__ + 1 + a_dim1], lda, &f[*n + 1 + f_dim1], ldf, &
  812. c_b8, &a[if__ + 1 + (*n + 1) * a_dim1], lda);
  813. }
  814. /* There is no need to recompute the 2-norm of the */
  815. /* difficult columns, since we stop the factorization. */
  816. /* Array TAU(KF+1:MINMNFACT) is not set and contains */
  817. /* undefined elements. */
  818. /* Return from the routine. */
  819. return 0;
  820. }
  821. /* =============================================================== */
  822. aik = a[i__ + k * a_dim1];
  823. a[i__ + k * a_dim1] = 1.;
  824. /* =============================================================== */
  825. /* Compute the current K-th column of F: */
  826. /* 1) F(K+1:N,K) := tau(K) * A(I:M,K+1:N)**T * A(I:M,K). */
  827. if (k < *n + *nrhs) {
  828. i__1 = *m - i__ + 1;
  829. i__2 = *n + *nrhs - k;
  830. dgemv_("Transpose", &i__1, &i__2, &tau[k], &a[i__ + (k + 1) *
  831. a_dim1], lda, &a[i__ + k * a_dim1], &c__1, &c_b30, &f[k +
  832. 1 + k * f_dim1], &c__1);
  833. }
  834. /* 2) Zero out elements above and on the diagonal of the */
  835. /* column K in matrix F, i.e elements F(1:K,K). */
  836. i__1 = k;
  837. for (j = 1; j <= i__1; ++j) {
  838. f[j + k * f_dim1] = 0.;
  839. }
  840. /* 3) Incremental updating of the K-th column of F: */
  841. /* F(1:N,K) := F(1:N,K) - tau(K) * F(1:N,1:K-1) * A(I:M,1:K-1)**T */
  842. /* * A(I:M,K). */
  843. if (k > 1) {
  844. i__1 = *m - i__ + 1;
  845. i__2 = k - 1;
  846. d__1 = -tau[k];
  847. dgemv_("Transpose", &i__1, &i__2, &d__1, &a[i__ + a_dim1], lda, &
  848. a[i__ + k * a_dim1], &c__1, &c_b30, &auxv[1], &c__1);
  849. i__1 = *n + *nrhs;
  850. i__2 = k - 1;
  851. dgemv_("No transpose", &i__1, &i__2, &c_b8, &f[f_dim1 + 1], ldf, &
  852. auxv[1], &c__1, &c_b8, &f[k * f_dim1 + 1], &c__1);
  853. }
  854. /* =============================================================== */
  855. /* Update the current I-th row of A: */
  856. /* A(I,K+1:N+NRHS) := A(I,K+1:N+NRHS) */
  857. /* - A(I,1:K)*F(K+1:N+NRHS,1:K)**T. */
  858. if (k < *n + *nrhs) {
  859. i__1 = *n + *nrhs - k;
  860. dgemv_("No transpose", &i__1, &k, &c_b7, &f[k + 1 + f_dim1], ldf,
  861. &a[i__ + a_dim1], lda, &c_b8, &a[i__ + (k + 1) * a_dim1],
  862. lda);
  863. }
  864. a[i__ + k * a_dim1] = aik;
  865. /* Update the partial column 2-norms for the residual matrix, */
  866. /* only if the residual matrix A(I+1:M,K+1:N) exists, i.e. */
  867. /* when K < MINMNFACT = f2cmin( M-IOFFSET, N ). */
  868. if (k < minmnfact) {
  869. i__1 = *n;
  870. for (j = k + 1; j <= i__1; ++j) {
  871. if (vn1[j] != 0.) {
  872. /* NOTE: The following lines follow from the analysis in */
  873. /* Lapack Working Note 176. */
  874. temp = (d__1 = a[i__ + j * a_dim1], abs(d__1)) / vn1[j];
  875. /* Computing MAX */
  876. d__1 = 0., d__2 = (temp + 1.) * (1. - temp);
  877. temp = f2cmax(d__1,d__2);
  878. /* Computing 2nd power */
  879. d__1 = vn1[j] / vn2[j];
  880. temp2 = temp * (d__1 * d__1);
  881. if (temp2 <= tol3z) {
  882. /* At J-index, we have a difficult column for the */
  883. /* update of the 2-norm. Save the index of the previous */
  884. /* difficult column in IWORK(J-1). */
  885. /* NOTE: ILSTCC > 1, threfore we can use IWORK only */
  886. /* with N-1 elements, where the elements are */
  887. /* shifted by 1 to the left. */
  888. iwork[j - 1] = lsticc;
  889. /* Set the index of the last difficult column LSTICC. */
  890. lsticc = j;
  891. } else {
  892. vn1[j] *= sqrt(temp);
  893. }
  894. }
  895. }
  896. }
  897. /* End of while loop. */
  898. }
  899. /* Now, afler the loop: */
  900. /* Set KB, the number of factorized columns in the block; */
  901. /* Set IF, the number of processed rows in the block, which */
  902. /* is the same as the number of processed rows in */
  903. /* the original whole matrix A_orig, IF = IOFFSET + KB. */
  904. *kb = k;
  905. if__ = i__;
  906. /* Apply the block reflector to the residual of the matrix A */
  907. /* and the residual of the right hand sides B, if the residual */
  908. /* matrix and and/or the residual of the right hand sides */
  909. /* exist, i.e. if the submatrix A(I+1:M,KB+1:N+NRHS) exists. */
  910. /* This occurs when KB < MINMNUPDT = f2cmin( M-IOFFSET, N+NRHS ): */
  911. /* A(IF+1:M,K+1:N+NRHS) := A(IF+1:M,KB+1:N+NRHS) - */
  912. /* A(IF+1:M,1:KB) * F(KB+1:N+NRHS,1:KB)**T. */
  913. if (*kb < minmnupdt) {
  914. i__1 = *m - if__;
  915. i__2 = *n + *nrhs - *kb;
  916. dgemm_("No transpose", "Transpose", &i__1, &i__2, kb, &c_b7, &a[if__
  917. + 1 + a_dim1], lda, &f[*kb + 1 + f_dim1], ldf, &c_b8, &a[if__
  918. + 1 + (*kb + 1) * a_dim1], lda);
  919. }
  920. /* Recompute the 2-norm of the difficult columns. */
  921. /* Loop over the index of the difficult columns from the largest */
  922. /* to the smallest index. */
  923. while(lsticc > 0) {
  924. /* LSTICC is the index of the last difficult column is greater */
  925. /* than 1. */
  926. /* ITEMP is the index of the previous difficult column. */
  927. itemp = iwork[lsticc - 1];
  928. /* Compute the 2-norm explicilty for the last difficult column and */
  929. /* save it in the partial and exact 2-norm vectors VN1 and VN2. */
  930. /* NOTE: The computation of VN1( LSTICC ) relies on the fact that */
  931. /* DNRM2 does not fail on vectors with norm below the value of */
  932. /* SQRT(DLAMCH('S')) */
  933. i__1 = *m - if__;
  934. vn1[lsticc] = dnrm2_(&i__1, &a[if__ + 1 + lsticc * a_dim1], &c__1);
  935. vn2[lsticc] = vn1[lsticc];
  936. /* Downdate the index of the last difficult column to */
  937. /* the index of the previous difficult column. */
  938. lsticc = itemp;
  939. }
  940. return 0;
  941. /* End of DLAQP3RK */
  942. } /* dlaqp3rk_ */