You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

cla_gercond_x.f 7.8 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292
  1. *> \brief \b CLA_GERCOND_X computes the infinity norm condition number of op(A)*diag(x) for general matrices.
  2. *
  3. * =========== DOCUMENTATION ===========
  4. *
  5. * Online html documentation available at
  6. * http://www.netlib.org/lapack/explore-html/
  7. *
  8. *> \htmlonly
  9. *> Download CLA_GERCOND_X + dependencies
  10. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/cla_gercond_x.f">
  11. *> [TGZ]</a>
  12. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/cla_gercond_x.f">
  13. *> [ZIP]</a>
  14. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/cla_gercond_x.f">
  15. *> [TXT]</a>
  16. *> \endhtmlonly
  17. *
  18. * Definition:
  19. * ===========
  20. *
  21. * REAL FUNCTION CLA_GERCOND_X( TRANS, N, A, LDA, AF, LDAF, IPIV, X,
  22. * INFO, WORK, RWORK )
  23. *
  24. * .. Scalar Arguments ..
  25. * CHARACTER TRANS
  26. * INTEGER N, LDA, LDAF, INFO
  27. * ..
  28. * .. Array Arguments ..
  29. * INTEGER IPIV( * )
  30. * COMPLEX A( LDA, * ), AF( LDAF, * ), WORK( * ), X( * )
  31. * REAL RWORK( * )
  32. * ..
  33. *
  34. *
  35. *> \par Purpose:
  36. * =============
  37. *>
  38. *> \verbatim
  39. *>
  40. *>
  41. *> CLA_GERCOND_X computes the infinity norm condition number of
  42. *> op(A) * diag(X) where X is a COMPLEX vector.
  43. *> \endverbatim
  44. *
  45. * Arguments:
  46. * ==========
  47. *
  48. *> \param[in] TRANS
  49. *> \verbatim
  50. *> TRANS is CHARACTER*1
  51. *> Specifies the form of the system of equations:
  52. *> = 'N': A * X = B (No transpose)
  53. *> = 'T': A**T * X = B (Transpose)
  54. *> = 'C': A**H * X = B (Conjugate Transpose = Transpose)
  55. *> \endverbatim
  56. *>
  57. *> \param[in] N
  58. *> \verbatim
  59. *> N is INTEGER
  60. *> The number of linear equations, i.e., the order of the
  61. *> matrix A. N >= 0.
  62. *> \endverbatim
  63. *>
  64. *> \param[in] A
  65. *> \verbatim
  66. *> A is COMPLEX array, dimension (LDA,N)
  67. *> On entry, the N-by-N matrix A.
  68. *> \endverbatim
  69. *>
  70. *> \param[in] LDA
  71. *> \verbatim
  72. *> LDA is INTEGER
  73. *> The leading dimension of the array A. LDA >= max(1,N).
  74. *> \endverbatim
  75. *>
  76. *> \param[in] AF
  77. *> \verbatim
  78. *> AF is COMPLEX array, dimension (LDAF,N)
  79. *> The factors L and U from the factorization
  80. *> A = P*L*U as computed by CGETRF.
  81. *> \endverbatim
  82. *>
  83. *> \param[in] LDAF
  84. *> \verbatim
  85. *> LDAF is INTEGER
  86. *> The leading dimension of the array AF. LDAF >= max(1,N).
  87. *> \endverbatim
  88. *>
  89. *> \param[in] IPIV
  90. *> \verbatim
  91. *> IPIV is INTEGER array, dimension (N)
  92. *> The pivot indices from the factorization A = P*L*U
  93. *> as computed by CGETRF; row i of the matrix was interchanged
  94. *> with row IPIV(i).
  95. *> \endverbatim
  96. *>
  97. *> \param[in] X
  98. *> \verbatim
  99. *> X is COMPLEX array, dimension (N)
  100. *> The vector X in the formula op(A) * diag(X).
  101. *> \endverbatim
  102. *>
  103. *> \param[out] INFO
  104. *> \verbatim
  105. *> INFO is INTEGER
  106. *> = 0: Successful exit.
  107. *> i > 0: The ith argument is invalid.
  108. *> \endverbatim
  109. *>
  110. *> \param[out] WORK
  111. *> \verbatim
  112. *> WORK is COMPLEX array, dimension (2*N).
  113. *> Workspace.
  114. *> \endverbatim
  115. *>
  116. *> \param[out] RWORK
  117. *> \verbatim
  118. *> RWORK is REAL array, dimension (N).
  119. *> Workspace.
  120. *> \endverbatim
  121. *
  122. * Authors:
  123. * ========
  124. *
  125. *> \author Univ. of Tennessee
  126. *> \author Univ. of California Berkeley
  127. *> \author Univ. of Colorado Denver
  128. *> \author NAG Ltd.
  129. *
  130. *> \ingroup complexGEcomputational
  131. *
  132. * =====================================================================
  133. REAL FUNCTION CLA_GERCOND_X( TRANS, N, A, LDA, AF, LDAF, IPIV, X,
  134. $ INFO, WORK, RWORK )
  135. *
  136. * -- LAPACK computational routine --
  137. * -- LAPACK is a software package provided by Univ. of Tennessee, --
  138. * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
  139. *
  140. * .. Scalar Arguments ..
  141. CHARACTER TRANS
  142. INTEGER N, LDA, LDAF, INFO
  143. * ..
  144. * .. Array Arguments ..
  145. INTEGER IPIV( * )
  146. COMPLEX A( LDA, * ), AF( LDAF, * ), WORK( * ), X( * )
  147. REAL RWORK( * )
  148. * ..
  149. *
  150. * =====================================================================
  151. *
  152. * .. Local Scalars ..
  153. LOGICAL NOTRANS
  154. INTEGER KASE
  155. REAL AINVNM, ANORM, TMP
  156. INTEGER I, J
  157. COMPLEX ZDUM
  158. * ..
  159. * .. Local Arrays ..
  160. INTEGER ISAVE( 3 )
  161. * ..
  162. * .. External Functions ..
  163. LOGICAL LSAME
  164. EXTERNAL LSAME
  165. * ..
  166. * .. External Subroutines ..
  167. EXTERNAL CLACN2, CGETRS, XERBLA
  168. * ..
  169. * .. Intrinsic Functions ..
  170. INTRINSIC ABS, MAX, REAL, AIMAG
  171. * ..
  172. * .. Statement Functions ..
  173. REAL CABS1
  174. * ..
  175. * .. Statement Function Definitions ..
  176. CABS1( ZDUM ) = ABS( REAL( ZDUM ) ) + ABS( AIMAG( ZDUM ) )
  177. * ..
  178. * .. Executable Statements ..
  179. *
  180. CLA_GERCOND_X = 0.0E+0
  181. *
  182. INFO = 0
  183. NOTRANS = LSAME( TRANS, 'N' )
  184. IF ( .NOT. NOTRANS .AND. .NOT. LSAME( TRANS, 'T' ) .AND. .NOT.
  185. $ LSAME( TRANS, 'C' ) ) THEN
  186. INFO = -1
  187. ELSE IF( N.LT.0 ) THEN
  188. INFO = -2
  189. ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
  190. INFO = -4
  191. ELSE IF( LDAF.LT.MAX( 1, N ) ) THEN
  192. INFO = -6
  193. END IF
  194. IF( INFO.NE.0 ) THEN
  195. CALL XERBLA( 'CLA_GERCOND_X', -INFO )
  196. RETURN
  197. END IF
  198. *
  199. * Compute norm of op(A)*op2(C).
  200. *
  201. ANORM = 0.0
  202. IF ( NOTRANS ) THEN
  203. DO I = 1, N
  204. TMP = 0.0E+0
  205. DO J = 1, N
  206. TMP = TMP + CABS1( A( I, J ) * X( J ) )
  207. END DO
  208. RWORK( I ) = TMP
  209. ANORM = MAX( ANORM, TMP )
  210. END DO
  211. ELSE
  212. DO I = 1, N
  213. TMP = 0.0E+0
  214. DO J = 1, N
  215. TMP = TMP + CABS1( A( J, I ) * X( J ) )
  216. END DO
  217. RWORK( I ) = TMP
  218. ANORM = MAX( ANORM, TMP )
  219. END DO
  220. END IF
  221. *
  222. * Quick return if possible.
  223. *
  224. IF( N.EQ.0 ) THEN
  225. CLA_GERCOND_X = 1.0E+0
  226. RETURN
  227. ELSE IF( ANORM .EQ. 0.0E+0 ) THEN
  228. RETURN
  229. END IF
  230. *
  231. * Estimate the norm of inv(op(A)).
  232. *
  233. AINVNM = 0.0E+0
  234. *
  235. KASE = 0
  236. 10 CONTINUE
  237. CALL CLACN2( N, WORK( N+1 ), WORK, AINVNM, KASE, ISAVE )
  238. IF( KASE.NE.0 ) THEN
  239. IF( KASE.EQ.2 ) THEN
  240. * Multiply by R.
  241. DO I = 1, N
  242. WORK( I ) = WORK( I ) * RWORK( I )
  243. END DO
  244. *
  245. IF ( NOTRANS ) THEN
  246. CALL CGETRS( 'No transpose', N, 1, AF, LDAF, IPIV,
  247. $ WORK, N, INFO )
  248. ELSE
  249. CALL CGETRS( 'Conjugate transpose', N, 1, AF, LDAF, IPIV,
  250. $ WORK, N, INFO )
  251. ENDIF
  252. *
  253. * Multiply by inv(X).
  254. *
  255. DO I = 1, N
  256. WORK( I ) = WORK( I ) / X( I )
  257. END DO
  258. ELSE
  259. *
  260. * Multiply by inv(X**H).
  261. *
  262. DO I = 1, N
  263. WORK( I ) = WORK( I ) / X( I )
  264. END DO
  265. *
  266. IF ( NOTRANS ) THEN
  267. CALL CGETRS( 'Conjugate transpose', N, 1, AF, LDAF, IPIV,
  268. $ WORK, N, INFO )
  269. ELSE
  270. CALL CGETRS( 'No transpose', N, 1, AF, LDAF, IPIV,
  271. $ WORK, N, INFO )
  272. END IF
  273. *
  274. * Multiply by R.
  275. *
  276. DO I = 1, N
  277. WORK( I ) = WORK( I ) * RWORK( I )
  278. END DO
  279. END IF
  280. GO TO 10
  281. END IF
  282. *
  283. * Compute the estimate of the reciprocal condition number.
  284. *
  285. IF( AINVNM .NE. 0.0E+0 )
  286. $ CLA_GERCOND_X = 1.0E+0 / AINVNM
  287. *
  288. RETURN
  289. *
  290. * End of CLA_GERCOND_X
  291. *
  292. END