You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

cpoequ.f 5.5 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204
  1. *> \brief \b CPOEQU
  2. *
  3. * =========== DOCUMENTATION ===========
  4. *
  5. * Online html documentation available at
  6. * http://www.netlib.org/lapack/explore-html/
  7. *
  8. *> \htmlonly
  9. *> Download CPOEQU + dependencies
  10. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/cpoequ.f">
  11. *> [TGZ]</a>
  12. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/cpoequ.f">
  13. *> [ZIP]</a>
  14. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/cpoequ.f">
  15. *> [TXT]</a>
  16. *> \endhtmlonly
  17. *
  18. * Definition:
  19. * ===========
  20. *
  21. * SUBROUTINE CPOEQU( N, A, LDA, S, SCOND, AMAX, INFO )
  22. *
  23. * .. Scalar Arguments ..
  24. * INTEGER INFO, LDA, N
  25. * REAL AMAX, SCOND
  26. * ..
  27. * .. Array Arguments ..
  28. * REAL S( * )
  29. * COMPLEX A( LDA, * )
  30. * ..
  31. *
  32. *
  33. *> \par Purpose:
  34. * =============
  35. *>
  36. *> \verbatim
  37. *>
  38. *> CPOEQU computes row and column scalings intended to equilibrate a
  39. *> Hermitian positive definite matrix A and reduce its condition number
  40. *> (with respect to the two-norm). S contains the scale factors,
  41. *> S(i) = 1/sqrt(A(i,i)), chosen so that the scaled matrix B with
  42. *> elements B(i,j) = S(i)*A(i,j)*S(j) has ones on the diagonal. This
  43. *> choice of S puts the condition number of B within a factor N of the
  44. *> smallest possible condition number over all possible diagonal
  45. *> scalings.
  46. *> \endverbatim
  47. *
  48. * Arguments:
  49. * ==========
  50. *
  51. *> \param[in] N
  52. *> \verbatim
  53. *> N is INTEGER
  54. *> The order of the matrix A. N >= 0.
  55. *> \endverbatim
  56. *>
  57. *> \param[in] A
  58. *> \verbatim
  59. *> A is COMPLEX array, dimension (LDA,N)
  60. *> The N-by-N Hermitian positive definite matrix whose scaling
  61. *> factors are to be computed. Only the diagonal elements of A
  62. *> are referenced.
  63. *> \endverbatim
  64. *>
  65. *> \param[in] LDA
  66. *> \verbatim
  67. *> LDA is INTEGER
  68. *> The leading dimension of the array A. LDA >= max(1,N).
  69. *> \endverbatim
  70. *>
  71. *> \param[out] S
  72. *> \verbatim
  73. *> S is REAL array, dimension (N)
  74. *> If INFO = 0, S contains the scale factors for A.
  75. *> \endverbatim
  76. *>
  77. *> \param[out] SCOND
  78. *> \verbatim
  79. *> SCOND is REAL
  80. *> If INFO = 0, S contains the ratio of the smallest S(i) to
  81. *> the largest S(i). If SCOND >= 0.1 and AMAX is neither too
  82. *> large nor too small, it is not worth scaling by S.
  83. *> \endverbatim
  84. *>
  85. *> \param[out] AMAX
  86. *> \verbatim
  87. *> AMAX is REAL
  88. *> Absolute value of largest matrix element. If AMAX is very
  89. *> close to overflow or very close to underflow, the matrix
  90. *> should be scaled.
  91. *> \endverbatim
  92. *>
  93. *> \param[out] INFO
  94. *> \verbatim
  95. *> INFO is INTEGER
  96. *> = 0: successful exit
  97. *> < 0: if INFO = -i, the i-th argument had an illegal value
  98. *> > 0: if INFO = i, the i-th diagonal element is nonpositive.
  99. *> \endverbatim
  100. *
  101. * Authors:
  102. * ========
  103. *
  104. *> \author Univ. of Tennessee
  105. *> \author Univ. of California Berkeley
  106. *> \author Univ. of Colorado Denver
  107. *> \author NAG Ltd.
  108. *
  109. *> \ingroup complexPOcomputational
  110. *
  111. * =====================================================================
  112. SUBROUTINE CPOEQU( N, A, LDA, S, SCOND, AMAX, INFO )
  113. *
  114. * -- LAPACK computational routine --
  115. * -- LAPACK is a software package provided by Univ. of Tennessee, --
  116. * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
  117. *
  118. * .. Scalar Arguments ..
  119. INTEGER INFO, LDA, N
  120. REAL AMAX, SCOND
  121. * ..
  122. * .. Array Arguments ..
  123. REAL S( * )
  124. COMPLEX A( LDA, * )
  125. * ..
  126. *
  127. * =====================================================================
  128. *
  129. * .. Parameters ..
  130. REAL ZERO, ONE
  131. PARAMETER ( ZERO = 0.0E+0, ONE = 1.0E+0 )
  132. * ..
  133. * .. Local Scalars ..
  134. INTEGER I
  135. REAL SMIN
  136. * ..
  137. * .. External Subroutines ..
  138. EXTERNAL XERBLA
  139. * ..
  140. * .. Intrinsic Functions ..
  141. INTRINSIC MAX, MIN, REAL, SQRT
  142. * ..
  143. * .. Executable Statements ..
  144. *
  145. * Test the input parameters.
  146. *
  147. INFO = 0
  148. IF( N.LT.0 ) THEN
  149. INFO = -1
  150. ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
  151. INFO = -3
  152. END IF
  153. IF( INFO.NE.0 ) THEN
  154. CALL XERBLA( 'CPOEQU', -INFO )
  155. RETURN
  156. END IF
  157. *
  158. * Quick return if possible
  159. *
  160. IF( N.EQ.0 ) THEN
  161. SCOND = ONE
  162. AMAX = ZERO
  163. RETURN
  164. END IF
  165. *
  166. * Find the minimum and maximum diagonal elements.
  167. *
  168. S( 1 ) = REAL( A( 1, 1 ) )
  169. SMIN = S( 1 )
  170. AMAX = S( 1 )
  171. DO 10 I = 2, N
  172. S( I ) = REAL( A( I, I ) )
  173. SMIN = MIN( SMIN, S( I ) )
  174. AMAX = MAX( AMAX, S( I ) )
  175. 10 CONTINUE
  176. *
  177. IF( SMIN.LE.ZERO ) THEN
  178. *
  179. * Find the first non-positive diagonal element and return.
  180. *
  181. DO 20 I = 1, N
  182. IF( S( I ).LE.ZERO ) THEN
  183. INFO = I
  184. RETURN
  185. END IF
  186. 20 CONTINUE
  187. ELSE
  188. *
  189. * Set the scale factors to the reciprocals
  190. * of the diagonal elements.
  191. *
  192. DO 30 I = 1, N
  193. S( I ) = ONE / SQRT( S( I ) )
  194. 30 CONTINUE
  195. *
  196. * Compute SCOND = min(S(I)) / max(S(I))
  197. *
  198. SCOND = SQRT( SMIN ) / SQRT( AMAX )
  199. END IF
  200. RETURN
  201. *
  202. * End of CPOEQU
  203. *
  204. END