You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

dggsvp3.f 16 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568
  1. *> \brief \b DGGSVP3
  2. *
  3. * =========== DOCUMENTATION ===========
  4. *
  5. * Online html documentation available at
  6. * http://www.netlib.org/lapack/explore-html/
  7. *
  8. *> \htmlonly
  9. *> Download DGGSVP3 + dependencies
  10. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dggsvp3.f">
  11. *> [TGZ]</a>
  12. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dggsvp3.f">
  13. *> [ZIP]</a>
  14. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dggsvp3.f">
  15. *> [TXT]</a>
  16. *> \endhtmlonly
  17. *
  18. * Definition:
  19. * ===========
  20. *
  21. * SUBROUTINE DGGSVP3( JOBU, JOBV, JOBQ, M, P, N, A, LDA, B, LDB,
  22. * TOLA, TOLB, K, L, U, LDU, V, LDV, Q, LDQ,
  23. * IWORK, TAU, WORK, LWORK, INFO )
  24. *
  25. * .. Scalar Arguments ..
  26. * CHARACTER JOBQ, JOBU, JOBV
  27. * INTEGER INFO, K, L, LDA, LDB, LDQ, LDU, LDV, M, N, P, LWORK
  28. * DOUBLE PRECISION TOLA, TOLB
  29. * ..
  30. * .. Array Arguments ..
  31. * INTEGER IWORK( * )
  32. * DOUBLE PRECISION A( LDA, * ), B( LDB, * ), Q( LDQ, * ),
  33. * $ TAU( * ), U( LDU, * ), V( LDV, * ), WORK( * )
  34. * ..
  35. *
  36. *
  37. *> \par Purpose:
  38. * =============
  39. *>
  40. *> \verbatim
  41. *>
  42. *> DGGSVP3 computes orthogonal matrices U, V and Q such that
  43. *>
  44. *> N-K-L K L
  45. *> U**T*A*Q = K ( 0 A12 A13 ) if M-K-L >= 0;
  46. *> L ( 0 0 A23 )
  47. *> M-K-L ( 0 0 0 )
  48. *>
  49. *> N-K-L K L
  50. *> = K ( 0 A12 A13 ) if M-K-L < 0;
  51. *> M-K ( 0 0 A23 )
  52. *>
  53. *> N-K-L K L
  54. *> V**T*B*Q = L ( 0 0 B13 )
  55. *> P-L ( 0 0 0 )
  56. *>
  57. *> where the K-by-K matrix A12 and L-by-L matrix B13 are nonsingular
  58. *> upper triangular; A23 is L-by-L upper triangular if M-K-L >= 0,
  59. *> otherwise A23 is (M-K)-by-L upper trapezoidal. K+L = the effective
  60. *> numerical rank of the (M+P)-by-N matrix (A**T,B**T)**T.
  61. *>
  62. *> This decomposition is the preprocessing step for computing the
  63. *> Generalized Singular Value Decomposition (GSVD), see subroutine
  64. *> DGGSVD3.
  65. *> \endverbatim
  66. *
  67. * Arguments:
  68. * ==========
  69. *
  70. *> \param[in] JOBU
  71. *> \verbatim
  72. *> JOBU is CHARACTER*1
  73. *> = 'U': Orthogonal matrix U is computed;
  74. *> = 'N': U is not computed.
  75. *> \endverbatim
  76. *>
  77. *> \param[in] JOBV
  78. *> \verbatim
  79. *> JOBV is CHARACTER*1
  80. *> = 'V': Orthogonal matrix V is computed;
  81. *> = 'N': V is not computed.
  82. *> \endverbatim
  83. *>
  84. *> \param[in] JOBQ
  85. *> \verbatim
  86. *> JOBQ is CHARACTER*1
  87. *> = 'Q': Orthogonal matrix Q is computed;
  88. *> = 'N': Q is not computed.
  89. *> \endverbatim
  90. *>
  91. *> \param[in] M
  92. *> \verbatim
  93. *> M is INTEGER
  94. *> The number of rows of the matrix A. M >= 0.
  95. *> \endverbatim
  96. *>
  97. *> \param[in] P
  98. *> \verbatim
  99. *> P is INTEGER
  100. *> The number of rows of the matrix B. P >= 0.
  101. *> \endverbatim
  102. *>
  103. *> \param[in] N
  104. *> \verbatim
  105. *> N is INTEGER
  106. *> The number of columns of the matrices A and B. N >= 0.
  107. *> \endverbatim
  108. *>
  109. *> \param[in,out] A
  110. *> \verbatim
  111. *> A is DOUBLE PRECISION array, dimension (LDA,N)
  112. *> On entry, the M-by-N matrix A.
  113. *> On exit, A contains the triangular (or trapezoidal) matrix
  114. *> described in the Purpose section.
  115. *> \endverbatim
  116. *>
  117. *> \param[in] LDA
  118. *> \verbatim
  119. *> LDA is INTEGER
  120. *> The leading dimension of the array A. LDA >= max(1,M).
  121. *> \endverbatim
  122. *>
  123. *> \param[in,out] B
  124. *> \verbatim
  125. *> B is DOUBLE PRECISION array, dimension (LDB,N)
  126. *> On entry, the P-by-N matrix B.
  127. *> On exit, B contains the triangular matrix described in
  128. *> the Purpose section.
  129. *> \endverbatim
  130. *>
  131. *> \param[in] LDB
  132. *> \verbatim
  133. *> LDB is INTEGER
  134. *> The leading dimension of the array B. LDB >= max(1,P).
  135. *> \endverbatim
  136. *>
  137. *> \param[in] TOLA
  138. *> \verbatim
  139. *> TOLA is DOUBLE PRECISION
  140. *> \endverbatim
  141. *>
  142. *> \param[in] TOLB
  143. *> \verbatim
  144. *> TOLB is DOUBLE PRECISION
  145. *>
  146. *> TOLA and TOLB are the thresholds to determine the effective
  147. *> numerical rank of matrix B and a subblock of A. Generally,
  148. *> they are set to
  149. *> TOLA = MAX(M,N)*norm(A)*MACHEPS,
  150. *> TOLB = MAX(P,N)*norm(B)*MACHEPS.
  151. *> The size of TOLA and TOLB may affect the size of backward
  152. *> errors of the decomposition.
  153. *> \endverbatim
  154. *>
  155. *> \param[out] K
  156. *> \verbatim
  157. *> K is INTEGER
  158. *> \endverbatim
  159. *>
  160. *> \param[out] L
  161. *> \verbatim
  162. *> L is INTEGER
  163. *>
  164. *> On exit, K and L specify the dimension of the subblocks
  165. *> described in Purpose section.
  166. *> K + L = effective numerical rank of (A**T,B**T)**T.
  167. *> \endverbatim
  168. *>
  169. *> \param[out] U
  170. *> \verbatim
  171. *> U is DOUBLE PRECISION array, dimension (LDU,M)
  172. *> If JOBU = 'U', U contains the orthogonal matrix U.
  173. *> If JOBU = 'N', U is not referenced.
  174. *> \endverbatim
  175. *>
  176. *> \param[in] LDU
  177. *> \verbatim
  178. *> LDU is INTEGER
  179. *> The leading dimension of the array U. LDU >= max(1,M) if
  180. *> JOBU = 'U'; LDU >= 1 otherwise.
  181. *> \endverbatim
  182. *>
  183. *> \param[out] V
  184. *> \verbatim
  185. *> V is DOUBLE PRECISION array, dimension (LDV,P)
  186. *> If JOBV = 'V', V contains the orthogonal matrix V.
  187. *> If JOBV = 'N', V is not referenced.
  188. *> \endverbatim
  189. *>
  190. *> \param[in] LDV
  191. *> \verbatim
  192. *> LDV is INTEGER
  193. *> The leading dimension of the array V. LDV >= max(1,P) if
  194. *> JOBV = 'V'; LDV >= 1 otherwise.
  195. *> \endverbatim
  196. *>
  197. *> \param[out] Q
  198. *> \verbatim
  199. *> Q is DOUBLE PRECISION array, dimension (LDQ,N)
  200. *> If JOBQ = 'Q', Q contains the orthogonal matrix Q.
  201. *> If JOBQ = 'N', Q is not referenced.
  202. *> \endverbatim
  203. *>
  204. *> \param[in] LDQ
  205. *> \verbatim
  206. *> LDQ is INTEGER
  207. *> The leading dimension of the array Q. LDQ >= max(1,N) if
  208. *> JOBQ = 'Q'; LDQ >= 1 otherwise.
  209. *> \endverbatim
  210. *>
  211. *> \param[out] IWORK
  212. *> \verbatim
  213. *> IWORK is INTEGER array, dimension (N)
  214. *> \endverbatim
  215. *>
  216. *> \param[out] TAU
  217. *> \verbatim
  218. *> TAU is DOUBLE PRECISION array, dimension (N)
  219. *> \endverbatim
  220. *>
  221. *> \param[out] WORK
  222. *> \verbatim
  223. *> WORK is DOUBLE PRECISION array, dimension (MAX(1,LWORK))
  224. *> On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
  225. *> \endverbatim
  226. *>
  227. *> \param[in] LWORK
  228. *> \verbatim
  229. *> LWORK is INTEGER
  230. *> The dimension of the array WORK. LWORK >= 1.
  231. *>
  232. *> If LWORK = -1, then a workspace query is assumed; the routine
  233. *> only calculates the optimal size of the WORK array, returns
  234. *> this value as the first entry of the WORK array, and no error
  235. *> message related to LWORK is issued by XERBLA.
  236. *> \endverbatim
  237. *>
  238. *> \param[out] INFO
  239. *> \verbatim
  240. *> INFO is INTEGER
  241. *> = 0: successful exit
  242. *> < 0: if INFO = -i, the i-th argument had an illegal value.
  243. *> \endverbatim
  244. *
  245. * Authors:
  246. * ========
  247. *
  248. *> \author Univ. of Tennessee
  249. *> \author Univ. of California Berkeley
  250. *> \author Univ. of Colorado Denver
  251. *> \author NAG Ltd.
  252. *
  253. *> \ingroup ggsvp3
  254. *
  255. *> \par Further Details:
  256. * =====================
  257. *>
  258. *> \verbatim
  259. *>
  260. *> The subroutine uses LAPACK subroutine DGEQP3 for the QR factorization
  261. *> with column pivoting to detect the effective numerical rank of the
  262. *> a matrix. It may be replaced by a better rank determination strategy.
  263. *>
  264. *> DGGSVP3 replaces the deprecated subroutine DGGSVP.
  265. *>
  266. *> \endverbatim
  267. *>
  268. * =====================================================================
  269. SUBROUTINE DGGSVP3( JOBU, JOBV, JOBQ, M, P, N, A, LDA, B, LDB,
  270. $ TOLA, TOLB, K, L, U, LDU, V, LDV, Q, LDQ,
  271. $ IWORK, TAU, WORK, LWORK, INFO )
  272. *
  273. * -- LAPACK computational routine --
  274. * -- LAPACK is a software package provided by Univ. of Tennessee, --
  275. * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
  276. *
  277. IMPLICIT NONE
  278. *
  279. * .. Scalar Arguments ..
  280. CHARACTER JOBQ, JOBU, JOBV
  281. INTEGER INFO, K, L, LDA, LDB, LDQ, LDU, LDV, M, N, P,
  282. $ LWORK
  283. DOUBLE PRECISION TOLA, TOLB
  284. * ..
  285. * .. Array Arguments ..
  286. INTEGER IWORK( * )
  287. DOUBLE PRECISION A( LDA, * ), B( LDB, * ), Q( LDQ, * ),
  288. $ TAU( * ), U( LDU, * ), V( LDV, * ), WORK( * )
  289. * ..
  290. *
  291. * =====================================================================
  292. *
  293. * .. Parameters ..
  294. DOUBLE PRECISION ZERO, ONE
  295. PARAMETER ( ZERO = 0.0D+0, ONE = 1.0D+0 )
  296. * ..
  297. * .. Local Scalars ..
  298. LOGICAL FORWRD, WANTQ, WANTU, WANTV, LQUERY
  299. INTEGER I, J, LWKOPT
  300. * ..
  301. * .. External Functions ..
  302. LOGICAL LSAME
  303. EXTERNAL LSAME
  304. * ..
  305. * .. External Subroutines ..
  306. EXTERNAL DGEQP3, DGEQR2, DGERQ2, DLACPY, DLAPMT,
  307. $ DLASET, DORG2R, DORM2R, DORMR2, XERBLA
  308. * ..
  309. * .. Intrinsic Functions ..
  310. INTRINSIC ABS, MAX, MIN
  311. * ..
  312. * .. Executable Statements ..
  313. *
  314. * Test the input parameters
  315. *
  316. WANTU = LSAME( JOBU, 'U' )
  317. WANTV = LSAME( JOBV, 'V' )
  318. WANTQ = LSAME( JOBQ, 'Q' )
  319. FORWRD = .TRUE.
  320. LQUERY = ( LWORK.EQ.-1 )
  321. LWKOPT = 1
  322. *
  323. * Test the input arguments
  324. *
  325. INFO = 0
  326. IF( .NOT.( WANTU .OR. LSAME( JOBU, 'N' ) ) ) THEN
  327. INFO = -1
  328. ELSE IF( .NOT.( WANTV .OR. LSAME( JOBV, 'N' ) ) ) THEN
  329. INFO = -2
  330. ELSE IF( .NOT.( WANTQ .OR. LSAME( JOBQ, 'N' ) ) ) THEN
  331. INFO = -3
  332. ELSE IF( M.LT.0 ) THEN
  333. INFO = -4
  334. ELSE IF( P.LT.0 ) THEN
  335. INFO = -5
  336. ELSE IF( N.LT.0 ) THEN
  337. INFO = -6
  338. ELSE IF( LDA.LT.MAX( 1, M ) ) THEN
  339. INFO = -8
  340. ELSE IF( LDB.LT.MAX( 1, P ) ) THEN
  341. INFO = -10
  342. ELSE IF( LDU.LT.1 .OR. ( WANTU .AND. LDU.LT.M ) ) THEN
  343. INFO = -16
  344. ELSE IF( LDV.LT.1 .OR. ( WANTV .AND. LDV.LT.P ) ) THEN
  345. INFO = -18
  346. ELSE IF( LDQ.LT.1 .OR. ( WANTQ .AND. LDQ.LT.N ) ) THEN
  347. INFO = -20
  348. ELSE IF( LWORK.LT.1 .AND. .NOT.LQUERY ) THEN
  349. INFO = -24
  350. END IF
  351. *
  352. * Compute workspace
  353. *
  354. IF( INFO.EQ.0 ) THEN
  355. CALL DGEQP3( P, N, B, LDB, IWORK, TAU, WORK, -1, INFO )
  356. LWKOPT = INT( WORK ( 1 ) )
  357. IF( WANTV ) THEN
  358. LWKOPT = MAX( LWKOPT, P )
  359. END IF
  360. LWKOPT = MAX( LWKOPT, MIN( N, P ) )
  361. LWKOPT = MAX( LWKOPT, M )
  362. IF( WANTQ ) THEN
  363. LWKOPT = MAX( LWKOPT, N )
  364. END IF
  365. CALL DGEQP3( M, N, A, LDA, IWORK, TAU, WORK, -1, INFO )
  366. LWKOPT = MAX( LWKOPT, INT( WORK ( 1 ) ) )
  367. LWKOPT = MAX( 1, LWKOPT )
  368. WORK( 1 ) = DBLE( LWKOPT )
  369. END IF
  370. *
  371. IF( INFO.NE.0 ) THEN
  372. CALL XERBLA( 'DGGSVP3', -INFO )
  373. RETURN
  374. END IF
  375. IF( LQUERY ) THEN
  376. RETURN
  377. ENDIF
  378. *
  379. * QR with column pivoting of B: B*P = V*( S11 S12 )
  380. * ( 0 0 )
  381. *
  382. DO 10 I = 1, N
  383. IWORK( I ) = 0
  384. 10 CONTINUE
  385. CALL DGEQP3( P, N, B, LDB, IWORK, TAU, WORK, LWORK, INFO )
  386. *
  387. * Update A := A*P
  388. *
  389. CALL DLAPMT( FORWRD, M, N, A, LDA, IWORK )
  390. *
  391. * Determine the effective rank of matrix B.
  392. *
  393. L = 0
  394. DO 20 I = 1, MIN( P, N )
  395. IF( ABS( B( I, I ) ).GT.TOLB )
  396. $ L = L + 1
  397. 20 CONTINUE
  398. *
  399. IF( WANTV ) THEN
  400. *
  401. * Copy the details of V, and form V.
  402. *
  403. CALL DLASET( 'Full', P, P, ZERO, ZERO, V, LDV )
  404. IF( P.GT.1 )
  405. $ CALL DLACPY( 'Lower', P-1, N, B( 2, 1 ), LDB, V( 2, 1 ),
  406. $ LDV )
  407. CALL DORG2R( P, P, MIN( P, N ), V, LDV, TAU, WORK, INFO )
  408. END IF
  409. *
  410. * Clean up B
  411. *
  412. DO 40 J = 1, L - 1
  413. DO 30 I = J + 1, L
  414. B( I, J ) = ZERO
  415. 30 CONTINUE
  416. 40 CONTINUE
  417. IF( P.GT.L )
  418. $ CALL DLASET( 'Full', P-L, N, ZERO, ZERO, B( L+1, 1 ), LDB )
  419. *
  420. IF( WANTQ ) THEN
  421. *
  422. * Set Q = I and Update Q := Q*P
  423. *
  424. CALL DLASET( 'Full', N, N, ZERO, ONE, Q, LDQ )
  425. CALL DLAPMT( FORWRD, N, N, Q, LDQ, IWORK )
  426. END IF
  427. *
  428. IF( P.GE.L .AND. N.NE.L ) THEN
  429. *
  430. * RQ factorization of (S11 S12): ( S11 S12 ) = ( 0 S12 )*Z
  431. *
  432. CALL DGERQ2( L, N, B, LDB, TAU, WORK, INFO )
  433. *
  434. * Update A := A*Z**T
  435. *
  436. CALL DORMR2( 'Right', 'Transpose', M, N, L, B, LDB, TAU, A,
  437. $ LDA, WORK, INFO )
  438. *
  439. IF( WANTQ ) THEN
  440. *
  441. * Update Q := Q*Z**T
  442. *
  443. CALL DORMR2( 'Right', 'Transpose', N, N, L, B, LDB, TAU, Q,
  444. $ LDQ, WORK, INFO )
  445. END IF
  446. *
  447. * Clean up B
  448. *
  449. CALL DLASET( 'Full', L, N-L, ZERO, ZERO, B, LDB )
  450. DO 60 J = N - L + 1, N
  451. DO 50 I = J - N + L + 1, L
  452. B( I, J ) = ZERO
  453. 50 CONTINUE
  454. 60 CONTINUE
  455. *
  456. END IF
  457. *
  458. * Let N-L L
  459. * A = ( A11 A12 ) M,
  460. *
  461. * then the following does the complete QR decomposition of A11:
  462. *
  463. * A11 = U*( 0 T12 )*P1**T
  464. * ( 0 0 )
  465. *
  466. DO 70 I = 1, N - L
  467. IWORK( I ) = 0
  468. 70 CONTINUE
  469. CALL DGEQP3( M, N-L, A, LDA, IWORK, TAU, WORK, LWORK, INFO )
  470. *
  471. * Determine the effective rank of A11
  472. *
  473. K = 0
  474. DO 80 I = 1, MIN( M, N-L )
  475. IF( ABS( A( I, I ) ).GT.TOLA )
  476. $ K = K + 1
  477. 80 CONTINUE
  478. *
  479. * Update A12 := U**T*A12, where A12 = A( 1:M, N-L+1:N )
  480. *
  481. CALL DORM2R( 'Left', 'Transpose', M, L, MIN( M, N-L ), A, LDA,
  482. $ TAU, A( 1, N-L+1 ), LDA, WORK, INFO )
  483. *
  484. IF( WANTU ) THEN
  485. *
  486. * Copy the details of U, and form U
  487. *
  488. CALL DLASET( 'Full', M, M, ZERO, ZERO, U, LDU )
  489. IF( M.GT.1 )
  490. $ CALL DLACPY( 'Lower', M-1, N-L, A( 2, 1 ), LDA, U( 2, 1 ),
  491. $ LDU )
  492. CALL DORG2R( M, M, MIN( M, N-L ), U, LDU, TAU, WORK, INFO )
  493. END IF
  494. *
  495. IF( WANTQ ) THEN
  496. *
  497. * Update Q( 1:N, 1:N-L ) = Q( 1:N, 1:N-L )*P1
  498. *
  499. CALL DLAPMT( FORWRD, N, N-L, Q, LDQ, IWORK )
  500. END IF
  501. *
  502. * Clean up A: set the strictly lower triangular part of
  503. * A(1:K, 1:K) = 0, and A( K+1:M, 1:N-L ) = 0.
  504. *
  505. DO 100 J = 1, K - 1
  506. DO 90 I = J + 1, K
  507. A( I, J ) = ZERO
  508. 90 CONTINUE
  509. 100 CONTINUE
  510. IF( M.GT.K )
  511. $ CALL DLASET( 'Full', M-K, N-L, ZERO, ZERO, A( K+1, 1 ), LDA )
  512. *
  513. IF( N-L.GT.K ) THEN
  514. *
  515. * RQ factorization of ( T11 T12 ) = ( 0 T12 )*Z1
  516. *
  517. CALL DGERQ2( K, N-L, A, LDA, TAU, WORK, INFO )
  518. *
  519. IF( WANTQ ) THEN
  520. *
  521. * Update Q( 1:N,1:N-L ) = Q( 1:N,1:N-L )*Z1**T
  522. *
  523. CALL DORMR2( 'Right', 'Transpose', N, N-L, K, A, LDA, TAU,
  524. $ Q, LDQ, WORK, INFO )
  525. END IF
  526. *
  527. * Clean up A
  528. *
  529. CALL DLASET( 'Full', K, N-L-K, ZERO, ZERO, A, LDA )
  530. DO 120 J = N - L - K + 1, N - L
  531. DO 110 I = J - N + L + K + 1, K
  532. A( I, J ) = ZERO
  533. 110 CONTINUE
  534. 120 CONTINUE
  535. *
  536. END IF
  537. *
  538. IF( M.GT.K ) THEN
  539. *
  540. * QR factorization of A( K+1:M,N-L+1:N )
  541. *
  542. CALL DGEQR2( M-K, L, A( K+1, N-L+1 ), LDA, TAU, WORK, INFO )
  543. *
  544. IF( WANTU ) THEN
  545. *
  546. * Update U(:,K+1:M) := U(:,K+1:M)*U1
  547. *
  548. CALL DORM2R( 'Right', 'No transpose', M, M-K, MIN( M-K, L ),
  549. $ A( K+1, N-L+1 ), LDA, TAU, U( 1, K+1 ), LDU,
  550. $ WORK, INFO )
  551. END IF
  552. *
  553. * Clean up
  554. *
  555. DO 140 J = N - L + 1, N
  556. DO 130 I = J - N + K + L + 1, M
  557. A( I, J ) = ZERO
  558. 130 CONTINUE
  559. 140 CONTINUE
  560. *
  561. END IF
  562. *
  563. WORK( 1 ) = DBLE( LWKOPT )
  564. RETURN
  565. *
  566. * End of DGGSVP3
  567. *
  568. END