|
123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217 |
- *> \brief \b CGESDD
- *
- * =========== DOCUMENTATION ===========
- *
- * Online html documentation available at
- * http://www.netlib.org/lapack/explore-html/
- *
- *> \htmlonly
- *> Download CGESDD + dependencies
- *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/cgesdd.f">
- *> [TGZ]</a>
- *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/cgesdd.f">
- *> [ZIP]</a>
- *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/cgesdd.f">
- *> [TXT]</a>
- *> \endhtmlonly
- *
- * Definition:
- * ===========
- *
- * SUBROUTINE CGESDD( JOBZ, M, N, A, LDA, S, U, LDU, VT, LDVT,
- * WORK, LWORK, RWORK, IWORK, INFO )
- *
- * .. Scalar Arguments ..
- * CHARACTER JOBZ
- * INTEGER INFO, LDA, LDU, LDVT, LWORK, M, N
- * ..
- * .. Array Arguments ..
- * INTEGER IWORK( * )
- * REAL RWORK( * ), S( * )
- * COMPLEX A( LDA, * ), U( LDU, * ), VT( LDVT, * ),
- * $ WORK( * )
- * ..
- *
- *
- *> \par Purpose:
- * =============
- *>
- *> \verbatim
- *>
- *> CGESDD computes the singular value decomposition (SVD) of a complex
- *> M-by-N matrix A, optionally computing the left and/or right singular
- *> vectors, by using divide-and-conquer method. The SVD is written
- *>
- *> A = U * SIGMA * conjugate-transpose(V)
- *>
- *> where SIGMA is an M-by-N matrix which is zero except for its
- *> min(m,n) diagonal elements, U is an M-by-M unitary matrix, and
- *> V is an N-by-N unitary matrix. The diagonal elements of SIGMA
- *> are the singular values of A; they are real and non-negative, and
- *> are returned in descending order. The first min(m,n) columns of
- *> U and V are the left and right singular vectors of A.
- *>
- *> Note that the routine returns VT = V**H, not V.
- *>
- *> \endverbatim
- *
- * Arguments:
- * ==========
- *
- *> \param[in] JOBZ
- *> \verbatim
- *> JOBZ is CHARACTER*1
- *> Specifies options for computing all or part of the matrix U:
- *> = 'A': all M columns of U and all N rows of V**H are
- *> returned in the arrays U and VT;
- *> = 'S': the first min(M,N) columns of U and the first
- *> min(M,N) rows of V**H are returned in the arrays U
- *> and VT;
- *> = 'O': If M >= N, the first N columns of U are overwritten
- *> in the array A and all rows of V**H are returned in
- *> the array VT;
- *> otherwise, all columns of U are returned in the
- *> array U and the first M rows of V**H are overwritten
- *> in the array A;
- *> = 'N': no columns of U or rows of V**H are computed.
- *> \endverbatim
- *>
- *> \param[in] M
- *> \verbatim
- *> M is INTEGER
- *> The number of rows of the input matrix A. M >= 0.
- *> \endverbatim
- *>
- *> \param[in] N
- *> \verbatim
- *> N is INTEGER
- *> The number of columns of the input matrix A. N >= 0.
- *> \endverbatim
- *>
- *> \param[in,out] A
- *> \verbatim
- *> A is COMPLEX array, dimension (LDA,N)
- *> On entry, the M-by-N matrix A.
- *> On exit,
- *> if JOBZ = 'O', A is overwritten with the first N columns
- *> of U (the left singular vectors, stored
- *> columnwise) if M >= N;
- *> A is overwritten with the first M rows
- *> of V**H (the right singular vectors, stored
- *> rowwise) otherwise.
- *> if JOBZ .ne. 'O', the contents of A are destroyed.
- *> \endverbatim
- *>
- *> \param[in] LDA
- *> \verbatim
- *> LDA is INTEGER
- *> The leading dimension of the array A. LDA >= max(1,M).
- *> \endverbatim
- *>
- *> \param[out] S
- *> \verbatim
- *> S is REAL array, dimension (min(M,N))
- *> The singular values of A, sorted so that S(i) >= S(i+1).
- *> \endverbatim
- *>
- *> \param[out] U
- *> \verbatim
- *> U is COMPLEX array, dimension (LDU,UCOL)
- *> UCOL = M if JOBZ = 'A' or JOBZ = 'O' and M < N;
- *> UCOL = min(M,N) if JOBZ = 'S'.
- *> If JOBZ = 'A' or JOBZ = 'O' and M < N, U contains the M-by-M
- *> unitary matrix U;
- *> if JOBZ = 'S', U contains the first min(M,N) columns of U
- *> (the left singular vectors, stored columnwise);
- *> if JOBZ = 'O' and M >= N, or JOBZ = 'N', U is not referenced.
- *> \endverbatim
- *>
- *> \param[in] LDU
- *> \verbatim
- *> LDU is INTEGER
- *> The leading dimension of the array U. LDU >= 1;
- *> if JOBZ = 'S' or 'A' or JOBZ = 'O' and M < N, LDU >= M.
- *> \endverbatim
- *>
- *> \param[out] VT
- *> \verbatim
- *> VT is COMPLEX array, dimension (LDVT,N)
- *> If JOBZ = 'A' or JOBZ = 'O' and M >= N, VT contains the
- *> N-by-N unitary matrix V**H;
- *> if JOBZ = 'S', VT contains the first min(M,N) rows of
- *> V**H (the right singular vectors, stored rowwise);
- *> if JOBZ = 'O' and M < N, or JOBZ = 'N', VT is not referenced.
- *> \endverbatim
- *>
- *> \param[in] LDVT
- *> \verbatim
- *> LDVT is INTEGER
- *> The leading dimension of the array VT. LDVT >= 1;
- *> if JOBZ = 'A' or JOBZ = 'O' and M >= N, LDVT >= N;
- *> if JOBZ = 'S', LDVT >= min(M,N).
- *> \endverbatim
- *>
- *> \param[out] WORK
- *> \verbatim
- *> WORK is COMPLEX array, dimension (MAX(1,LWORK))
- *> On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
- *> \endverbatim
- *>
- *> \param[in] LWORK
- *> \verbatim
- *> LWORK is INTEGER
- *> The dimension of the array WORK. LWORK >= 1.
- *> If LWORK = -1, a workspace query is assumed. The optimal
- *> size for the WORK array is calculated and stored in WORK(1),
- *> and no other work except argument checking is performed.
- *>
- *> Let mx = max(M,N) and mn = min(M,N).
- *> If JOBZ = 'N', LWORK >= 2*mn + mx.
- *> If JOBZ = 'O', LWORK >= 2*mn*mn + 2*mn + mx.
- *> If JOBZ = 'S', LWORK >= mn*mn + 3*mn.
- *> If JOBZ = 'A', LWORK >= mn*mn + 2*mn + mx.
- *> These are not tight minimums in all cases; see comments inside code.
- *> For good performance, LWORK should generally be larger;
- *> a query is recommended.
- *> \endverbatim
- *>
- *> \param[out] RWORK
- *> \verbatim
- *> RWORK is REAL array, dimension (MAX(1,LRWORK))
- *> Let mx = max(M,N) and mn = min(M,N).
- *> If JOBZ = 'N', LRWORK >= 5*mn (LAPACK <= 3.6 needs 7*mn);
- *> else if mx >> mn, LRWORK >= 5*mn*mn + 5*mn;
- *> else LRWORK >= max( 5*mn*mn + 5*mn,
- *> 2*mx*mn + 2*mn*mn + mn ).
- *> \endverbatim
- *>
- *> \param[out] IWORK
- *> \verbatim
- *> IWORK is INTEGER array, dimension (8*min(M,N))
- *> \endverbatim
- *>
- *> \param[out] INFO
- *> \verbatim
- *> INFO is INTEGER
- *> < 0: if INFO = -i, the i-th argument had an illegal value.
- *> = -4: if A had a NAN entry.
- *> > 0: The updating process of SBDSDC did not converge.
- *> = 0: successful exit.
- *> \endverbatim
- *
- * Authors:
- * ========
- *
- *> \author Univ. of Tennessee
- *> \author Univ. of California Berkeley
- *> \author Univ. of Colorado Denver
- *> \author NAG Ltd.
- *
- *> \ingroup complexGEsing
- *
- *> \par Contributors:
- * ==================
- *>
- *> Ming Gu and Huan Ren, Computer Science Division, University of
- *> California at Berkeley, USA
- *>
- * =====================================================================
- SUBROUTINE CGESDD( JOBZ, M, N, A, LDA, S, U, LDU, VT, LDVT,
- $ WORK, LWORK, RWORK, IWORK, INFO )
- implicit none
- *
- * -- LAPACK driver routine --
- * -- LAPACK is a software package provided by Univ. of Tennessee, --
- * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
- *
- * .. Scalar Arguments ..
- CHARACTER JOBZ
- INTEGER INFO, LDA, LDU, LDVT, LWORK, M, N
- * ..
- * .. Array Arguments ..
- INTEGER IWORK( * )
- REAL RWORK( * ), S( * )
- COMPLEX A( LDA, * ), U( LDU, * ), VT( LDVT, * ),
- $ WORK( * )
- * ..
- *
- * =====================================================================
- *
- * .. Parameters ..
- COMPLEX CZERO, CONE
- PARAMETER ( CZERO = ( 0.0E+0, 0.0E+0 ),
- $ CONE = ( 1.0E+0, 0.0E+0 ) )
- REAL ZERO, ONE
- PARAMETER ( ZERO = 0.0E+0, ONE = 1.0E+0 )
- * ..
- * .. Local Scalars ..
- LOGICAL LQUERY, WNTQA, WNTQAS, WNTQN, WNTQO, WNTQS
- INTEGER BLK, CHUNK, I, IE, IERR, IL, IR, IRU, IRVT,
- $ ISCL, ITAU, ITAUP, ITAUQ, IU, IVT, LDWKVT,
- $ LDWRKL, LDWRKR, LDWRKU, MAXWRK, MINMN, MINWRK,
- $ MNTHR1, MNTHR2, NRWORK, NWORK, WRKBL
- INTEGER LWORK_CGEBRD_MN, LWORK_CGEBRD_MM,
- $ LWORK_CGEBRD_NN, LWORK_CGELQF_MN,
- $ LWORK_CGEQRF_MN,
- $ LWORK_CUNGBR_P_MN, LWORK_CUNGBR_P_NN,
- $ LWORK_CUNGBR_Q_MN, LWORK_CUNGBR_Q_MM,
- $ LWORK_CUNGLQ_MN, LWORK_CUNGLQ_NN,
- $ LWORK_CUNGQR_MM, LWORK_CUNGQR_MN,
- $ LWORK_CUNMBR_PRC_MM, LWORK_CUNMBR_QLN_MM,
- $ LWORK_CUNMBR_PRC_MN, LWORK_CUNMBR_QLN_MN,
- $ LWORK_CUNMBR_PRC_NN, LWORK_CUNMBR_QLN_NN
- REAL ANRM, BIGNUM, EPS, SMLNUM
- * ..
- * .. Local Arrays ..
- INTEGER IDUM( 1 )
- REAL DUM( 1 )
- COMPLEX CDUM( 1 )
- * ..
- * .. External Subroutines ..
- EXTERNAL CGEBRD, CGELQF, CGEMM, CGEQRF, CLACP2, CLACPY,
- $ CLACRM, CLARCM, CLASCL, CLASET, CUNGBR, CUNGLQ,
- $ CUNGQR, CUNMBR, SBDSDC, SLASCL, XERBLA
- * ..
- * .. External Functions ..
- LOGICAL LSAME, SISNAN
- REAL SLAMCH, CLANGE, SROUNDUP_LWORK
- EXTERNAL LSAME, SLAMCH, CLANGE, SISNAN,
- $ SROUNDUP_LWORK
- * ..
- * .. Intrinsic Functions ..
- INTRINSIC INT, MAX, MIN, SQRT
- * ..
- * .. Executable Statements ..
- *
- * Test the input arguments
- *
- INFO = 0
- MINMN = MIN( M, N )
- MNTHR1 = INT( MINMN*17.0E0 / 9.0E0 )
- MNTHR2 = INT( MINMN*5.0E0 / 3.0E0 )
- WNTQA = LSAME( JOBZ, 'A' )
- WNTQS = LSAME( JOBZ, 'S' )
- WNTQAS = WNTQA .OR. WNTQS
- WNTQO = LSAME( JOBZ, 'O' )
- WNTQN = LSAME( JOBZ, 'N' )
- LQUERY = ( LWORK.EQ.-1 )
- MINWRK = 1
- MAXWRK = 1
- *
- IF( .NOT.( WNTQA .OR. WNTQS .OR. WNTQO .OR. WNTQN ) ) THEN
- INFO = -1
- ELSE IF( M.LT.0 ) THEN
- INFO = -2
- ELSE IF( N.LT.0 ) THEN
- INFO = -3
- ELSE IF( LDA.LT.MAX( 1, M ) ) THEN
- INFO = -5
- ELSE IF( LDU.LT.1 .OR. ( WNTQAS .AND. LDU.LT.M ) .OR.
- $ ( WNTQO .AND. M.LT.N .AND. LDU.LT.M ) ) THEN
- INFO = -8
- ELSE IF( LDVT.LT.1 .OR. ( WNTQA .AND. LDVT.LT.N ) .OR.
- $ ( WNTQS .AND. LDVT.LT.MINMN ) .OR.
- $ ( WNTQO .AND. M.GE.N .AND. LDVT.LT.N ) ) THEN
- INFO = -10
- END IF
- *
- * Compute workspace
- * Note: Comments in the code beginning "Workspace:" describe the
- * minimal amount of workspace allocated at that point in the code,
- * as well as the preferred amount for good performance.
- * CWorkspace refers to complex workspace, and RWorkspace to
- * real workspace. NB refers to the optimal block size for the
- * immediately following subroutine, as returned by ILAENV.)
- *
- IF( INFO.EQ.0 ) THEN
- MINWRK = 1
- MAXWRK = 1
- IF( M.GE.N .AND. MINMN.GT.0 ) THEN
- *
- * There is no complex work space needed for bidiagonal SVD
- * The real work space needed for bidiagonal SVD (sbdsdc) is
- * BDSPAC = 3*N*N + 4*N for singular values and vectors;
- * BDSPAC = 4*N for singular values only;
- * not including e, RU, and RVT matrices.
- *
- * Compute space preferred for each routine
- CALL CGEBRD( M, N, CDUM(1), M, DUM(1), DUM(1), CDUM(1),
- $ CDUM(1), CDUM(1), -1, IERR )
- LWORK_CGEBRD_MN = INT( CDUM(1) )
- *
- CALL CGEBRD( N, N, CDUM(1), N, DUM(1), DUM(1), CDUM(1),
- $ CDUM(1), CDUM(1), -1, IERR )
- LWORK_CGEBRD_NN = INT( CDUM(1) )
- *
- CALL CGEQRF( M, N, CDUM(1), M, CDUM(1), CDUM(1), -1, IERR )
- LWORK_CGEQRF_MN = INT( CDUM(1) )
- *
- CALL CUNGBR( 'P', N, N, N, CDUM(1), N, CDUM(1), CDUM(1),
- $ -1, IERR )
- LWORK_CUNGBR_P_NN = INT( CDUM(1) )
- *
- CALL CUNGBR( 'Q', M, M, N, CDUM(1), M, CDUM(1), CDUM(1),
- $ -1, IERR )
- LWORK_CUNGBR_Q_MM = INT( CDUM(1) )
- *
- CALL CUNGBR( 'Q', M, N, N, CDUM(1), M, CDUM(1), CDUM(1),
- $ -1, IERR )
- LWORK_CUNGBR_Q_MN = INT( CDUM(1) )
- *
- CALL CUNGQR( M, M, N, CDUM(1), M, CDUM(1), CDUM(1),
- $ -1, IERR )
- LWORK_CUNGQR_MM = INT( CDUM(1) )
- *
- CALL CUNGQR( M, N, N, CDUM(1), M, CDUM(1), CDUM(1),
- $ -1, IERR )
- LWORK_CUNGQR_MN = INT( CDUM(1) )
- *
- CALL CUNMBR( 'P', 'R', 'C', N, N, N, CDUM(1), N, CDUM(1),
- $ CDUM(1), N, CDUM(1), -1, IERR )
- LWORK_CUNMBR_PRC_NN = INT( CDUM(1) )
- *
- CALL CUNMBR( 'Q', 'L', 'N', M, M, N, CDUM(1), M, CDUM(1),
- $ CDUM(1), M, CDUM(1), -1, IERR )
- LWORK_CUNMBR_QLN_MM = INT( CDUM(1) )
- *
- CALL CUNMBR( 'Q', 'L', 'N', M, N, N, CDUM(1), M, CDUM(1),
- $ CDUM(1), M, CDUM(1), -1, IERR )
- LWORK_CUNMBR_QLN_MN = INT( CDUM(1) )
- *
- CALL CUNMBR( 'Q', 'L', 'N', N, N, N, CDUM(1), N, CDUM(1),
- $ CDUM(1), N, CDUM(1), -1, IERR )
- LWORK_CUNMBR_QLN_NN = INT( CDUM(1) )
- *
- IF( M.GE.MNTHR1 ) THEN
- IF( WNTQN ) THEN
- *
- * Path 1 (M >> N, JOBZ='N')
- *
- MAXWRK = N + LWORK_CGEQRF_MN
- MAXWRK = MAX( MAXWRK, 2*N + LWORK_CGEBRD_NN )
- MINWRK = 3*N
- ELSE IF( WNTQO ) THEN
- *
- * Path 2 (M >> N, JOBZ='O')
- *
- WRKBL = N + LWORK_CGEQRF_MN
- WRKBL = MAX( WRKBL, N + LWORK_CUNGQR_MN )
- WRKBL = MAX( WRKBL, 2*N + LWORK_CGEBRD_NN )
- WRKBL = MAX( WRKBL, 2*N + LWORK_CUNMBR_QLN_NN )
- WRKBL = MAX( WRKBL, 2*N + LWORK_CUNMBR_PRC_NN )
- MAXWRK = M*N + N*N + WRKBL
- MINWRK = 2*N*N + 3*N
- ELSE IF( WNTQS ) THEN
- *
- * Path 3 (M >> N, JOBZ='S')
- *
- WRKBL = N + LWORK_CGEQRF_MN
- WRKBL = MAX( WRKBL, N + LWORK_CUNGQR_MN )
- WRKBL = MAX( WRKBL, 2*N + LWORK_CGEBRD_NN )
- WRKBL = MAX( WRKBL, 2*N + LWORK_CUNMBR_QLN_NN )
- WRKBL = MAX( WRKBL, 2*N + LWORK_CUNMBR_PRC_NN )
- MAXWRK = N*N + WRKBL
- MINWRK = N*N + 3*N
- ELSE IF( WNTQA ) THEN
- *
- * Path 4 (M >> N, JOBZ='A')
- *
- WRKBL = N + LWORK_CGEQRF_MN
- WRKBL = MAX( WRKBL, N + LWORK_CUNGQR_MM )
- WRKBL = MAX( WRKBL, 2*N + LWORK_CGEBRD_NN )
- WRKBL = MAX( WRKBL, 2*N + LWORK_CUNMBR_QLN_NN )
- WRKBL = MAX( WRKBL, 2*N + LWORK_CUNMBR_PRC_NN )
- MAXWRK = N*N + WRKBL
- MINWRK = N*N + MAX( 3*N, N + M )
- END IF
- ELSE IF( M.GE.MNTHR2 ) THEN
- *
- * Path 5 (M >> N, but not as much as MNTHR1)
- *
- MAXWRK = 2*N + LWORK_CGEBRD_MN
- MINWRK = 2*N + M
- IF( WNTQO ) THEN
- * Path 5o (M >> N, JOBZ='O')
- MAXWRK = MAX( MAXWRK, 2*N + LWORK_CUNGBR_P_NN )
- MAXWRK = MAX( MAXWRK, 2*N + LWORK_CUNGBR_Q_MN )
- MAXWRK = MAXWRK + M*N
- MINWRK = MINWRK + N*N
- ELSE IF( WNTQS ) THEN
- * Path 5s (M >> N, JOBZ='S')
- MAXWRK = MAX( MAXWRK, 2*N + LWORK_CUNGBR_P_NN )
- MAXWRK = MAX( MAXWRK, 2*N + LWORK_CUNGBR_Q_MN )
- ELSE IF( WNTQA ) THEN
- * Path 5a (M >> N, JOBZ='A')
- MAXWRK = MAX( MAXWRK, 2*N + LWORK_CUNGBR_P_NN )
- MAXWRK = MAX( MAXWRK, 2*N + LWORK_CUNGBR_Q_MM )
- END IF
- ELSE
- *
- * Path 6 (M >= N, but not much larger)
- *
- MAXWRK = 2*N + LWORK_CGEBRD_MN
- MINWRK = 2*N + M
- IF( WNTQO ) THEN
- * Path 6o (M >= N, JOBZ='O')
- MAXWRK = MAX( MAXWRK, 2*N + LWORK_CUNMBR_PRC_NN )
- MAXWRK = MAX( MAXWRK, 2*N + LWORK_CUNMBR_QLN_MN )
- MAXWRK = MAXWRK + M*N
- MINWRK = MINWRK + N*N
- ELSE IF( WNTQS ) THEN
- * Path 6s (M >= N, JOBZ='S')
- MAXWRK = MAX( MAXWRK, 2*N + LWORK_CUNMBR_QLN_MN )
- MAXWRK = MAX( MAXWRK, 2*N + LWORK_CUNMBR_PRC_NN )
- ELSE IF( WNTQA ) THEN
- * Path 6a (M >= N, JOBZ='A')
- MAXWRK = MAX( MAXWRK, 2*N + LWORK_CUNMBR_QLN_MM )
- MAXWRK = MAX( MAXWRK, 2*N + LWORK_CUNMBR_PRC_NN )
- END IF
- END IF
- ELSE IF( MINMN.GT.0 ) THEN
- *
- * There is no complex work space needed for bidiagonal SVD
- * The real work space needed for bidiagonal SVD (sbdsdc) is
- * BDSPAC = 3*M*M + 4*M for singular values and vectors;
- * BDSPAC = 4*M for singular values only;
- * not including e, RU, and RVT matrices.
- *
- * Compute space preferred for each routine
- CALL CGEBRD( M, N, CDUM(1), M, DUM(1), DUM(1), CDUM(1),
- $ CDUM(1), CDUM(1), -1, IERR )
- LWORK_CGEBRD_MN = INT( CDUM(1) )
- *
- CALL CGEBRD( M, M, CDUM(1), M, DUM(1), DUM(1), CDUM(1),
- $ CDUM(1), CDUM(1), -1, IERR )
- LWORK_CGEBRD_MM = INT( CDUM(1) )
- *
- CALL CGELQF( M, N, CDUM(1), M, CDUM(1), CDUM(1), -1, IERR )
- LWORK_CGELQF_MN = INT( CDUM(1) )
- *
- CALL CUNGBR( 'P', M, N, M, CDUM(1), M, CDUM(1), CDUM(1),
- $ -1, IERR )
- LWORK_CUNGBR_P_MN = INT( CDUM(1) )
- *
- CALL CUNGBR( 'P', N, N, M, CDUM(1), N, CDUM(1), CDUM(1),
- $ -1, IERR )
- LWORK_CUNGBR_P_NN = INT( CDUM(1) )
- *
- CALL CUNGBR( 'Q', M, M, N, CDUM(1), M, CDUM(1), CDUM(1),
- $ -1, IERR )
- LWORK_CUNGBR_Q_MM = INT( CDUM(1) )
- *
- CALL CUNGLQ( M, N, M, CDUM(1), M, CDUM(1), CDUM(1),
- $ -1, IERR )
- LWORK_CUNGLQ_MN = INT( CDUM(1) )
- *
- CALL CUNGLQ( N, N, M, CDUM(1), N, CDUM(1), CDUM(1),
- $ -1, IERR )
- LWORK_CUNGLQ_NN = INT( CDUM(1) )
- *
- CALL CUNMBR( 'P', 'R', 'C', M, M, M, CDUM(1), M, CDUM(1),
- $ CDUM(1), M, CDUM(1), -1, IERR )
- LWORK_CUNMBR_PRC_MM = INT( CDUM(1) )
- *
- CALL CUNMBR( 'P', 'R', 'C', M, N, M, CDUM(1), M, CDUM(1),
- $ CDUM(1), M, CDUM(1), -1, IERR )
- LWORK_CUNMBR_PRC_MN = INT( CDUM(1) )
- *
- CALL CUNMBR( 'P', 'R', 'C', N, N, M, CDUM(1), N, CDUM(1),
- $ CDUM(1), N, CDUM(1), -1, IERR )
- LWORK_CUNMBR_PRC_NN = INT( CDUM(1) )
- *
- CALL CUNMBR( 'Q', 'L', 'N', M, M, M, CDUM(1), M, CDUM(1),
- $ CDUM(1), M, CDUM(1), -1, IERR )
- LWORK_CUNMBR_QLN_MM = INT( CDUM(1) )
- *
- IF( N.GE.MNTHR1 ) THEN
- IF( WNTQN ) THEN
- *
- * Path 1t (N >> M, JOBZ='N')
- *
- MAXWRK = M + LWORK_CGELQF_MN
- MAXWRK = MAX( MAXWRK, 2*M + LWORK_CGEBRD_MM )
- MINWRK = 3*M
- ELSE IF( WNTQO ) THEN
- *
- * Path 2t (N >> M, JOBZ='O')
- *
- WRKBL = M + LWORK_CGELQF_MN
- WRKBL = MAX( WRKBL, M + LWORK_CUNGLQ_MN )
- WRKBL = MAX( WRKBL, 2*M + LWORK_CGEBRD_MM )
- WRKBL = MAX( WRKBL, 2*M + LWORK_CUNMBR_QLN_MM )
- WRKBL = MAX( WRKBL, 2*M + LWORK_CUNMBR_PRC_MM )
- MAXWRK = M*N + M*M + WRKBL
- MINWRK = 2*M*M + 3*M
- ELSE IF( WNTQS ) THEN
- *
- * Path 3t (N >> M, JOBZ='S')
- *
- WRKBL = M + LWORK_CGELQF_MN
- WRKBL = MAX( WRKBL, M + LWORK_CUNGLQ_MN )
- WRKBL = MAX( WRKBL, 2*M + LWORK_CGEBRD_MM )
- WRKBL = MAX( WRKBL, 2*M + LWORK_CUNMBR_QLN_MM )
- WRKBL = MAX( WRKBL, 2*M + LWORK_CUNMBR_PRC_MM )
- MAXWRK = M*M + WRKBL
- MINWRK = M*M + 3*M
- ELSE IF( WNTQA ) THEN
- *
- * Path 4t (N >> M, JOBZ='A')
- *
- WRKBL = M + LWORK_CGELQF_MN
- WRKBL = MAX( WRKBL, M + LWORK_CUNGLQ_NN )
- WRKBL = MAX( WRKBL, 2*M + LWORK_CGEBRD_MM )
- WRKBL = MAX( WRKBL, 2*M + LWORK_CUNMBR_QLN_MM )
- WRKBL = MAX( WRKBL, 2*M + LWORK_CUNMBR_PRC_MM )
- MAXWRK = M*M + WRKBL
- MINWRK = M*M + MAX( 3*M, M + N )
- END IF
- ELSE IF( N.GE.MNTHR2 ) THEN
- *
- * Path 5t (N >> M, but not as much as MNTHR1)
- *
- MAXWRK = 2*M + LWORK_CGEBRD_MN
- MINWRK = 2*M + N
- IF( WNTQO ) THEN
- * Path 5to (N >> M, JOBZ='O')
- MAXWRK = MAX( MAXWRK, 2*M + LWORK_CUNGBR_Q_MM )
- MAXWRK = MAX( MAXWRK, 2*M + LWORK_CUNGBR_P_MN )
- MAXWRK = MAXWRK + M*N
- MINWRK = MINWRK + M*M
- ELSE IF( WNTQS ) THEN
- * Path 5ts (N >> M, JOBZ='S')
- MAXWRK = MAX( MAXWRK, 2*M + LWORK_CUNGBR_Q_MM )
- MAXWRK = MAX( MAXWRK, 2*M + LWORK_CUNGBR_P_MN )
- ELSE IF( WNTQA ) THEN
- * Path 5ta (N >> M, JOBZ='A')
- MAXWRK = MAX( MAXWRK, 2*M + LWORK_CUNGBR_Q_MM )
- MAXWRK = MAX( MAXWRK, 2*M + LWORK_CUNGBR_P_NN )
- END IF
- ELSE
- *
- * Path 6t (N > M, but not much larger)
- *
- MAXWRK = 2*M + LWORK_CGEBRD_MN
- MINWRK = 2*M + N
- IF( WNTQO ) THEN
- * Path 6to (N > M, JOBZ='O')
- MAXWRK = MAX( MAXWRK, 2*M + LWORK_CUNMBR_QLN_MM )
- MAXWRK = MAX( MAXWRK, 2*M + LWORK_CUNMBR_PRC_MN )
- MAXWRK = MAXWRK + M*N
- MINWRK = MINWRK + M*M
- ELSE IF( WNTQS ) THEN
- * Path 6ts (N > M, JOBZ='S')
- MAXWRK = MAX( MAXWRK, 2*M + LWORK_CUNMBR_QLN_MM )
- MAXWRK = MAX( MAXWRK, 2*M + LWORK_CUNMBR_PRC_MN )
- ELSE IF( WNTQA ) THEN
- * Path 6ta (N > M, JOBZ='A')
- MAXWRK = MAX( MAXWRK, 2*M + LWORK_CUNMBR_QLN_MM )
- MAXWRK = MAX( MAXWRK, 2*M + LWORK_CUNMBR_PRC_NN )
- END IF
- END IF
- END IF
- MAXWRK = MAX( MAXWRK, MINWRK )
- END IF
- IF( INFO.EQ.0 ) THEN
- WORK( 1 ) = SROUNDUP_LWORK( MAXWRK )
- IF( LWORK.LT.MINWRK .AND. .NOT. LQUERY ) THEN
- INFO = -12
- END IF
- END IF
- *
- IF( INFO.NE.0 ) THEN
- CALL XERBLA( 'CGESDD', -INFO )
- RETURN
- ELSE IF( LQUERY ) THEN
- RETURN
- END IF
- *
- * Quick return if possible
- *
- IF( M.EQ.0 .OR. N.EQ.0 ) THEN
- RETURN
- END IF
- *
- * Get machine constants
- *
- EPS = SLAMCH( 'P' )
- SMLNUM = SQRT( SLAMCH( 'S' ) ) / EPS
- BIGNUM = ONE / SMLNUM
- *
- * Scale A if max element outside range [SMLNUM,BIGNUM]
- *
- ANRM = CLANGE( 'M', M, N, A, LDA, DUM )
- IF( SISNAN ( ANRM ) ) THEN
- INFO = -4
- RETURN
- END IF
- ISCL = 0
- IF( ANRM.GT.ZERO .AND. ANRM.LT.SMLNUM ) THEN
- ISCL = 1
- CALL CLASCL( 'G', 0, 0, ANRM, SMLNUM, M, N, A, LDA, IERR )
- ELSE IF( ANRM.GT.BIGNUM ) THEN
- ISCL = 1
- CALL CLASCL( 'G', 0, 0, ANRM, BIGNUM, M, N, A, LDA, IERR )
- END IF
- *
- IF( M.GE.N ) THEN
- *
- * A has at least as many rows as columns. If A has sufficiently
- * more rows than columns, first reduce using the QR
- * decomposition (if sufficient workspace available)
- *
- IF( M.GE.MNTHR1 ) THEN
- *
- IF( WNTQN ) THEN
- *
- * Path 1 (M >> N, JOBZ='N')
- * No singular vectors to be computed
- *
- ITAU = 1
- NWORK = ITAU + N
- *
- * Compute A=Q*R
- * CWorkspace: need N [tau] + N [work]
- * CWorkspace: prefer N [tau] + N*NB [work]
- * RWorkspace: need 0
- *
- CALL CGEQRF( M, N, A, LDA, WORK( ITAU ), WORK( NWORK ),
- $ LWORK-NWORK+1, IERR )
- *
- * Zero out below R
- *
- CALL CLASET( 'L', N-1, N-1, CZERO, CZERO, A( 2, 1 ),
- $ LDA )
- IE = 1
- ITAUQ = 1
- ITAUP = ITAUQ + N
- NWORK = ITAUP + N
- *
- * Bidiagonalize R in A
- * CWorkspace: need 2*N [tauq, taup] + N [work]
- * CWorkspace: prefer 2*N [tauq, taup] + 2*N*NB [work]
- * RWorkspace: need N [e]
- *
- CALL CGEBRD( N, N, A, LDA, S, RWORK( IE ), WORK( ITAUQ ),
- $ WORK( ITAUP ), WORK( NWORK ), LWORK-NWORK+1,
- $ IERR )
- NRWORK = IE + N
- *
- * Perform bidiagonal SVD, compute singular values only
- * CWorkspace: need 0
- * RWorkspace: need N [e] + BDSPAC
- *
- CALL SBDSDC( 'U', 'N', N, S, RWORK( IE ), DUM,1,DUM,1,
- $ DUM, IDUM, RWORK( NRWORK ), IWORK, INFO )
- *
- ELSE IF( WNTQO ) THEN
- *
- * Path 2 (M >> N, JOBZ='O')
- * N left singular vectors to be overwritten on A and
- * N right singular vectors to be computed in VT
- *
- IU = 1
- *
- * WORK(IU) is N by N
- *
- LDWRKU = N
- IR = IU + LDWRKU*N
- IF( LWORK .GE. M*N + N*N + 3*N ) THEN
- *
- * WORK(IR) is M by N
- *
- LDWRKR = M
- ELSE
- LDWRKR = ( LWORK - N*N - 3*N ) / N
- END IF
- ITAU = IR + LDWRKR*N
- NWORK = ITAU + N
- *
- * Compute A=Q*R
- * CWorkspace: need N*N [U] + N*N [R] + N [tau] + N [work]
- * CWorkspace: prefer N*N [U] + N*N [R] + N [tau] + N*NB [work]
- * RWorkspace: need 0
- *
- CALL CGEQRF( M, N, A, LDA, WORK( ITAU ), WORK( NWORK ),
- $ LWORK-NWORK+1, IERR )
- *
- * Copy R to WORK( IR ), zeroing out below it
- *
- CALL CLACPY( 'U', N, N, A, LDA, WORK( IR ), LDWRKR )
- CALL CLASET( 'L', N-1, N-1, CZERO, CZERO, WORK( IR+1 ),
- $ LDWRKR )
- *
- * Generate Q in A
- * CWorkspace: need N*N [U] + N*N [R] + N [tau] + N [work]
- * CWorkspace: prefer N*N [U] + N*N [R] + N [tau] + N*NB [work]
- * RWorkspace: need 0
- *
- CALL CUNGQR( M, N, N, A, LDA, WORK( ITAU ),
- $ WORK( NWORK ), LWORK-NWORK+1, IERR )
- IE = 1
- ITAUQ = ITAU
- ITAUP = ITAUQ + N
- NWORK = ITAUP + N
- *
- * Bidiagonalize R in WORK(IR)
- * CWorkspace: need N*N [U] + N*N [R] + 2*N [tauq, taup] + N [work]
- * CWorkspace: prefer N*N [U] + N*N [R] + 2*N [tauq, taup] + 2*N*NB [work]
- * RWorkspace: need N [e]
- *
- CALL CGEBRD( N, N, WORK( IR ), LDWRKR, S, RWORK( IE ),
- $ WORK( ITAUQ ), WORK( ITAUP ), WORK( NWORK ),
- $ LWORK-NWORK+1, IERR )
- *
- * Perform bidiagonal SVD, computing left singular vectors
- * of R in WORK(IRU) and computing right singular vectors
- * of R in WORK(IRVT)
- * CWorkspace: need 0
- * RWorkspace: need N [e] + N*N [RU] + N*N [RVT] + BDSPAC
- *
- IRU = IE + N
- IRVT = IRU + N*N
- NRWORK = IRVT + N*N
- CALL SBDSDC( 'U', 'I', N, S, RWORK( IE ), RWORK( IRU ),
- $ N, RWORK( IRVT ), N, DUM, IDUM,
- $ RWORK( NRWORK ), IWORK, INFO )
- *
- * Copy real matrix RWORK(IRU) to complex matrix WORK(IU)
- * Overwrite WORK(IU) by the left singular vectors of R
- * CWorkspace: need N*N [U] + N*N [R] + 2*N [tauq, taup] + N [work]
- * CWorkspace: prefer N*N [U] + N*N [R] + 2*N [tauq, taup] + N*NB [work]
- * RWorkspace: need 0
- *
- CALL CLACP2( 'F', N, N, RWORK( IRU ), N, WORK( IU ),
- $ LDWRKU )
- CALL CUNMBR( 'Q', 'L', 'N', N, N, N, WORK( IR ), LDWRKR,
- $ WORK( ITAUQ ), WORK( IU ), LDWRKU,
- $ WORK( NWORK ), LWORK-NWORK+1, IERR )
- *
- * Copy real matrix RWORK(IRVT) to complex matrix VT
- * Overwrite VT by the right singular vectors of R
- * CWorkspace: need N*N [U] + N*N [R] + 2*N [tauq, taup] + N [work]
- * CWorkspace: prefer N*N [U] + N*N [R] + 2*N [tauq, taup] + N*NB [work]
- * RWorkspace: need 0
- *
- CALL CLACP2( 'F', N, N, RWORK( IRVT ), N, VT, LDVT )
- CALL CUNMBR( 'P', 'R', 'C', N, N, N, WORK( IR ), LDWRKR,
- $ WORK( ITAUP ), VT, LDVT, WORK( NWORK ),
- $ LWORK-NWORK+1, IERR )
- *
- * Multiply Q in A by left singular vectors of R in
- * WORK(IU), storing result in WORK(IR) and copying to A
- * CWorkspace: need N*N [U] + N*N [R]
- * CWorkspace: prefer N*N [U] + M*N [R]
- * RWorkspace: need 0
- *
- DO 10 I = 1, M, LDWRKR
- CHUNK = MIN( M-I+1, LDWRKR )
- CALL CGEMM( 'N', 'N', CHUNK, N, N, CONE, A( I, 1 ),
- $ LDA, WORK( IU ), LDWRKU, CZERO,
- $ WORK( IR ), LDWRKR )
- CALL CLACPY( 'F', CHUNK, N, WORK( IR ), LDWRKR,
- $ A( I, 1 ), LDA )
- 10 CONTINUE
- *
- ELSE IF( WNTQS ) THEN
- *
- * Path 3 (M >> N, JOBZ='S')
- * N left singular vectors to be computed in U and
- * N right singular vectors to be computed in VT
- *
- IR = 1
- *
- * WORK(IR) is N by N
- *
- LDWRKR = N
- ITAU = IR + LDWRKR*N
- NWORK = ITAU + N
- *
- * Compute A=Q*R
- * CWorkspace: need N*N [R] + N [tau] + N [work]
- * CWorkspace: prefer N*N [R] + N [tau] + N*NB [work]
- * RWorkspace: need 0
- *
- CALL CGEQRF( M, N, A, LDA, WORK( ITAU ), WORK( NWORK ),
- $ LWORK-NWORK+1, IERR )
- *
- * Copy R to WORK(IR), zeroing out below it
- *
- CALL CLACPY( 'U', N, N, A, LDA, WORK( IR ), LDWRKR )
- CALL CLASET( 'L', N-1, N-1, CZERO, CZERO, WORK( IR+1 ),
- $ LDWRKR )
- *
- * Generate Q in A
- * CWorkspace: need N*N [R] + N [tau] + N [work]
- * CWorkspace: prefer N*N [R] + N [tau] + N*NB [work]
- * RWorkspace: need 0
- *
- CALL CUNGQR( M, N, N, A, LDA, WORK( ITAU ),
- $ WORK( NWORK ), LWORK-NWORK+1, IERR )
- IE = 1
- ITAUQ = ITAU
- ITAUP = ITAUQ + N
- NWORK = ITAUP + N
- *
- * Bidiagonalize R in WORK(IR)
- * CWorkspace: need N*N [R] + 2*N [tauq, taup] + N [work]
- * CWorkspace: prefer N*N [R] + 2*N [tauq, taup] + 2*N*NB [work]
- * RWorkspace: need N [e]
- *
- CALL CGEBRD( N, N, WORK( IR ), LDWRKR, S, RWORK( IE ),
- $ WORK( ITAUQ ), WORK( ITAUP ), WORK( NWORK ),
- $ LWORK-NWORK+1, IERR )
- *
- * Perform bidiagonal SVD, computing left singular vectors
- * of bidiagonal matrix in RWORK(IRU) and computing right
- * singular vectors of bidiagonal matrix in RWORK(IRVT)
- * CWorkspace: need 0
- * RWorkspace: need N [e] + N*N [RU] + N*N [RVT] + BDSPAC
- *
- IRU = IE + N
- IRVT = IRU + N*N
- NRWORK = IRVT + N*N
- CALL SBDSDC( 'U', 'I', N, S, RWORK( IE ), RWORK( IRU ),
- $ N, RWORK( IRVT ), N, DUM, IDUM,
- $ RWORK( NRWORK ), IWORK, INFO )
- *
- * Copy real matrix RWORK(IRU) to complex matrix U
- * Overwrite U by left singular vectors of R
- * CWorkspace: need N*N [R] + 2*N [tauq, taup] + N [work]
- * CWorkspace: prefer N*N [R] + 2*N [tauq, taup] + N*NB [work]
- * RWorkspace: need 0
- *
- CALL CLACP2( 'F', N, N, RWORK( IRU ), N, U, LDU )
- CALL CUNMBR( 'Q', 'L', 'N', N, N, N, WORK( IR ), LDWRKR,
- $ WORK( ITAUQ ), U, LDU, WORK( NWORK ),
- $ LWORK-NWORK+1, IERR )
- *
- * Copy real matrix RWORK(IRVT) to complex matrix VT
- * Overwrite VT by right singular vectors of R
- * CWorkspace: need N*N [R] + 2*N [tauq, taup] + N [work]
- * CWorkspace: prefer N*N [R] + 2*N [tauq, taup] + N*NB [work]
- * RWorkspace: need 0
- *
- CALL CLACP2( 'F', N, N, RWORK( IRVT ), N, VT, LDVT )
- CALL CUNMBR( 'P', 'R', 'C', N, N, N, WORK( IR ), LDWRKR,
- $ WORK( ITAUP ), VT, LDVT, WORK( NWORK ),
- $ LWORK-NWORK+1, IERR )
- *
- * Multiply Q in A by left singular vectors of R in
- * WORK(IR), storing result in U
- * CWorkspace: need N*N [R]
- * RWorkspace: need 0
- *
- CALL CLACPY( 'F', N, N, U, LDU, WORK( IR ), LDWRKR )
- CALL CGEMM( 'N', 'N', M, N, N, CONE, A, LDA, WORK( IR ),
- $ LDWRKR, CZERO, U, LDU )
- *
- ELSE IF( WNTQA ) THEN
- *
- * Path 4 (M >> N, JOBZ='A')
- * M left singular vectors to be computed in U and
- * N right singular vectors to be computed in VT
- *
- IU = 1
- *
- * WORK(IU) is N by N
- *
- LDWRKU = N
- ITAU = IU + LDWRKU*N
- NWORK = ITAU + N
- *
- * Compute A=Q*R, copying result to U
- * CWorkspace: need N*N [U] + N [tau] + N [work]
- * CWorkspace: prefer N*N [U] + N [tau] + N*NB [work]
- * RWorkspace: need 0
- *
- CALL CGEQRF( M, N, A, LDA, WORK( ITAU ), WORK( NWORK ),
- $ LWORK-NWORK+1, IERR )
- CALL CLACPY( 'L', M, N, A, LDA, U, LDU )
- *
- * Generate Q in U
- * CWorkspace: need N*N [U] + N [tau] + M [work]
- * CWorkspace: prefer N*N [U] + N [tau] + M*NB [work]
- * RWorkspace: need 0
- *
- CALL CUNGQR( M, M, N, U, LDU, WORK( ITAU ),
- $ WORK( NWORK ), LWORK-NWORK+1, IERR )
- *
- * Produce R in A, zeroing out below it
- *
- CALL CLASET( 'L', N-1, N-1, CZERO, CZERO, A( 2, 1 ),
- $ LDA )
- IE = 1
- ITAUQ = ITAU
- ITAUP = ITAUQ + N
- NWORK = ITAUP + N
- *
- * Bidiagonalize R in A
- * CWorkspace: need N*N [U] + 2*N [tauq, taup] + N [work]
- * CWorkspace: prefer N*N [U] + 2*N [tauq, taup] + 2*N*NB [work]
- * RWorkspace: need N [e]
- *
- CALL CGEBRD( N, N, A, LDA, S, RWORK( IE ), WORK( ITAUQ ),
- $ WORK( ITAUP ), WORK( NWORK ), LWORK-NWORK+1,
- $ IERR )
- IRU = IE + N
- IRVT = IRU + N*N
- NRWORK = IRVT + N*N
- *
- * Perform bidiagonal SVD, computing left singular vectors
- * of bidiagonal matrix in RWORK(IRU) and computing right
- * singular vectors of bidiagonal matrix in RWORK(IRVT)
- * CWorkspace: need 0
- * RWorkspace: need N [e] + N*N [RU] + N*N [RVT] + BDSPAC
- *
- CALL SBDSDC( 'U', 'I', N, S, RWORK( IE ), RWORK( IRU ),
- $ N, RWORK( IRVT ), N, DUM, IDUM,
- $ RWORK( NRWORK ), IWORK, INFO )
- *
- * Copy real matrix RWORK(IRU) to complex matrix WORK(IU)
- * Overwrite WORK(IU) by left singular vectors of R
- * CWorkspace: need N*N [U] + 2*N [tauq, taup] + N [work]
- * CWorkspace: prefer N*N [U] + 2*N [tauq, taup] + N*NB [work]
- * RWorkspace: need 0
- *
- CALL CLACP2( 'F', N, N, RWORK( IRU ), N, WORK( IU ),
- $ LDWRKU )
- CALL CUNMBR( 'Q', 'L', 'N', N, N, N, A, LDA,
- $ WORK( ITAUQ ), WORK( IU ), LDWRKU,
- $ WORK( NWORK ), LWORK-NWORK+1, IERR )
- *
- * Copy real matrix RWORK(IRVT) to complex matrix VT
- * Overwrite VT by right singular vectors of R
- * CWorkspace: need N*N [U] + 2*N [tauq, taup] + N [work]
- * CWorkspace: prefer N*N [U] + 2*N [tauq, taup] + N*NB [work]
- * RWorkspace: need 0
- *
- CALL CLACP2( 'F', N, N, RWORK( IRVT ), N, VT, LDVT )
- CALL CUNMBR( 'P', 'R', 'C', N, N, N, A, LDA,
- $ WORK( ITAUP ), VT, LDVT, WORK( NWORK ),
- $ LWORK-NWORK+1, IERR )
- *
- * Multiply Q in U by left singular vectors of R in
- * WORK(IU), storing result in A
- * CWorkspace: need N*N [U]
- * RWorkspace: need 0
- *
- CALL CGEMM( 'N', 'N', M, N, N, CONE, U, LDU, WORK( IU ),
- $ LDWRKU, CZERO, A, LDA )
- *
- * Copy left singular vectors of A from A to U
- *
- CALL CLACPY( 'F', M, N, A, LDA, U, LDU )
- *
- END IF
- *
- ELSE IF( M.GE.MNTHR2 ) THEN
- *
- * MNTHR2 <= M < MNTHR1
- *
- * Path 5 (M >> N, but not as much as MNTHR1)
- * Reduce to bidiagonal form without QR decomposition, use
- * CUNGBR and matrix multiplication to compute singular vectors
- *
- IE = 1
- NRWORK = IE + N
- ITAUQ = 1
- ITAUP = ITAUQ + N
- NWORK = ITAUP + N
- *
- * Bidiagonalize A
- * CWorkspace: need 2*N [tauq, taup] + M [work]
- * CWorkspace: prefer 2*N [tauq, taup] + (M+N)*NB [work]
- * RWorkspace: need N [e]
- *
- CALL CGEBRD( M, N, A, LDA, S, RWORK( IE ), WORK( ITAUQ ),
- $ WORK( ITAUP ), WORK( NWORK ), LWORK-NWORK+1,
- $ IERR )
- IF( WNTQN ) THEN
- *
- * Path 5n (M >> N, JOBZ='N')
- * Compute singular values only
- * CWorkspace: need 0
- * RWorkspace: need N [e] + BDSPAC
- *
- CALL SBDSDC( 'U', 'N', N, S, RWORK( IE ), DUM, 1,DUM,1,
- $ DUM, IDUM, RWORK( NRWORK ), IWORK, INFO )
- ELSE IF( WNTQO ) THEN
- IU = NWORK
- IRU = NRWORK
- IRVT = IRU + N*N
- NRWORK = IRVT + N*N
- *
- * Path 5o (M >> N, JOBZ='O')
- * Copy A to VT, generate P**H
- * CWorkspace: need 2*N [tauq, taup] + N [work]
- * CWorkspace: prefer 2*N [tauq, taup] + N*NB [work]
- * RWorkspace: need 0
- *
- CALL CLACPY( 'U', N, N, A, LDA, VT, LDVT )
- CALL CUNGBR( 'P', N, N, N, VT, LDVT, WORK( ITAUP ),
- $ WORK( NWORK ), LWORK-NWORK+1, IERR )
- *
- * Generate Q in A
- * CWorkspace: need 2*N [tauq, taup] + N [work]
- * CWorkspace: prefer 2*N [tauq, taup] + N*NB [work]
- * RWorkspace: need 0
- *
- CALL CUNGBR( 'Q', M, N, N, A, LDA, WORK( ITAUQ ),
- $ WORK( NWORK ), LWORK-NWORK+1, IERR )
- *
- IF( LWORK .GE. M*N + 3*N ) THEN
- *
- * WORK( IU ) is M by N
- *
- LDWRKU = M
- ELSE
- *
- * WORK(IU) is LDWRKU by N
- *
- LDWRKU = ( LWORK - 3*N ) / N
- END IF
- NWORK = IU + LDWRKU*N
- *
- * Perform bidiagonal SVD, computing left singular vectors
- * of bidiagonal matrix in RWORK(IRU) and computing right
- * singular vectors of bidiagonal matrix in RWORK(IRVT)
- * CWorkspace: need 0
- * RWorkspace: need N [e] + N*N [RU] + N*N [RVT] + BDSPAC
- *
- CALL SBDSDC( 'U', 'I', N, S, RWORK( IE ), RWORK( IRU ),
- $ N, RWORK( IRVT ), N, DUM, IDUM,
- $ RWORK( NRWORK ), IWORK, INFO )
- *
- * Multiply real matrix RWORK(IRVT) by P**H in VT,
- * storing the result in WORK(IU), copying to VT
- * CWorkspace: need 2*N [tauq, taup] + N*N [U]
- * RWorkspace: need N [e] + N*N [RU] + N*N [RVT] + 2*N*N [rwork]
- *
- CALL CLARCM( N, N, RWORK( IRVT ), N, VT, LDVT,
- $ WORK( IU ), LDWRKU, RWORK( NRWORK ) )
- CALL CLACPY( 'F', N, N, WORK( IU ), LDWRKU, VT, LDVT )
- *
- * Multiply Q in A by real matrix RWORK(IRU), storing the
- * result in WORK(IU), copying to A
- * CWorkspace: need 2*N [tauq, taup] + N*N [U]
- * CWorkspace: prefer 2*N [tauq, taup] + M*N [U]
- * RWorkspace: need N [e] + N*N [RU] + 2*N*N [rwork]
- * RWorkspace: prefer N [e] + N*N [RU] + 2*M*N [rwork] < N + 5*N*N since M < 2*N here
- *
- NRWORK = IRVT
- DO 20 I = 1, M, LDWRKU
- CHUNK = MIN( M-I+1, LDWRKU )
- CALL CLACRM( CHUNK, N, A( I, 1 ), LDA, RWORK( IRU ),
- $ N, WORK( IU ), LDWRKU, RWORK( NRWORK ) )
- CALL CLACPY( 'F', CHUNK, N, WORK( IU ), LDWRKU,
- $ A( I, 1 ), LDA )
- 20 CONTINUE
- *
- ELSE IF( WNTQS ) THEN
- *
- * Path 5s (M >> N, JOBZ='S')
- * Copy A to VT, generate P**H
- * CWorkspace: need 2*N [tauq, taup] + N [work]
- * CWorkspace: prefer 2*N [tauq, taup] + N*NB [work]
- * RWorkspace: need 0
- *
- CALL CLACPY( 'U', N, N, A, LDA, VT, LDVT )
- CALL CUNGBR( 'P', N, N, N, VT, LDVT, WORK( ITAUP ),
- $ WORK( NWORK ), LWORK-NWORK+1, IERR )
- *
- * Copy A to U, generate Q
- * CWorkspace: need 2*N [tauq, taup] + N [work]
- * CWorkspace: prefer 2*N [tauq, taup] + N*NB [work]
- * RWorkspace: need 0
- *
- CALL CLACPY( 'L', M, N, A, LDA, U, LDU )
- CALL CUNGBR( 'Q', M, N, N, U, LDU, WORK( ITAUQ ),
- $ WORK( NWORK ), LWORK-NWORK+1, IERR )
- *
- * Perform bidiagonal SVD, computing left singular vectors
- * of bidiagonal matrix in RWORK(IRU) and computing right
- * singular vectors of bidiagonal matrix in RWORK(IRVT)
- * CWorkspace: need 0
- * RWorkspace: need N [e] + N*N [RU] + N*N [RVT] + BDSPAC
- *
- IRU = NRWORK
- IRVT = IRU + N*N
- NRWORK = IRVT + N*N
- CALL SBDSDC( 'U', 'I', N, S, RWORK( IE ), RWORK( IRU ),
- $ N, RWORK( IRVT ), N, DUM, IDUM,
- $ RWORK( NRWORK ), IWORK, INFO )
- *
- * Multiply real matrix RWORK(IRVT) by P**H in VT,
- * storing the result in A, copying to VT
- * CWorkspace: need 0
- * RWorkspace: need N [e] + N*N [RU] + N*N [RVT] + 2*N*N [rwork]
- *
- CALL CLARCM( N, N, RWORK( IRVT ), N, VT, LDVT, A, LDA,
- $ RWORK( NRWORK ) )
- CALL CLACPY( 'F', N, N, A, LDA, VT, LDVT )
- *
- * Multiply Q in U by real matrix RWORK(IRU), storing the
- * result in A, copying to U
- * CWorkspace: need 0
- * RWorkspace: need N [e] + N*N [RU] + 2*M*N [rwork] < N + 5*N*N since M < 2*N here
- *
- NRWORK = IRVT
- CALL CLACRM( M, N, U, LDU, RWORK( IRU ), N, A, LDA,
- $ RWORK( NRWORK ) )
- CALL CLACPY( 'F', M, N, A, LDA, U, LDU )
- ELSE
- *
- * Path 5a (M >> N, JOBZ='A')
- * Copy A to VT, generate P**H
- * CWorkspace: need 2*N [tauq, taup] + N [work]
- * CWorkspace: prefer 2*N [tauq, taup] + N*NB [work]
- * RWorkspace: need 0
- *
- CALL CLACPY( 'U', N, N, A, LDA, VT, LDVT )
- CALL CUNGBR( 'P', N, N, N, VT, LDVT, WORK( ITAUP ),
- $ WORK( NWORK ), LWORK-NWORK+1, IERR )
- *
- * Copy A to U, generate Q
- * CWorkspace: need 2*N [tauq, taup] + M [work]
- * CWorkspace: prefer 2*N [tauq, taup] + M*NB [work]
- * RWorkspace: need 0
- *
- CALL CLACPY( 'L', M, N, A, LDA, U, LDU )
- CALL CUNGBR( 'Q', M, M, N, U, LDU, WORK( ITAUQ ),
- $ WORK( NWORK ), LWORK-NWORK+1, IERR )
- *
- * Perform bidiagonal SVD, computing left singular vectors
- * of bidiagonal matrix in RWORK(IRU) and computing right
- * singular vectors of bidiagonal matrix in RWORK(IRVT)
- * CWorkspace: need 0
- * RWorkspace: need N [e] + N*N [RU] + N*N [RVT] + BDSPAC
- *
- IRU = NRWORK
- IRVT = IRU + N*N
- NRWORK = IRVT + N*N
- CALL SBDSDC( 'U', 'I', N, S, RWORK( IE ), RWORK( IRU ),
- $ N, RWORK( IRVT ), N, DUM, IDUM,
- $ RWORK( NRWORK ), IWORK, INFO )
- *
- * Multiply real matrix RWORK(IRVT) by P**H in VT,
- * storing the result in A, copying to VT
- * CWorkspace: need 0
- * RWorkspace: need N [e] + N*N [RU] + N*N [RVT] + 2*N*N [rwork]
- *
- CALL CLARCM( N, N, RWORK( IRVT ), N, VT, LDVT, A, LDA,
- $ RWORK( NRWORK ) )
- CALL CLACPY( 'F', N, N, A, LDA, VT, LDVT )
- *
- * Multiply Q in U by real matrix RWORK(IRU), storing the
- * result in A, copying to U
- * CWorkspace: need 0
- * RWorkspace: need N [e] + N*N [RU] + 2*M*N [rwork] < N + 5*N*N since M < 2*N here
- *
- NRWORK = IRVT
- CALL CLACRM( M, N, U, LDU, RWORK( IRU ), N, A, LDA,
- $ RWORK( NRWORK ) )
- CALL CLACPY( 'F', M, N, A, LDA, U, LDU )
- END IF
- *
- ELSE
- *
- * M .LT. MNTHR2
- *
- * Path 6 (M >= N, but not much larger)
- * Reduce to bidiagonal form without QR decomposition
- * Use CUNMBR to compute singular vectors
- *
- IE = 1
- NRWORK = IE + N
- ITAUQ = 1
- ITAUP = ITAUQ + N
- NWORK = ITAUP + N
- *
- * Bidiagonalize A
- * CWorkspace: need 2*N [tauq, taup] + M [work]
- * CWorkspace: prefer 2*N [tauq, taup] + (M+N)*NB [work]
- * RWorkspace: need N [e]
- *
- CALL CGEBRD( M, N, A, LDA, S, RWORK( IE ), WORK( ITAUQ ),
- $ WORK( ITAUP ), WORK( NWORK ), LWORK-NWORK+1,
- $ IERR )
- IF( WNTQN ) THEN
- *
- * Path 6n (M >= N, JOBZ='N')
- * Compute singular values only
- * CWorkspace: need 0
- * RWorkspace: need N [e] + BDSPAC
- *
- CALL SBDSDC( 'U', 'N', N, S, RWORK( IE ), DUM,1,DUM,1,
- $ DUM, IDUM, RWORK( NRWORK ), IWORK, INFO )
- ELSE IF( WNTQO ) THEN
- IU = NWORK
- IRU = NRWORK
- IRVT = IRU + N*N
- NRWORK = IRVT + N*N
- IF( LWORK .GE. M*N + 3*N ) THEN
- *
- * WORK( IU ) is M by N
- *
- LDWRKU = M
- ELSE
- *
- * WORK( IU ) is LDWRKU by N
- *
- LDWRKU = ( LWORK - 3*N ) / N
- END IF
- NWORK = IU + LDWRKU*N
- *
- * Path 6o (M >= N, JOBZ='O')
- * Perform bidiagonal SVD, computing left singular vectors
- * of bidiagonal matrix in RWORK(IRU) and computing right
- * singular vectors of bidiagonal matrix in RWORK(IRVT)
- * CWorkspace: need 0
- * RWorkspace: need N [e] + N*N [RU] + N*N [RVT] + BDSPAC
- *
- CALL SBDSDC( 'U', 'I', N, S, RWORK( IE ), RWORK( IRU ),
- $ N, RWORK( IRVT ), N, DUM, IDUM,
- $ RWORK( NRWORK ), IWORK, INFO )
- *
- * Copy real matrix RWORK(IRVT) to complex matrix VT
- * Overwrite VT by right singular vectors of A
- * CWorkspace: need 2*N [tauq, taup] + N*N [U] + N [work]
- * CWorkspace: prefer 2*N [tauq, taup] + N*N [U] + N*NB [work]
- * RWorkspace: need N [e] + N*N [RU] + N*N [RVT]
- *
- CALL CLACP2( 'F', N, N, RWORK( IRVT ), N, VT, LDVT )
- CALL CUNMBR( 'P', 'R', 'C', N, N, N, A, LDA,
- $ WORK( ITAUP ), VT, LDVT, WORK( NWORK ),
- $ LWORK-NWORK+1, IERR )
- *
- IF( LWORK .GE. M*N + 3*N ) THEN
- *
- * Path 6o-fast
- * Copy real matrix RWORK(IRU) to complex matrix WORK(IU)
- * Overwrite WORK(IU) by left singular vectors of A, copying
- * to A
- * CWorkspace: need 2*N [tauq, taup] + M*N [U] + N [work]
- * CWorkspace: prefer 2*N [tauq, taup] + M*N [U] + N*NB [work]
- * RWorkspace: need N [e] + N*N [RU]
- *
- CALL CLASET( 'F', M, N, CZERO, CZERO, WORK( IU ),
- $ LDWRKU )
- CALL CLACP2( 'F', N, N, RWORK( IRU ), N, WORK( IU ),
- $ LDWRKU )
- CALL CUNMBR( 'Q', 'L', 'N', M, N, N, A, LDA,
- $ WORK( ITAUQ ), WORK( IU ), LDWRKU,
- $ WORK( NWORK ), LWORK-NWORK+1, IERR )
- CALL CLACPY( 'F', M, N, WORK( IU ), LDWRKU, A, LDA )
- ELSE
- *
- * Path 6o-slow
- * Generate Q in A
- * CWorkspace: need 2*N [tauq, taup] + N*N [U] + N [work]
- * CWorkspace: prefer 2*N [tauq, taup] + N*N [U] + N*NB [work]
- * RWorkspace: need 0
- *
- CALL CUNGBR( 'Q', M, N, N, A, LDA, WORK( ITAUQ ),
- $ WORK( NWORK ), LWORK-NWORK+1, IERR )
- *
- * Multiply Q in A by real matrix RWORK(IRU), storing the
- * result in WORK(IU), copying to A
- * CWorkspace: need 2*N [tauq, taup] + N*N [U]
- * CWorkspace: prefer 2*N [tauq, taup] + M*N [U]
- * RWorkspace: need N [e] + N*N [RU] + 2*N*N [rwork]
- * RWorkspace: prefer N [e] + N*N [RU] + 2*M*N [rwork] < N + 5*N*N since M < 2*N here
- *
- NRWORK = IRVT
- DO 30 I = 1, M, LDWRKU
- CHUNK = MIN( M-I+1, LDWRKU )
- CALL CLACRM( CHUNK, N, A( I, 1 ), LDA,
- $ RWORK( IRU ), N, WORK( IU ), LDWRKU,
- $ RWORK( NRWORK ) )
- CALL CLACPY( 'F', CHUNK, N, WORK( IU ), LDWRKU,
- $ A( I, 1 ), LDA )
- 30 CONTINUE
- END IF
- *
- ELSE IF( WNTQS ) THEN
- *
- * Path 6s (M >= N, JOBZ='S')
- * Perform bidiagonal SVD, computing left singular vectors
- * of bidiagonal matrix in RWORK(IRU) and computing right
- * singular vectors of bidiagonal matrix in RWORK(IRVT)
- * CWorkspace: need 0
- * RWorkspace: need N [e] + N*N [RU] + N*N [RVT] + BDSPAC
- *
- IRU = NRWORK
- IRVT = IRU + N*N
- NRWORK = IRVT + N*N
- CALL SBDSDC( 'U', 'I', N, S, RWORK( IE ), RWORK( IRU ),
- $ N, RWORK( IRVT ), N, DUM, IDUM,
- $ RWORK( NRWORK ), IWORK, INFO )
- *
- * Copy real matrix RWORK(IRU) to complex matrix U
- * Overwrite U by left singular vectors of A
- * CWorkspace: need 2*N [tauq, taup] + N [work]
- * CWorkspace: prefer 2*N [tauq, taup] + N*NB [work]
- * RWorkspace: need N [e] + N*N [RU] + N*N [RVT]
- *
- CALL CLASET( 'F', M, N, CZERO, CZERO, U, LDU )
- CALL CLACP2( 'F', N, N, RWORK( IRU ), N, U, LDU )
- CALL CUNMBR( 'Q', 'L', 'N', M, N, N, A, LDA,
- $ WORK( ITAUQ ), U, LDU, WORK( NWORK ),
- $ LWORK-NWORK+1, IERR )
- *
- * Copy real matrix RWORK(IRVT) to complex matrix VT
- * Overwrite VT by right singular vectors of A
- * CWorkspace: need 2*N [tauq, taup] + N [work]
- * CWorkspace: prefer 2*N [tauq, taup] + N*NB [work]
- * RWorkspace: need N [e] + N*N [RU] + N*N [RVT]
- *
- CALL CLACP2( 'F', N, N, RWORK( IRVT ), N, VT, LDVT )
- CALL CUNMBR( 'P', 'R', 'C', N, N, N, A, LDA,
- $ WORK( ITAUP ), VT, LDVT, WORK( NWORK ),
- $ LWORK-NWORK+1, IERR )
- ELSE
- *
- * Path 6a (M >= N, JOBZ='A')
- * Perform bidiagonal SVD, computing left singular vectors
- * of bidiagonal matrix in RWORK(IRU) and computing right
- * singular vectors of bidiagonal matrix in RWORK(IRVT)
- * CWorkspace: need 0
- * RWorkspace: need N [e] + N*N [RU] + N*N [RVT] + BDSPAC
- *
- IRU = NRWORK
- IRVT = IRU + N*N
- NRWORK = IRVT + N*N
- CALL SBDSDC( 'U', 'I', N, S, RWORK( IE ), RWORK( IRU ),
- $ N, RWORK( IRVT ), N, DUM, IDUM,
- $ RWORK( NRWORK ), IWORK, INFO )
- *
- * Set the right corner of U to identity matrix
- *
- CALL CLASET( 'F', M, M, CZERO, CZERO, U, LDU )
- IF( M.GT.N ) THEN
- CALL CLASET( 'F', M-N, M-N, CZERO, CONE,
- $ U( N+1, N+1 ), LDU )
- END IF
- *
- * Copy real matrix RWORK(IRU) to complex matrix U
- * Overwrite U by left singular vectors of A
- * CWorkspace: need 2*N [tauq, taup] + M [work]
- * CWorkspace: prefer 2*N [tauq, taup] + M*NB [work]
- * RWorkspace: need N [e] + N*N [RU] + N*N [RVT]
- *
- CALL CLACP2( 'F', N, N, RWORK( IRU ), N, U, LDU )
- CALL CUNMBR( 'Q', 'L', 'N', M, M, N, A, LDA,
- $ WORK( ITAUQ ), U, LDU, WORK( NWORK ),
- $ LWORK-NWORK+1, IERR )
- *
- * Copy real matrix RWORK(IRVT) to complex matrix VT
- * Overwrite VT by right singular vectors of A
- * CWorkspace: need 2*N [tauq, taup] + N [work]
- * CWorkspace: prefer 2*N [tauq, taup] + N*NB [work]
- * RWorkspace: need N [e] + N*N [RU] + N*N [RVT]
- *
- CALL CLACP2( 'F', N, N, RWORK( IRVT ), N, VT, LDVT )
- CALL CUNMBR( 'P', 'R', 'C', N, N, N, A, LDA,
- $ WORK( ITAUP ), VT, LDVT, WORK( NWORK ),
- $ LWORK-NWORK+1, IERR )
- END IF
- *
- END IF
- *
- ELSE
- *
- * A has more columns than rows. If A has sufficiently more
- * columns than rows, first reduce using the LQ decomposition (if
- * sufficient workspace available)
- *
- IF( N.GE.MNTHR1 ) THEN
- *
- IF( WNTQN ) THEN
- *
- * Path 1t (N >> M, JOBZ='N')
- * No singular vectors to be computed
- *
- ITAU = 1
- NWORK = ITAU + M
- *
- * Compute A=L*Q
- * CWorkspace: need M [tau] + M [work]
- * CWorkspace: prefer M [tau] + M*NB [work]
- * RWorkspace: need 0
- *
- CALL CGELQF( M, N, A, LDA, WORK( ITAU ), WORK( NWORK ),
- $ LWORK-NWORK+1, IERR )
- *
- * Zero out above L
- *
- CALL CLASET( 'U', M-1, M-1, CZERO, CZERO, A( 1, 2 ),
- $ LDA )
- IE = 1
- ITAUQ = 1
- ITAUP = ITAUQ + M
- NWORK = ITAUP + M
- *
- * Bidiagonalize L in A
- * CWorkspace: need 2*M [tauq, taup] + M [work]
- * CWorkspace: prefer 2*M [tauq, taup] + 2*M*NB [work]
- * RWorkspace: need M [e]
- *
- CALL CGEBRD( M, M, A, LDA, S, RWORK( IE ), WORK( ITAUQ ),
- $ WORK( ITAUP ), WORK( NWORK ), LWORK-NWORK+1,
- $ IERR )
- NRWORK = IE + M
- *
- * Perform bidiagonal SVD, compute singular values only
- * CWorkspace: need 0
- * RWorkspace: need M [e] + BDSPAC
- *
- CALL SBDSDC( 'U', 'N', M, S, RWORK( IE ), DUM,1,DUM,1,
- $ DUM, IDUM, RWORK( NRWORK ), IWORK, INFO )
- *
- ELSE IF( WNTQO ) THEN
- *
- * Path 2t (N >> M, JOBZ='O')
- * M right singular vectors to be overwritten on A and
- * M left singular vectors to be computed in U
- *
- IVT = 1
- LDWKVT = M
- *
- * WORK(IVT) is M by M
- *
- IL = IVT + LDWKVT*M
- IF( LWORK .GE. M*N + M*M + 3*M ) THEN
- *
- * WORK(IL) M by N
- *
- LDWRKL = M
- CHUNK = N
- ELSE
- *
- * WORK(IL) is M by CHUNK
- *
- LDWRKL = M
- CHUNK = ( LWORK - M*M - 3*M ) / M
- END IF
- ITAU = IL + LDWRKL*CHUNK
- NWORK = ITAU + M
- *
- * Compute A=L*Q
- * CWorkspace: need M*M [VT] + M*M [L] + M [tau] + M [work]
- * CWorkspace: prefer M*M [VT] + M*M [L] + M [tau] + M*NB [work]
- * RWorkspace: need 0
- *
- CALL CGELQF( M, N, A, LDA, WORK( ITAU ), WORK( NWORK ),
- $ LWORK-NWORK+1, IERR )
- *
- * Copy L to WORK(IL), zeroing about above it
- *
- CALL CLACPY( 'L', M, M, A, LDA, WORK( IL ), LDWRKL )
- CALL CLASET( 'U', M-1, M-1, CZERO, CZERO,
- $ WORK( IL+LDWRKL ), LDWRKL )
- *
- * Generate Q in A
- * CWorkspace: need M*M [VT] + M*M [L] + M [tau] + M [work]
- * CWorkspace: prefer M*M [VT] + M*M [L] + M [tau] + M*NB [work]
- * RWorkspace: need 0
- *
- CALL CUNGLQ( M, N, M, A, LDA, WORK( ITAU ),
- $ WORK( NWORK ), LWORK-NWORK+1, IERR )
- IE = 1
- ITAUQ = ITAU
- ITAUP = ITAUQ + M
- NWORK = ITAUP + M
- *
- * Bidiagonalize L in WORK(IL)
- * CWorkspace: need M*M [VT] + M*M [L] + 2*M [tauq, taup] + M [work]
- * CWorkspace: prefer M*M [VT] + M*M [L] + 2*M [tauq, taup] + 2*M*NB [work]
- * RWorkspace: need M [e]
- *
- CALL CGEBRD( M, M, WORK( IL ), LDWRKL, S, RWORK( IE ),
- $ WORK( ITAUQ ), WORK( ITAUP ), WORK( NWORK ),
- $ LWORK-NWORK+1, IERR )
- *
- * Perform bidiagonal SVD, computing left singular vectors
- * of bidiagonal matrix in RWORK(IRU) and computing right
- * singular vectors of bidiagonal matrix in RWORK(IRVT)
- * CWorkspace: need 0
- * RWorkspace: need M [e] + M*M [RU] + M*M [RVT] + BDSPAC
- *
- IRU = IE + M
- IRVT = IRU + M*M
- NRWORK = IRVT + M*M
- CALL SBDSDC( 'U', 'I', M, S, RWORK( IE ), RWORK( IRU ),
- $ M, RWORK( IRVT ), M, DUM, IDUM,
- $ RWORK( NRWORK ), IWORK, INFO )
- *
- * Copy real matrix RWORK(IRU) to complex matrix WORK(IU)
- * Overwrite WORK(IU) by the left singular vectors of L
- * CWorkspace: need M*M [VT] + M*M [L] + 2*M [tauq, taup] + M [work]
- * CWorkspace: prefer M*M [VT] + M*M [L] + 2*M [tauq, taup] + M*NB [work]
- * RWorkspace: need 0
- *
- CALL CLACP2( 'F', M, M, RWORK( IRU ), M, U, LDU )
- CALL CUNMBR( 'Q', 'L', 'N', M, M, M, WORK( IL ), LDWRKL,
- $ WORK( ITAUQ ), U, LDU, WORK( NWORK ),
- $ LWORK-NWORK+1, IERR )
- *
- * Copy real matrix RWORK(IRVT) to complex matrix WORK(IVT)
- * Overwrite WORK(IVT) by the right singular vectors of L
- * CWorkspace: need M*M [VT] + M*M [L] + 2*M [tauq, taup] + M [work]
- * CWorkspace: prefer M*M [VT] + M*M [L] + 2*M [tauq, taup] + M*NB [work]
- * RWorkspace: need 0
- *
- CALL CLACP2( 'F', M, M, RWORK( IRVT ), M, WORK( IVT ),
- $ LDWKVT )
- CALL CUNMBR( 'P', 'R', 'C', M, M, M, WORK( IL ), LDWRKL,
- $ WORK( ITAUP ), WORK( IVT ), LDWKVT,
- $ WORK( NWORK ), LWORK-NWORK+1, IERR )
- *
- * Multiply right singular vectors of L in WORK(IL) by Q
- * in A, storing result in WORK(IL) and copying to A
- * CWorkspace: need M*M [VT] + M*M [L]
- * CWorkspace: prefer M*M [VT] + M*N [L]
- * RWorkspace: need 0
- *
- DO 40 I = 1, N, CHUNK
- BLK = MIN( N-I+1, CHUNK )
- CALL CGEMM( 'N', 'N', M, BLK, M, CONE, WORK( IVT ), M,
- $ A( 1, I ), LDA, CZERO, WORK( IL ),
- $ LDWRKL )
- CALL CLACPY( 'F', M, BLK, WORK( IL ), LDWRKL,
- $ A( 1, I ), LDA )
- 40 CONTINUE
- *
- ELSE IF( WNTQS ) THEN
- *
- * Path 3t (N >> M, JOBZ='S')
- * M right singular vectors to be computed in VT and
- * M left singular vectors to be computed in U
- *
- IL = 1
- *
- * WORK(IL) is M by M
- *
- LDWRKL = M
- ITAU = IL + LDWRKL*M
- NWORK = ITAU + M
- *
- * Compute A=L*Q
- * CWorkspace: need M*M [L] + M [tau] + M [work]
- * CWorkspace: prefer M*M [L] + M [tau] + M*NB [work]
- * RWorkspace: need 0
- *
- CALL CGELQF( M, N, A, LDA, WORK( ITAU ), WORK( NWORK ),
- $ LWORK-NWORK+1, IERR )
- *
- * Copy L to WORK(IL), zeroing out above it
- *
- CALL CLACPY( 'L', M, M, A, LDA, WORK( IL ), LDWRKL )
- CALL CLASET( 'U', M-1, M-1, CZERO, CZERO,
- $ WORK( IL+LDWRKL ), LDWRKL )
- *
- * Generate Q in A
- * CWorkspace: need M*M [L] + M [tau] + M [work]
- * CWorkspace: prefer M*M [L] + M [tau] + M*NB [work]
- * RWorkspace: need 0
- *
- CALL CUNGLQ( M, N, M, A, LDA, WORK( ITAU ),
- $ WORK( NWORK ), LWORK-NWORK+1, IERR )
- IE = 1
- ITAUQ = ITAU
- ITAUP = ITAUQ + M
- NWORK = ITAUP + M
- *
- * Bidiagonalize L in WORK(IL)
- * CWorkspace: need M*M [L] + 2*M [tauq, taup] + M [work]
- * CWorkspace: prefer M*M [L] + 2*M [tauq, taup] + 2*M*NB [work]
- * RWorkspace: need M [e]
- *
- CALL CGEBRD( M, M, WORK( IL ), LDWRKL, S, RWORK( IE ),
- $ WORK( ITAUQ ), WORK( ITAUP ), WORK( NWORK ),
- $ LWORK-NWORK+1, IERR )
- *
- * Perform bidiagonal SVD, computing left singular vectors
- * of bidiagonal matrix in RWORK(IRU) and computing right
- * singular vectors of bidiagonal matrix in RWORK(IRVT)
- * CWorkspace: need 0
- * RWorkspace: need M [e] + M*M [RU] + M*M [RVT] + BDSPAC
- *
- IRU = IE + M
- IRVT = IRU + M*M
- NRWORK = IRVT + M*M
- CALL SBDSDC( 'U', 'I', M, S, RWORK( IE ), RWORK( IRU ),
- $ M, RWORK( IRVT ), M, DUM, IDUM,
- $ RWORK( NRWORK ), IWORK, INFO )
- *
- * Copy real matrix RWORK(IRU) to complex matrix U
- * Overwrite U by left singular vectors of L
- * CWorkspace: need M*M [L] + 2*M [tauq, taup] + M [work]
- * CWorkspace: prefer M*M [L] + 2*M [tauq, taup] + M*NB [work]
- * RWorkspace: need 0
- *
- CALL CLACP2( 'F', M, M, RWORK( IRU ), M, U, LDU )
- CALL CUNMBR( 'Q', 'L', 'N', M, M, M, WORK( IL ), LDWRKL,
- $ WORK( ITAUQ ), U, LDU, WORK( NWORK ),
- $ LWORK-NWORK+1, IERR )
- *
- * Copy real matrix RWORK(IRVT) to complex matrix VT
- * Overwrite VT by left singular vectors of L
- * CWorkspace: need M*M [L] + 2*M [tauq, taup] + M [work]
- * CWorkspace: prefer M*M [L] + 2*M [tauq, taup] + M*NB [work]
- * RWorkspace: need 0
- *
- CALL CLACP2( 'F', M, M, RWORK( IRVT ), M, VT, LDVT )
- CALL CUNMBR( 'P', 'R', 'C', M, M, M, WORK( IL ), LDWRKL,
- $ WORK( ITAUP ), VT, LDVT, WORK( NWORK ),
- $ LWORK-NWORK+1, IERR )
- *
- * Copy VT to WORK(IL), multiply right singular vectors of L
- * in WORK(IL) by Q in A, storing result in VT
- * CWorkspace: need M*M [L]
- * RWorkspace: need 0
- *
- CALL CLACPY( 'F', M, M, VT, LDVT, WORK( IL ), LDWRKL )
- CALL CGEMM( 'N', 'N', M, N, M, CONE, WORK( IL ), LDWRKL,
- $ A, LDA, CZERO, VT, LDVT )
- *
- ELSE IF( WNTQA ) THEN
- *
- * Path 4t (N >> M, JOBZ='A')
- * N right singular vectors to be computed in VT and
- * M left singular vectors to be computed in U
- *
- IVT = 1
- *
- * WORK(IVT) is M by M
- *
- LDWKVT = M
- ITAU = IVT + LDWKVT*M
- NWORK = ITAU + M
- *
- * Compute A=L*Q, copying result to VT
- * CWorkspace: need M*M [VT] + M [tau] + M [work]
- * CWorkspace: prefer M*M [VT] + M [tau] + M*NB [work]
- * RWorkspace: need 0
- *
- CALL CGELQF( M, N, A, LDA, WORK( ITAU ), WORK( NWORK ),
- $ LWORK-NWORK+1, IERR )
- CALL CLACPY( 'U', M, N, A, LDA, VT, LDVT )
- *
- * Generate Q in VT
- * CWorkspace: need M*M [VT] + M [tau] + N [work]
- * CWorkspace: prefer M*M [VT] + M [tau] + N*NB [work]
- * RWorkspace: need 0
- *
- CALL CUNGLQ( N, N, M, VT, LDVT, WORK( ITAU ),
- $ WORK( NWORK ), LWORK-NWORK+1, IERR )
- *
- * Produce L in A, zeroing out above it
- *
- CALL CLASET( 'U', M-1, M-1, CZERO, CZERO, A( 1, 2 ),
- $ LDA )
- IE = 1
- ITAUQ = ITAU
- ITAUP = ITAUQ + M
- NWORK = ITAUP + M
- *
- * Bidiagonalize L in A
- * CWorkspace: need M*M [VT] + 2*M [tauq, taup] + M [work]
- * CWorkspace: prefer M*M [VT] + 2*M [tauq, taup] + 2*M*NB [work]
- * RWorkspace: need M [e]
- *
- CALL CGEBRD( M, M, A, LDA, S, RWORK( IE ), WORK( ITAUQ ),
- $ WORK( ITAUP ), WORK( NWORK ), LWORK-NWORK+1,
- $ IERR )
- *
- * Perform bidiagonal SVD, computing left singular vectors
- * of bidiagonal matrix in RWORK(IRU) and computing right
- * singular vectors of bidiagonal matrix in RWORK(IRVT)
- * CWorkspace: need 0
- * RWorkspace: need M [e] + M*M [RU] + M*M [RVT] + BDSPAC
- *
- IRU = IE + M
- IRVT = IRU + M*M
- NRWORK = IRVT + M*M
- CALL SBDSDC( 'U', 'I', M, S, RWORK( IE ), RWORK( IRU ),
- $ M, RWORK( IRVT ), M, DUM, IDUM,
- $ RWORK( NRWORK ), IWORK, INFO )
- *
- * Copy real matrix RWORK(IRU) to complex matrix U
- * Overwrite U by left singular vectors of L
- * CWorkspace: need M*M [VT] + 2*M [tauq, taup] + M [work]
- * CWorkspace: prefer M*M [VT] + 2*M [tauq, taup] + M*NB [work]
- * RWorkspace: need 0
- *
- CALL CLACP2( 'F', M, M, RWORK( IRU ), M, U, LDU )
- CALL CUNMBR( 'Q', 'L', 'N', M, M, M, A, LDA,
- $ WORK( ITAUQ ), U, LDU, WORK( NWORK ),
- $ LWORK-NWORK+1, IERR )
- *
- * Copy real matrix RWORK(IRVT) to complex matrix WORK(IVT)
- * Overwrite WORK(IVT) by right singular vectors of L
- * CWorkspace: need M*M [VT] + 2*M [tauq, taup] + M [work]
- * CWorkspace: prefer M*M [VT] + 2*M [tauq, taup] + M*NB [work]
- * RWorkspace: need 0
- *
- CALL CLACP2( 'F', M, M, RWORK( IRVT ), M, WORK( IVT ),
- $ LDWKVT )
- CALL CUNMBR( 'P', 'R', 'C', M, M, M, A, LDA,
- $ WORK( ITAUP ), WORK( IVT ), LDWKVT,
- $ WORK( NWORK ), LWORK-NWORK+1, IERR )
- *
- * Multiply right singular vectors of L in WORK(IVT) by
- * Q in VT, storing result in A
- * CWorkspace: need M*M [VT]
- * RWorkspace: need 0
- *
- CALL CGEMM( 'N', 'N', M, N, M, CONE, WORK( IVT ), LDWKVT,
- $ VT, LDVT, CZERO, A, LDA )
- *
- * Copy right singular vectors of A from A to VT
- *
- CALL CLACPY( 'F', M, N, A, LDA, VT, LDVT )
- *
- END IF
- *
- ELSE IF( N.GE.MNTHR2 ) THEN
- *
- * MNTHR2 <= N < MNTHR1
- *
- * Path 5t (N >> M, but not as much as MNTHR1)
- * Reduce to bidiagonal form without QR decomposition, use
- * CUNGBR and matrix multiplication to compute singular vectors
- *
- IE = 1
- NRWORK = IE + M
- ITAUQ = 1
- ITAUP = ITAUQ + M
- NWORK = ITAUP + M
- *
- * Bidiagonalize A
- * CWorkspace: need 2*M [tauq, taup] + N [work]
- * CWorkspace: prefer 2*M [tauq, taup] + (M+N)*NB [work]
- * RWorkspace: need M [e]
- *
- CALL CGEBRD( M, N, A, LDA, S, RWORK( IE ), WORK( ITAUQ ),
- $ WORK( ITAUP ), WORK( NWORK ), LWORK-NWORK+1,
- $ IERR )
- *
- IF( WNTQN ) THEN
- *
- * Path 5tn (N >> M, JOBZ='N')
- * Compute singular values only
- * CWorkspace: need 0
- * RWorkspace: need M [e] + BDSPAC
- *
- CALL SBDSDC( 'L', 'N', M, S, RWORK( IE ), DUM,1,DUM,1,
- $ DUM, IDUM, RWORK( NRWORK ), IWORK, INFO )
- ELSE IF( WNTQO ) THEN
- IRVT = NRWORK
- IRU = IRVT + M*M
- NRWORK = IRU + M*M
- IVT = NWORK
- *
- * Path 5to (N >> M, JOBZ='O')
- * Copy A to U, generate Q
- * CWorkspace: need 2*M [tauq, taup] + M [work]
- * CWorkspace: prefer 2*M [tauq, taup] + M*NB [work]
- * RWorkspace: need 0
- *
- CALL CLACPY( 'L', M, M, A, LDA, U, LDU )
- CALL CUNGBR( 'Q', M, M, N, U, LDU, WORK( ITAUQ ),
- $ WORK( NWORK ), LWORK-NWORK+1, IERR )
- *
- * Generate P**H in A
- * CWorkspace: need 2*M [tauq, taup] + M [work]
- * CWorkspace: prefer 2*M [tauq, taup] + M*NB [work]
- * RWorkspace: need 0
- *
- CALL CUNGBR( 'P', M, N, M, A, LDA, WORK( ITAUP ),
- $ WORK( NWORK ), LWORK-NWORK+1, IERR )
- *
- LDWKVT = M
- IF( LWORK .GE. M*N + 3*M ) THEN
- *
- * WORK( IVT ) is M by N
- *
- NWORK = IVT + LDWKVT*N
- CHUNK = N
- ELSE
- *
- * WORK( IVT ) is M by CHUNK
- *
- CHUNK = ( LWORK - 3*M ) / M
- NWORK = IVT + LDWKVT*CHUNK
- END IF
- *
- * Perform bidiagonal SVD, computing left singular vectors
- * of bidiagonal matrix in RWORK(IRU) and computing right
- * singular vectors of bidiagonal matrix in RWORK(IRVT)
- * CWorkspace: need 0
- * RWorkspace: need M [e] + M*M [RVT] + M*M [RU] + BDSPAC
- *
- CALL SBDSDC( 'L', 'I', M, S, RWORK( IE ), RWORK( IRU ),
- $ M, RWORK( IRVT ), M, DUM, IDUM,
- $ RWORK( NRWORK ), IWORK, INFO )
- *
- * Multiply Q in U by real matrix RWORK(IRVT)
- * storing the result in WORK(IVT), copying to U
- * CWorkspace: need 2*M [tauq, taup] + M*M [VT]
- * RWorkspace: need M [e] + M*M [RVT] + M*M [RU] + 2*M*M [rwork]
- *
- CALL CLACRM( M, M, U, LDU, RWORK( IRU ), M, WORK( IVT ),
- $ LDWKVT, RWORK( NRWORK ) )
- CALL CLACPY( 'F', M, M, WORK( IVT ), LDWKVT, U, LDU )
- *
- * Multiply RWORK(IRVT) by P**H in A, storing the
- * result in WORK(IVT), copying to A
- * CWorkspace: need 2*M [tauq, taup] + M*M [VT]
- * CWorkspace: prefer 2*M [tauq, taup] + M*N [VT]
- * RWorkspace: need M [e] + M*M [RVT] + 2*M*M [rwork]
- * RWorkspace: prefer M [e] + M*M [RVT] + 2*M*N [rwork] < M + 5*M*M since N < 2*M here
- *
- NRWORK = IRU
- DO 50 I = 1, N, CHUNK
- BLK = MIN( N-I+1, CHUNK )
- CALL CLARCM( M, BLK, RWORK( IRVT ), M, A( 1, I ), LDA,
- $ WORK( IVT ), LDWKVT, RWORK( NRWORK ) )
- CALL CLACPY( 'F', M, BLK, WORK( IVT ), LDWKVT,
- $ A( 1, I ), LDA )
- 50 CONTINUE
- ELSE IF( WNTQS ) THEN
- *
- * Path 5ts (N >> M, JOBZ='S')
- * Copy A to U, generate Q
- * CWorkspace: need 2*M [tauq, taup] + M [work]
- * CWorkspace: prefer 2*M [tauq, taup] + M*NB [work]
- * RWorkspace: need 0
- *
- CALL CLACPY( 'L', M, M, A, LDA, U, LDU )
- CALL CUNGBR( 'Q', M, M, N, U, LDU, WORK( ITAUQ ),
- $ WORK( NWORK ), LWORK-NWORK+1, IERR )
- *
- * Copy A to VT, generate P**H
- * CWorkspace: need 2*M [tauq, taup] + M [work]
- * CWorkspace: prefer 2*M [tauq, taup] + M*NB [work]
- * RWorkspace: need 0
- *
- CALL CLACPY( 'U', M, N, A, LDA, VT, LDVT )
- CALL CUNGBR( 'P', M, N, M, VT, LDVT, WORK( ITAUP ),
- $ WORK( NWORK ), LWORK-NWORK+1, IERR )
- *
- * Perform bidiagonal SVD, computing left singular vectors
- * of bidiagonal matrix in RWORK(IRU) and computing right
- * singular vectors of bidiagonal matrix in RWORK(IRVT)
- * CWorkspace: need 0
- * RWorkspace: need M [e] + M*M [RVT] + M*M [RU] + BDSPAC
- *
- IRVT = NRWORK
- IRU = IRVT + M*M
- NRWORK = IRU + M*M
- CALL SBDSDC( 'L', 'I', M, S, RWORK( IE ), RWORK( IRU ),
- $ M, RWORK( IRVT ), M, DUM, IDUM,
- $ RWORK( NRWORK ), IWORK, INFO )
- *
- * Multiply Q in U by real matrix RWORK(IRU), storing the
- * result in A, copying to U
- * CWorkspace: need 0
- * RWorkspace: need M [e] + M*M [RVT] + M*M [RU] + 2*M*M [rwork]
- *
- CALL CLACRM( M, M, U, LDU, RWORK( IRU ), M, A, LDA,
- $ RWORK( NRWORK ) )
- CALL CLACPY( 'F', M, M, A, LDA, U, LDU )
- *
- * Multiply real matrix RWORK(IRVT) by P**H in VT,
- * storing the result in A, copying to VT
- * CWorkspace: need 0
- * RWorkspace: need M [e] + M*M [RVT] + 2*M*N [rwork] < M + 5*M*M since N < 2*M here
- *
- NRWORK = IRU
- CALL CLARCM( M, N, RWORK( IRVT ), M, VT, LDVT, A, LDA,
- $ RWORK( NRWORK ) )
- CALL CLACPY( 'F', M, N, A, LDA, VT, LDVT )
- ELSE
- *
- * Path 5ta (N >> M, JOBZ='A')
- * Copy A to U, generate Q
- * CWorkspace: need 2*M [tauq, taup] + M [work]
- * CWorkspace: prefer 2*M [tauq, taup] + M*NB [work]
- * RWorkspace: need 0
- *
- CALL CLACPY( 'L', M, M, A, LDA, U, LDU )
- CALL CUNGBR( 'Q', M, M, N, U, LDU, WORK( ITAUQ ),
- $ WORK( NWORK ), LWORK-NWORK+1, IERR )
- *
- * Copy A to VT, generate P**H
- * CWorkspace: need 2*M [tauq, taup] + N [work]
- * CWorkspace: prefer 2*M [tauq, taup] + N*NB [work]
- * RWorkspace: need 0
- *
- CALL CLACPY( 'U', M, N, A, LDA, VT, LDVT )
- CALL CUNGBR( 'P', N, N, M, VT, LDVT, WORK( ITAUP ),
- $ WORK( NWORK ), LWORK-NWORK+1, IERR )
- *
- * Perform bidiagonal SVD, computing left singular vectors
- * of bidiagonal matrix in RWORK(IRU) and computing right
- * singular vectors of bidiagonal matrix in RWORK(IRVT)
- * CWorkspace: need 0
- * RWorkspace: need M [e] + M*M [RVT] + M*M [RU] + BDSPAC
- *
- IRVT = NRWORK
- IRU = IRVT + M*M
- NRWORK = IRU + M*M
- CALL SBDSDC( 'L', 'I', M, S, RWORK( IE ), RWORK( IRU ),
- $ M, RWORK( IRVT ), M, DUM, IDUM,
- $ RWORK( NRWORK ), IWORK, INFO )
- *
- * Multiply Q in U by real matrix RWORK(IRU), storing the
- * result in A, copying to U
- * CWorkspace: need 0
- * RWorkspace: need M [e] + M*M [RVT] + M*M [RU] + 2*M*M [rwork]
- *
- CALL CLACRM( M, M, U, LDU, RWORK( IRU ), M, A, LDA,
- $ RWORK( NRWORK ) )
- CALL CLACPY( 'F', M, M, A, LDA, U, LDU )
- *
- * Multiply real matrix RWORK(IRVT) by P**H in VT,
- * storing the result in A, copying to VT
- * CWorkspace: need 0
- * RWorkspace: need M [e] + M*M [RVT] + 2*M*N [rwork] < M + 5*M*M since N < 2*M here
- *
- NRWORK = IRU
- CALL CLARCM( M, N, RWORK( IRVT ), M, VT, LDVT, A, LDA,
- $ RWORK( NRWORK ) )
- CALL CLACPY( 'F', M, N, A, LDA, VT, LDVT )
- END IF
- *
- ELSE
- *
- * N .LT. MNTHR2
- *
- * Path 6t (N > M, but not much larger)
- * Reduce to bidiagonal form without LQ decomposition
- * Use CUNMBR to compute singular vectors
- *
- IE = 1
- NRWORK = IE + M
- ITAUQ = 1
- ITAUP = ITAUQ + M
- NWORK = ITAUP + M
- *
- * Bidiagonalize A
- * CWorkspace: need 2*M [tauq, taup] + N [work]
- * CWorkspace: prefer 2*M [tauq, taup] + (M+N)*NB [work]
- * RWorkspace: need M [e]
- *
- CALL CGEBRD( M, N, A, LDA, S, RWORK( IE ), WORK( ITAUQ ),
- $ WORK( ITAUP ), WORK( NWORK ), LWORK-NWORK+1,
- $ IERR )
- IF( WNTQN ) THEN
- *
- * Path 6tn (N > M, JOBZ='N')
- * Compute singular values only
- * CWorkspace: need 0
- * RWorkspace: need M [e] + BDSPAC
- *
- CALL SBDSDC( 'L', 'N', M, S, RWORK( IE ), DUM,1,DUM,1,
- $ DUM, IDUM, RWORK( NRWORK ), IWORK, INFO )
- ELSE IF( WNTQO ) THEN
- * Path 6to (N > M, JOBZ='O')
- LDWKVT = M
- IVT = NWORK
- IF( LWORK .GE. M*N + 3*M ) THEN
- *
- * WORK( IVT ) is M by N
- *
- CALL CLASET( 'F', M, N, CZERO, CZERO, WORK( IVT ),
- $ LDWKVT )
- NWORK = IVT + LDWKVT*N
- ELSE
- *
- * WORK( IVT ) is M by CHUNK
- *
- CHUNK = ( LWORK - 3*M ) / M
- NWORK = IVT + LDWKVT*CHUNK
- END IF
- *
- * Perform bidiagonal SVD, computing left singular vectors
- * of bidiagonal matrix in RWORK(IRU) and computing right
- * singular vectors of bidiagonal matrix in RWORK(IRVT)
- * CWorkspace: need 0
- * RWorkspace: need M [e] + M*M [RVT] + M*M [RU] + BDSPAC
- *
- IRVT = NRWORK
- IRU = IRVT + M*M
- NRWORK = IRU + M*M
- CALL SBDSDC( 'L', 'I', M, S, RWORK( IE ), RWORK( IRU ),
- $ M, RWORK( IRVT ), M, DUM, IDUM,
- $ RWORK( NRWORK ), IWORK, INFO )
- *
- * Copy real matrix RWORK(IRU) to complex matrix U
- * Overwrite U by left singular vectors of A
- * CWorkspace: need 2*M [tauq, taup] + M*M [VT] + M [work]
- * CWorkspace: prefer 2*M [tauq, taup] + M*M [VT] + M*NB [work]
- * RWorkspace: need M [e] + M*M [RVT] + M*M [RU]
- *
- CALL CLACP2( 'F', M, M, RWORK( IRU ), M, U, LDU )
- CALL CUNMBR( 'Q', 'L', 'N', M, M, N, A, LDA,
- $ WORK( ITAUQ ), U, LDU, WORK( NWORK ),
- $ LWORK-NWORK+1, IERR )
- *
- IF( LWORK .GE. M*N + 3*M ) THEN
- *
- * Path 6to-fast
- * Copy real matrix RWORK(IRVT) to complex matrix WORK(IVT)
- * Overwrite WORK(IVT) by right singular vectors of A,
- * copying to A
- * CWorkspace: need 2*M [tauq, taup] + M*N [VT] + M [work]
- * CWorkspace: prefer 2*M [tauq, taup] + M*N [VT] + M*NB [work]
- * RWorkspace: need M [e] + M*M [RVT]
- *
- CALL CLACP2( 'F', M, M, RWORK( IRVT ), M, WORK( IVT ),
- $ LDWKVT )
- CALL CUNMBR( 'P', 'R', 'C', M, N, M, A, LDA,
- $ WORK( ITAUP ), WORK( IVT ), LDWKVT,
- $ WORK( NWORK ), LWORK-NWORK+1, IERR )
- CALL CLACPY( 'F', M, N, WORK( IVT ), LDWKVT, A, LDA )
- ELSE
- *
- * Path 6to-slow
- * Generate P**H in A
- * CWorkspace: need 2*M [tauq, taup] + M*M [VT] + M [work]
- * CWorkspace: prefer 2*M [tauq, taup] + M*M [VT] + M*NB [work]
- * RWorkspace: need 0
- *
- CALL CUNGBR( 'P', M, N, M, A, LDA, WORK( ITAUP ),
- $ WORK( NWORK ), LWORK-NWORK+1, IERR )
- *
- * Multiply Q in A by real matrix RWORK(IRU), storing the
- * result in WORK(IU), copying to A
- * CWorkspace: need 2*M [tauq, taup] + M*M [VT]
- * CWorkspace: prefer 2*M [tauq, taup] + M*N [VT]
- * RWorkspace: need M [e] + M*M [RVT] + 2*M*M [rwork]
- * RWorkspace: prefer M [e] + M*M [RVT] + 2*M*N [rwork] < M + 5*M*M since N < 2*M here
- *
- NRWORK = IRU
- DO 60 I = 1, N, CHUNK
- BLK = MIN( N-I+1, CHUNK )
- CALL CLARCM( M, BLK, RWORK( IRVT ), M, A( 1, I ),
- $ LDA, WORK( IVT ), LDWKVT,
- $ RWORK( NRWORK ) )
- CALL CLACPY( 'F', M, BLK, WORK( IVT ), LDWKVT,
- $ A( 1, I ), LDA )
- 60 CONTINUE
- END IF
- ELSE IF( WNTQS ) THEN
- *
- * Path 6ts (N > M, JOBZ='S')
- * Perform bidiagonal SVD, computing left singular vectors
- * of bidiagonal matrix in RWORK(IRU) and computing right
- * singular vectors of bidiagonal matrix in RWORK(IRVT)
- * CWorkspace: need 0
- * RWorkspace: need M [e] + M*M [RVT] + M*M [RU] + BDSPAC
- *
- IRVT = NRWORK
- IRU = IRVT + M*M
- NRWORK = IRU + M*M
- CALL SBDSDC( 'L', 'I', M, S, RWORK( IE ), RWORK( IRU ),
- $ M, RWORK( IRVT ), M, DUM, IDUM,
- $ RWORK( NRWORK ), IWORK, INFO )
- *
- * Copy real matrix RWORK(IRU) to complex matrix U
- * Overwrite U by left singular vectors of A
- * CWorkspace: need 2*M [tauq, taup] + M [work]
- * CWorkspace: prefer 2*M [tauq, taup] + M*NB [work]
- * RWorkspace: need M [e] + M*M [RVT] + M*M [RU]
- *
- CALL CLACP2( 'F', M, M, RWORK( IRU ), M, U, LDU )
- CALL CUNMBR( 'Q', 'L', 'N', M, M, N, A, LDA,
- $ WORK( ITAUQ ), U, LDU, WORK( NWORK ),
- $ LWORK-NWORK+1, IERR )
- *
- * Copy real matrix RWORK(IRVT) to complex matrix VT
- * Overwrite VT by right singular vectors of A
- * CWorkspace: need 2*M [tauq, taup] + M [work]
- * CWorkspace: prefer 2*M [tauq, taup] + M*NB [work]
- * RWorkspace: need M [e] + M*M [RVT]
- *
- CALL CLASET( 'F', M, N, CZERO, CZERO, VT, LDVT )
- CALL CLACP2( 'F', M, M, RWORK( IRVT ), M, VT, LDVT )
- CALL CUNMBR( 'P', 'R', 'C', M, N, M, A, LDA,
- $ WORK( ITAUP ), VT, LDVT, WORK( NWORK ),
- $ LWORK-NWORK+1, IERR )
- ELSE
- *
- * Path 6ta (N > M, JOBZ='A')
- * Perform bidiagonal SVD, computing left singular vectors
- * of bidiagonal matrix in RWORK(IRU) and computing right
- * singular vectors of bidiagonal matrix in RWORK(IRVT)
- * CWorkspace: need 0
- * RWorkspace: need M [e] + M*M [RVT] + M*M [RU] + BDSPAC
- *
- IRVT = NRWORK
- IRU = IRVT + M*M
- NRWORK = IRU + M*M
- *
- CALL SBDSDC( 'L', 'I', M, S, RWORK( IE ), RWORK( IRU ),
- $ M, RWORK( IRVT ), M, DUM, IDUM,
- $ RWORK( NRWORK ), IWORK, INFO )
- *
- * Copy real matrix RWORK(IRU) to complex matrix U
- * Overwrite U by left singular vectors of A
- * CWorkspace: need 2*M [tauq, taup] + M [work]
- * CWorkspace: prefer 2*M [tauq, taup] + M*NB [work]
- * RWorkspace: need M [e] + M*M [RVT] + M*M [RU]
- *
- CALL CLACP2( 'F', M, M, RWORK( IRU ), M, U, LDU )
- CALL CUNMBR( 'Q', 'L', 'N', M, M, N, A, LDA,
- $ WORK( ITAUQ ), U, LDU, WORK( NWORK ),
- $ LWORK-NWORK+1, IERR )
- *
- * Set all of VT to identity matrix
- *
- CALL CLASET( 'F', N, N, CZERO, CONE, VT, LDVT )
- *
- * Copy real matrix RWORK(IRVT) to complex matrix VT
- * Overwrite VT by right singular vectors of A
- * CWorkspace: need 2*M [tauq, taup] + N [work]
- * CWorkspace: prefer 2*M [tauq, taup] + N*NB [work]
- * RWorkspace: need M [e] + M*M [RVT]
- *
- CALL CLACP2( 'F', M, M, RWORK( IRVT ), M, VT, LDVT )
- CALL CUNMBR( 'P', 'R', 'C', N, N, M, A, LDA,
- $ WORK( ITAUP ), VT, LDVT, WORK( NWORK ),
- $ LWORK-NWORK+1, IERR )
- END IF
- *
- END IF
- *
- END IF
- *
- * Undo scaling if necessary
- *
- IF( ISCL.EQ.1 ) THEN
- IF( ANRM.GT.BIGNUM )
- $ CALL SLASCL( 'G', 0, 0, BIGNUM, ANRM, MINMN, 1, S, MINMN,
- $ IERR )
- IF( INFO.NE.0 .AND. ANRM.GT.BIGNUM )
- $ CALL SLASCL( 'G', 0, 0, BIGNUM, ANRM, MINMN-1, 1,
- $ RWORK( IE ), MINMN, IERR )
- IF( ANRM.LT.SMLNUM )
- $ CALL SLASCL( 'G', 0, 0, SMLNUM, ANRM, MINMN, 1, S, MINMN,
- $ IERR )
- IF( INFO.NE.0 .AND. ANRM.LT.SMLNUM )
- $ CALL SLASCL( 'G', 0, 0, SMLNUM, ANRM, MINMN-1, 1,
- $ RWORK( IE ), MINMN, IERR )
- END IF
- *
- * Return optimal workspace in WORK(1)
- *
- WORK( 1 ) = SROUNDUP_LWORK( MAXWRK )
- *
- RETURN
- *
- * End of CGESDD
- *
- END
|