You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

chegs2.f 9.5 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294
  1. *> \brief \b CHEGS2 reduces a Hermitian definite generalized eigenproblem to standard form, using the factorization results obtained from cpotrf (unblocked algorithm).
  2. *
  3. * =========== DOCUMENTATION ===========
  4. *
  5. * Online html documentation available at
  6. * http://www.netlib.org/lapack/explore-html/
  7. *
  8. *> \htmlonly
  9. *> Download CHEGS2 + dependencies
  10. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/chegs2.f">
  11. *> [TGZ]</a>
  12. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/chegs2.f">
  13. *> [ZIP]</a>
  14. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/chegs2.f">
  15. *> [TXT]</a>
  16. *> \endhtmlonly
  17. *
  18. * Definition:
  19. * ===========
  20. *
  21. * SUBROUTINE CHEGS2( ITYPE, UPLO, N, A, LDA, B, LDB, INFO )
  22. *
  23. * .. Scalar Arguments ..
  24. * CHARACTER UPLO
  25. * INTEGER INFO, ITYPE, LDA, LDB, N
  26. * ..
  27. * .. Array Arguments ..
  28. * COMPLEX A( LDA, * ), B( LDB, * )
  29. * ..
  30. *
  31. *
  32. *> \par Purpose:
  33. * =============
  34. *>
  35. *> \verbatim
  36. *>
  37. *> CHEGS2 reduces a complex Hermitian-definite generalized
  38. *> eigenproblem to standard form.
  39. *>
  40. *> If ITYPE = 1, the problem is A*x = lambda*B*x,
  41. *> and A is overwritten by inv(U**H)*A*inv(U) or inv(L)*A*inv(L**H)
  42. *>
  43. *> If ITYPE = 2 or 3, the problem is A*B*x = lambda*x or
  44. *> B*A*x = lambda*x, and A is overwritten by U*A*U**H or L**H *A*L.
  45. *>
  46. *> B must have been previously factorized as U**H *U or L*L**H by ZPOTRF.
  47. *> \endverbatim
  48. *
  49. * Arguments:
  50. * ==========
  51. *
  52. *> \param[in] ITYPE
  53. *> \verbatim
  54. *> ITYPE is INTEGER
  55. *> = 1: compute inv(U**H)*A*inv(U) or inv(L)*A*inv(L**H);
  56. *> = 2 or 3: compute U*A*U**H or L**H *A*L.
  57. *> \endverbatim
  58. *>
  59. *> \param[in] UPLO
  60. *> \verbatim
  61. *> UPLO is CHARACTER*1
  62. *> Specifies whether the upper or lower triangular part of the
  63. *> Hermitian matrix A is stored, and how B has been factorized.
  64. *> = 'U': Upper triangular
  65. *> = 'L': Lower triangular
  66. *> \endverbatim
  67. *>
  68. *> \param[in] N
  69. *> \verbatim
  70. *> N is INTEGER
  71. *> The order of the matrices A and B. N >= 0.
  72. *> \endverbatim
  73. *>
  74. *> \param[in,out] A
  75. *> \verbatim
  76. *> A is COMPLEX array, dimension (LDA,N)
  77. *> On entry, the Hermitian matrix A. If UPLO = 'U', the leading
  78. *> n by n upper triangular part of A contains the upper
  79. *> triangular part of the matrix A, and the strictly lower
  80. *> triangular part of A is not referenced. If UPLO = 'L', the
  81. *> leading n by n lower triangular part of A contains the lower
  82. *> triangular part of the matrix A, and the strictly upper
  83. *> triangular part of A is not referenced.
  84. *>
  85. *> On exit, if INFO = 0, the transformed matrix, stored in the
  86. *> same format as A.
  87. *> \endverbatim
  88. *>
  89. *> \param[in] LDA
  90. *> \verbatim
  91. *> LDA is INTEGER
  92. *> The leading dimension of the array A. LDA >= max(1,N).
  93. *> \endverbatim
  94. *>
  95. *> \param[in,out] B
  96. *> \verbatim
  97. *> B is COMPLEX array, dimension (LDB,N)
  98. *> The triangular factor from the Cholesky factorization of B,
  99. *> as returned by CPOTRF.
  100. *> B is modified by the routine but restored on exit.
  101. *> \endverbatim
  102. *>
  103. *> \param[in] LDB
  104. *> \verbatim
  105. *> LDB is INTEGER
  106. *> The leading dimension of the array B. LDB >= max(1,N).
  107. *> \endverbatim
  108. *>
  109. *> \param[out] INFO
  110. *> \verbatim
  111. *> INFO is INTEGER
  112. *> = 0: successful exit.
  113. *> < 0: if INFO = -i, the i-th argument had an illegal value.
  114. *> \endverbatim
  115. *
  116. * Authors:
  117. * ========
  118. *
  119. *> \author Univ. of Tennessee
  120. *> \author Univ. of California Berkeley
  121. *> \author Univ. of Colorado Denver
  122. *> \author NAG Ltd.
  123. *
  124. *> \ingroup complexHEcomputational
  125. *
  126. * =====================================================================
  127. SUBROUTINE CHEGS2( ITYPE, UPLO, N, A, LDA, B, LDB, INFO )
  128. *
  129. * -- LAPACK computational routine --
  130. * -- LAPACK is a software package provided by Univ. of Tennessee, --
  131. * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
  132. *
  133. * .. Scalar Arguments ..
  134. CHARACTER UPLO
  135. INTEGER INFO, ITYPE, LDA, LDB, N
  136. * ..
  137. * .. Array Arguments ..
  138. COMPLEX A( LDA, * ), B( LDB, * )
  139. * ..
  140. *
  141. * =====================================================================
  142. *
  143. * .. Parameters ..
  144. REAL ONE, HALF
  145. PARAMETER ( ONE = 1.0E+0, HALF = 0.5E+0 )
  146. COMPLEX CONE
  147. PARAMETER ( CONE = ( 1.0E+0, 0.0E+0 ) )
  148. * ..
  149. * .. Local Scalars ..
  150. LOGICAL UPPER
  151. INTEGER K
  152. REAL AKK, BKK
  153. COMPLEX CT
  154. * ..
  155. * .. External Subroutines ..
  156. EXTERNAL CAXPY, CHER2, CLACGV, CSSCAL, CTRMV, CTRSV,
  157. $ XERBLA
  158. * ..
  159. * .. Intrinsic Functions ..
  160. INTRINSIC MAX
  161. * ..
  162. * .. External Functions ..
  163. LOGICAL LSAME
  164. EXTERNAL LSAME
  165. * ..
  166. * .. Executable Statements ..
  167. *
  168. * Test the input parameters.
  169. *
  170. INFO = 0
  171. UPPER = LSAME( UPLO, 'U' )
  172. IF( ITYPE.LT.1 .OR. ITYPE.GT.3 ) THEN
  173. INFO = -1
  174. ELSE IF( .NOT.UPPER .AND. .NOT.LSAME( UPLO, 'L' ) ) THEN
  175. INFO = -2
  176. ELSE IF( N.LT.0 ) THEN
  177. INFO = -3
  178. ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
  179. INFO = -5
  180. ELSE IF( LDB.LT.MAX( 1, N ) ) THEN
  181. INFO = -7
  182. END IF
  183. IF( INFO.NE.0 ) THEN
  184. CALL XERBLA( 'CHEGS2', -INFO )
  185. RETURN
  186. END IF
  187. *
  188. IF( ITYPE.EQ.1 ) THEN
  189. IF( UPPER ) THEN
  190. *
  191. * Compute inv(U**H)*A*inv(U)
  192. *
  193. DO 10 K = 1, N
  194. *
  195. * Update the upper triangle of A(k:n,k:n)
  196. *
  197. AKK = REAL( A( K, K ) )
  198. BKK = REAL( B( K, K ) )
  199. AKK = AKK / BKK**2
  200. A( K, K ) = AKK
  201. IF( K.LT.N ) THEN
  202. CALL CSSCAL( N-K, ONE / BKK, A( K, K+1 ), LDA )
  203. CT = -HALF*AKK
  204. CALL CLACGV( N-K, A( K, K+1 ), LDA )
  205. CALL CLACGV( N-K, B( K, K+1 ), LDB )
  206. CALL CAXPY( N-K, CT, B( K, K+1 ), LDB, A( K, K+1 ),
  207. $ LDA )
  208. CALL CHER2( UPLO, N-K, -CONE, A( K, K+1 ), LDA,
  209. $ B( K, K+1 ), LDB, A( K+1, K+1 ), LDA )
  210. CALL CAXPY( N-K, CT, B( K, K+1 ), LDB, A( K, K+1 ),
  211. $ LDA )
  212. CALL CLACGV( N-K, B( K, K+1 ), LDB )
  213. CALL CTRSV( UPLO, 'Conjugate transpose', 'Non-unit',
  214. $ N-K, B( K+1, K+1 ), LDB, A( K, K+1 ),
  215. $ LDA )
  216. CALL CLACGV( N-K, A( K, K+1 ), LDA )
  217. END IF
  218. 10 CONTINUE
  219. ELSE
  220. *
  221. * Compute inv(L)*A*inv(L**H)
  222. *
  223. DO 20 K = 1, N
  224. *
  225. * Update the lower triangle of A(k:n,k:n)
  226. *
  227. AKK = REAL( A( K, K ) )
  228. BKK = REAL( B( K, K ) )
  229. AKK = AKK / BKK**2
  230. A( K, K ) = AKK
  231. IF( K.LT.N ) THEN
  232. CALL CSSCAL( N-K, ONE / BKK, A( K+1, K ), 1 )
  233. CT = -HALF*AKK
  234. CALL CAXPY( N-K, CT, B( K+1, K ), 1, A( K+1, K ), 1 )
  235. CALL CHER2( UPLO, N-K, -CONE, A( K+1, K ), 1,
  236. $ B( K+1, K ), 1, A( K+1, K+1 ), LDA )
  237. CALL CAXPY( N-K, CT, B( K+1, K ), 1, A( K+1, K ), 1 )
  238. CALL CTRSV( UPLO, 'No transpose', 'Non-unit', N-K,
  239. $ B( K+1, K+1 ), LDB, A( K+1, K ), 1 )
  240. END IF
  241. 20 CONTINUE
  242. END IF
  243. ELSE
  244. IF( UPPER ) THEN
  245. *
  246. * Compute U*A*U**H
  247. *
  248. DO 30 K = 1, N
  249. *
  250. * Update the upper triangle of A(1:k,1:k)
  251. *
  252. AKK = REAL( A( K, K ) )
  253. BKK = REAL( B( K, K ) )
  254. CALL CTRMV( UPLO, 'No transpose', 'Non-unit', K-1, B,
  255. $ LDB, A( 1, K ), 1 )
  256. CT = HALF*AKK
  257. CALL CAXPY( K-1, CT, B( 1, K ), 1, A( 1, K ), 1 )
  258. CALL CHER2( UPLO, K-1, CONE, A( 1, K ), 1, B( 1, K ), 1,
  259. $ A, LDA )
  260. CALL CAXPY( K-1, CT, B( 1, K ), 1, A( 1, K ), 1 )
  261. CALL CSSCAL( K-1, BKK, A( 1, K ), 1 )
  262. A( K, K ) = AKK*BKK**2
  263. 30 CONTINUE
  264. ELSE
  265. *
  266. * Compute L**H *A*L
  267. *
  268. DO 40 K = 1, N
  269. *
  270. * Update the lower triangle of A(1:k,1:k)
  271. *
  272. AKK = REAL( A( K, K ) )
  273. BKK = REAL( B( K, K ) )
  274. CALL CLACGV( K-1, A( K, 1 ), LDA )
  275. CALL CTRMV( UPLO, 'Conjugate transpose', 'Non-unit', K-1,
  276. $ B, LDB, A( K, 1 ), LDA )
  277. CT = HALF*AKK
  278. CALL CLACGV( K-1, B( K, 1 ), LDB )
  279. CALL CAXPY( K-1, CT, B( K, 1 ), LDB, A( K, 1 ), LDA )
  280. CALL CHER2( UPLO, K-1, CONE, A( K, 1 ), LDA, B( K, 1 ),
  281. $ LDB, A, LDA )
  282. CALL CAXPY( K-1, CT, B( K, 1 ), LDB, A( K, 1 ), LDA )
  283. CALL CLACGV( K-1, B( K, 1 ), LDB )
  284. CALL CSSCAL( K-1, BKK, A( K, 1 ), LDA )
  285. CALL CLACGV( K-1, A( K, 1 ), LDA )
  286. A( K, K ) = AKK*BKK**2
  287. 40 CONTINUE
  288. END IF
  289. END IF
  290. RETURN
  291. *
  292. * End of CHEGS2
  293. *
  294. END