You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

cposvx.f 17 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489
  1. *> \brief <b> CPOSVX computes the solution to system of linear equations A * X = B for PO matrices</b>
  2. *
  3. * =========== DOCUMENTATION ===========
  4. *
  5. * Online html documentation available at
  6. * http://www.netlib.org/lapack/explore-html/
  7. *
  8. *> \htmlonly
  9. *> Download CPOSVX + dependencies
  10. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/cposvx.f">
  11. *> [TGZ]</a>
  12. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/cposvx.f">
  13. *> [ZIP]</a>
  14. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/cposvx.f">
  15. *> [TXT]</a>
  16. *> \endhtmlonly
  17. *
  18. * Definition:
  19. * ===========
  20. *
  21. * SUBROUTINE CPOSVX( FACT, UPLO, N, NRHS, A, LDA, AF, LDAF, EQUED,
  22. * S, B, LDB, X, LDX, RCOND, FERR, BERR, WORK,
  23. * RWORK, INFO )
  24. *
  25. * .. Scalar Arguments ..
  26. * CHARACTER EQUED, FACT, UPLO
  27. * INTEGER INFO, LDA, LDAF, LDB, LDX, N, NRHS
  28. * REAL RCOND
  29. * ..
  30. * .. Array Arguments ..
  31. * REAL BERR( * ), FERR( * ), RWORK( * ), S( * )
  32. * COMPLEX A( LDA, * ), AF( LDAF, * ), B( LDB, * ),
  33. * $ WORK( * ), X( LDX, * )
  34. * ..
  35. *
  36. *
  37. *> \par Purpose:
  38. * =============
  39. *>
  40. *> \verbatim
  41. *>
  42. *> CPOSVX uses the Cholesky factorization A = U**H*U or A = L*L**H to
  43. *> compute the solution to a complex system of linear equations
  44. *> A * X = B,
  45. *> where A is an N-by-N Hermitian positive definite matrix and X and B
  46. *> are N-by-NRHS matrices.
  47. *>
  48. *> Error bounds on the solution and a condition estimate are also
  49. *> provided.
  50. *> \endverbatim
  51. *
  52. *> \par Description:
  53. * =================
  54. *>
  55. *> \verbatim
  56. *>
  57. *> The following steps are performed:
  58. *>
  59. *> 1. If FACT = 'E', real scaling factors are computed to equilibrate
  60. *> the system:
  61. *> diag(S) * A * diag(S) * inv(diag(S)) * X = diag(S) * B
  62. *> Whether or not the system will be equilibrated depends on the
  63. *> scaling of the matrix A, but if equilibration is used, A is
  64. *> overwritten by diag(S)*A*diag(S) and B by diag(S)*B.
  65. *>
  66. *> 2. If FACT = 'N' or 'E', the Cholesky decomposition is used to
  67. *> factor the matrix A (after equilibration if FACT = 'E') as
  68. *> A = U**H* U, if UPLO = 'U', or
  69. *> A = L * L**H, if UPLO = 'L',
  70. *> where U is an upper triangular matrix and L is a lower triangular
  71. *> matrix.
  72. *>
  73. *> 3. If the leading i-by-i principal minor is not positive definite,
  74. *> then the routine returns with INFO = i. Otherwise, the factored
  75. *> form of A is used to estimate the condition number of the matrix
  76. *> A. If the reciprocal of the condition number is less than machine
  77. *> precision, INFO = N+1 is returned as a warning, but the routine
  78. *> still goes on to solve for X and compute error bounds as
  79. *> described below.
  80. *>
  81. *> 4. The system of equations is solved for X using the factored form
  82. *> of A.
  83. *>
  84. *> 5. Iterative refinement is applied to improve the computed solution
  85. *> matrix and calculate error bounds and backward error estimates
  86. *> for it.
  87. *>
  88. *> 6. If equilibration was used, the matrix X is premultiplied by
  89. *> diag(S) so that it solves the original system before
  90. *> equilibration.
  91. *> \endverbatim
  92. *
  93. * Arguments:
  94. * ==========
  95. *
  96. *> \param[in] FACT
  97. *> \verbatim
  98. *> FACT is CHARACTER*1
  99. *> Specifies whether or not the factored form of the matrix A is
  100. *> supplied on entry, and if not, whether the matrix A should be
  101. *> equilibrated before it is factored.
  102. *> = 'F': On entry, AF contains the factored form of A.
  103. *> If EQUED = 'Y', the matrix A has been equilibrated
  104. *> with scaling factors given by S. A and AF will not
  105. *> be modified.
  106. *> = 'N': The matrix A will be copied to AF and factored.
  107. *> = 'E': The matrix A will be equilibrated if necessary, then
  108. *> copied to AF and factored.
  109. *> \endverbatim
  110. *>
  111. *> \param[in] UPLO
  112. *> \verbatim
  113. *> UPLO is CHARACTER*1
  114. *> = 'U': Upper triangle of A is stored;
  115. *> = 'L': Lower triangle of A is stored.
  116. *> \endverbatim
  117. *>
  118. *> \param[in] N
  119. *> \verbatim
  120. *> N is INTEGER
  121. *> The number of linear equations, i.e., the order of the
  122. *> matrix A. N >= 0.
  123. *> \endverbatim
  124. *>
  125. *> \param[in] NRHS
  126. *> \verbatim
  127. *> NRHS is INTEGER
  128. *> The number of right hand sides, i.e., the number of columns
  129. *> of the matrices B and X. NRHS >= 0.
  130. *> \endverbatim
  131. *>
  132. *> \param[in,out] A
  133. *> \verbatim
  134. *> A is COMPLEX array, dimension (LDA,N)
  135. *> On entry, the Hermitian matrix A, except if FACT = 'F' and
  136. *> EQUED = 'Y', then A must contain the equilibrated matrix
  137. *> diag(S)*A*diag(S). If UPLO = 'U', the leading
  138. *> N-by-N upper triangular part of A contains the upper
  139. *> triangular part of the matrix A, and the strictly lower
  140. *> triangular part of A is not referenced. If UPLO = 'L', the
  141. *> leading N-by-N lower triangular part of A contains the lower
  142. *> triangular part of the matrix A, and the strictly upper
  143. *> triangular part of A is not referenced. A is not modified if
  144. *> FACT = 'F' or 'N', or if FACT = 'E' and EQUED = 'N' on exit.
  145. *>
  146. *> On exit, if FACT = 'E' and EQUED = 'Y', A is overwritten by
  147. *> diag(S)*A*diag(S).
  148. *> \endverbatim
  149. *>
  150. *> \param[in] LDA
  151. *> \verbatim
  152. *> LDA is INTEGER
  153. *> The leading dimension of the array A. LDA >= max(1,N).
  154. *> \endverbatim
  155. *>
  156. *> \param[in,out] AF
  157. *> \verbatim
  158. *> AF is COMPLEX array, dimension (LDAF,N)
  159. *> If FACT = 'F', then AF is an input argument and on entry
  160. *> contains the triangular factor U or L from the Cholesky
  161. *> factorization A = U**H*U or A = L*L**H, in the same storage
  162. *> format as A. If EQUED .ne. 'N', then AF is the factored form
  163. *> of the equilibrated matrix diag(S)*A*diag(S).
  164. *>
  165. *> If FACT = 'N', then AF is an output argument and on exit
  166. *> returns the triangular factor U or L from the Cholesky
  167. *> factorization A = U**H*U or A = L*L**H of the original
  168. *> matrix A.
  169. *>
  170. *> If FACT = 'E', then AF is an output argument and on exit
  171. *> returns the triangular factor U or L from the Cholesky
  172. *> factorization A = U**H*U or A = L*L**H of the equilibrated
  173. *> matrix A (see the description of A for the form of the
  174. *> equilibrated matrix).
  175. *> \endverbatim
  176. *>
  177. *> \param[in] LDAF
  178. *> \verbatim
  179. *> LDAF is INTEGER
  180. *> The leading dimension of the array AF. LDAF >= max(1,N).
  181. *> \endverbatim
  182. *>
  183. *> \param[in,out] EQUED
  184. *> \verbatim
  185. *> EQUED is CHARACTER*1
  186. *> Specifies the form of equilibration that was done.
  187. *> = 'N': No equilibration (always true if FACT = 'N').
  188. *> = 'Y': Equilibration was done, i.e., A has been replaced by
  189. *> diag(S) * A * diag(S).
  190. *> EQUED is an input argument if FACT = 'F'; otherwise, it is an
  191. *> output argument.
  192. *> \endverbatim
  193. *>
  194. *> \param[in,out] S
  195. *> \verbatim
  196. *> S is REAL array, dimension (N)
  197. *> The scale factors for A; not accessed if EQUED = 'N'. S is
  198. *> an input argument if FACT = 'F'; otherwise, S is an output
  199. *> argument. If FACT = 'F' and EQUED = 'Y', each element of S
  200. *> must be positive.
  201. *> \endverbatim
  202. *>
  203. *> \param[in,out] B
  204. *> \verbatim
  205. *> B is COMPLEX array, dimension (LDB,NRHS)
  206. *> On entry, the N-by-NRHS righthand side matrix B.
  207. *> On exit, if EQUED = 'N', B is not modified; if EQUED = 'Y',
  208. *> B is overwritten by diag(S) * B.
  209. *> \endverbatim
  210. *>
  211. *> \param[in] LDB
  212. *> \verbatim
  213. *> LDB is INTEGER
  214. *> The leading dimension of the array B. LDB >= max(1,N).
  215. *> \endverbatim
  216. *>
  217. *> \param[out] X
  218. *> \verbatim
  219. *> X is COMPLEX array, dimension (LDX,NRHS)
  220. *> If INFO = 0 or INFO = N+1, the N-by-NRHS solution matrix X to
  221. *> the original system of equations. Note that if EQUED = 'Y',
  222. *> A and B are modified on exit, and the solution to the
  223. *> equilibrated system is inv(diag(S))*X.
  224. *> \endverbatim
  225. *>
  226. *> \param[in] LDX
  227. *> \verbatim
  228. *> LDX is INTEGER
  229. *> The leading dimension of the array X. LDX >= max(1,N).
  230. *> \endverbatim
  231. *>
  232. *> \param[out] RCOND
  233. *> \verbatim
  234. *> RCOND is REAL
  235. *> The estimate of the reciprocal condition number of the matrix
  236. *> A after equilibration (if done). If RCOND is less than the
  237. *> machine precision (in particular, if RCOND = 0), the matrix
  238. *> is singular to working precision. This condition is
  239. *> indicated by a return code of INFO > 0.
  240. *> \endverbatim
  241. *>
  242. *> \param[out] FERR
  243. *> \verbatim
  244. *> FERR is REAL array, dimension (NRHS)
  245. *> The estimated forward error bound for each solution vector
  246. *> X(j) (the j-th column of the solution matrix X).
  247. *> If XTRUE is the true solution corresponding to X(j), FERR(j)
  248. *> is an estimated upper bound for the magnitude of the largest
  249. *> element in (X(j) - XTRUE) divided by the magnitude of the
  250. *> largest element in X(j). The estimate is as reliable as
  251. *> the estimate for RCOND, and is almost always a slight
  252. *> overestimate of the true error.
  253. *> \endverbatim
  254. *>
  255. *> \param[out] BERR
  256. *> \verbatim
  257. *> BERR is REAL array, dimension (NRHS)
  258. *> The componentwise relative backward error of each solution
  259. *> vector X(j) (i.e., the smallest relative change in
  260. *> any element of A or B that makes X(j) an exact solution).
  261. *> \endverbatim
  262. *>
  263. *> \param[out] WORK
  264. *> \verbatim
  265. *> WORK is COMPLEX array, dimension (2*N)
  266. *> \endverbatim
  267. *>
  268. *> \param[out] RWORK
  269. *> \verbatim
  270. *> RWORK is REAL array, dimension (N)
  271. *> \endverbatim
  272. *>
  273. *> \param[out] INFO
  274. *> \verbatim
  275. *> INFO is INTEGER
  276. *> = 0: successful exit
  277. *> < 0: if INFO = -i, the i-th argument had an illegal value
  278. *> > 0: if INFO = i, and i is
  279. *> <= N: the leading minor of order i of A is
  280. *> not positive definite, so the factorization
  281. *> could not be completed, and the solution has not
  282. *> been computed. RCOND = 0 is returned.
  283. *> = N+1: U is nonsingular, but RCOND is less than machine
  284. *> precision, meaning that the matrix is singular
  285. *> to working precision. Nevertheless, the
  286. *> solution and error bounds are computed because
  287. *> there are a number of situations where the
  288. *> computed solution can be more accurate than the
  289. *> value of RCOND would suggest.
  290. *> \endverbatim
  291. *
  292. * Authors:
  293. * ========
  294. *
  295. *> \author Univ. of Tennessee
  296. *> \author Univ. of California Berkeley
  297. *> \author Univ. of Colorado Denver
  298. *> \author NAG Ltd.
  299. *
  300. *> \ingroup complexPOsolve
  301. *
  302. * =====================================================================
  303. SUBROUTINE CPOSVX( FACT, UPLO, N, NRHS, A, LDA, AF, LDAF, EQUED,
  304. $ S, B, LDB, X, LDX, RCOND, FERR, BERR, WORK,
  305. $ RWORK, INFO )
  306. *
  307. * -- LAPACK driver routine --
  308. * -- LAPACK is a software package provided by Univ. of Tennessee, --
  309. * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
  310. *
  311. * .. Scalar Arguments ..
  312. CHARACTER EQUED, FACT, UPLO
  313. INTEGER INFO, LDA, LDAF, LDB, LDX, N, NRHS
  314. REAL RCOND
  315. * ..
  316. * .. Array Arguments ..
  317. REAL BERR( * ), FERR( * ), RWORK( * ), S( * )
  318. COMPLEX A( LDA, * ), AF( LDAF, * ), B( LDB, * ),
  319. $ WORK( * ), X( LDX, * )
  320. * ..
  321. *
  322. * =====================================================================
  323. *
  324. * .. Parameters ..
  325. REAL ZERO, ONE
  326. PARAMETER ( ZERO = 0.0E+0, ONE = 1.0E+0 )
  327. * ..
  328. * .. Local Scalars ..
  329. LOGICAL EQUIL, NOFACT, RCEQU
  330. INTEGER I, INFEQU, J
  331. REAL AMAX, ANORM, BIGNUM, SCOND, SMAX, SMIN, SMLNUM
  332. * ..
  333. * .. External Functions ..
  334. LOGICAL LSAME
  335. REAL CLANHE, SLAMCH
  336. EXTERNAL LSAME, CLANHE, SLAMCH
  337. * ..
  338. * .. External Subroutines ..
  339. EXTERNAL CLACPY, CLAQHE, CPOCON, CPOEQU, CPORFS, CPOTRF,
  340. $ CPOTRS, XERBLA
  341. * ..
  342. * .. Intrinsic Functions ..
  343. INTRINSIC MAX, MIN
  344. * ..
  345. * .. Executable Statements ..
  346. *
  347. INFO = 0
  348. NOFACT = LSAME( FACT, 'N' )
  349. EQUIL = LSAME( FACT, 'E' )
  350. IF( NOFACT .OR. EQUIL ) THEN
  351. EQUED = 'N'
  352. RCEQU = .FALSE.
  353. ELSE
  354. RCEQU = LSAME( EQUED, 'Y' )
  355. SMLNUM = SLAMCH( 'Safe minimum' )
  356. BIGNUM = ONE / SMLNUM
  357. END IF
  358. *
  359. * Test the input parameters.
  360. *
  361. IF( .NOT.NOFACT .AND. .NOT.EQUIL .AND. .NOT.LSAME( FACT, 'F' ) )
  362. $ THEN
  363. INFO = -1
  364. ELSE IF( .NOT.LSAME( UPLO, 'U' ) .AND. .NOT.LSAME( UPLO, 'L' ) )
  365. $ THEN
  366. INFO = -2
  367. ELSE IF( N.LT.0 ) THEN
  368. INFO = -3
  369. ELSE IF( NRHS.LT.0 ) THEN
  370. INFO = -4
  371. ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
  372. INFO = -6
  373. ELSE IF( LDAF.LT.MAX( 1, N ) ) THEN
  374. INFO = -8
  375. ELSE IF( LSAME( FACT, 'F' ) .AND. .NOT.
  376. $ ( RCEQU .OR. LSAME( EQUED, 'N' ) ) ) THEN
  377. INFO = -9
  378. ELSE
  379. IF( RCEQU ) THEN
  380. SMIN = BIGNUM
  381. SMAX = ZERO
  382. DO 10 J = 1, N
  383. SMIN = MIN( SMIN, S( J ) )
  384. SMAX = MAX( SMAX, S( J ) )
  385. 10 CONTINUE
  386. IF( SMIN.LE.ZERO ) THEN
  387. INFO = -10
  388. ELSE IF( N.GT.0 ) THEN
  389. SCOND = MAX( SMIN, SMLNUM ) / MIN( SMAX, BIGNUM )
  390. ELSE
  391. SCOND = ONE
  392. END IF
  393. END IF
  394. IF( INFO.EQ.0 ) THEN
  395. IF( LDB.LT.MAX( 1, N ) ) THEN
  396. INFO = -12
  397. ELSE IF( LDX.LT.MAX( 1, N ) ) THEN
  398. INFO = -14
  399. END IF
  400. END IF
  401. END IF
  402. *
  403. IF( INFO.NE.0 ) THEN
  404. CALL XERBLA( 'CPOSVX', -INFO )
  405. RETURN
  406. END IF
  407. *
  408. IF( EQUIL ) THEN
  409. *
  410. * Compute row and column scalings to equilibrate the matrix A.
  411. *
  412. CALL CPOEQU( N, A, LDA, S, SCOND, AMAX, INFEQU )
  413. IF( INFEQU.EQ.0 ) THEN
  414. *
  415. * Equilibrate the matrix.
  416. *
  417. CALL CLAQHE( UPLO, N, A, LDA, S, SCOND, AMAX, EQUED )
  418. RCEQU = LSAME( EQUED, 'Y' )
  419. END IF
  420. END IF
  421. *
  422. * Scale the right hand side.
  423. *
  424. IF( RCEQU ) THEN
  425. DO 30 J = 1, NRHS
  426. DO 20 I = 1, N
  427. B( I, J ) = S( I )*B( I, J )
  428. 20 CONTINUE
  429. 30 CONTINUE
  430. END IF
  431. *
  432. IF( NOFACT .OR. EQUIL ) THEN
  433. *
  434. * Compute the Cholesky factorization A = U**H *U or A = L*L**H.
  435. *
  436. CALL CLACPY( UPLO, N, N, A, LDA, AF, LDAF )
  437. CALL CPOTRF( UPLO, N, AF, LDAF, INFO )
  438. *
  439. * Return if INFO is non-zero.
  440. *
  441. IF( INFO.GT.0 )THEN
  442. RCOND = ZERO
  443. RETURN
  444. END IF
  445. END IF
  446. *
  447. * Compute the norm of the matrix A.
  448. *
  449. ANORM = CLANHE( '1', UPLO, N, A, LDA, RWORK )
  450. *
  451. * Compute the reciprocal of the condition number of A.
  452. *
  453. CALL CPOCON( UPLO, N, AF, LDAF, ANORM, RCOND, WORK, RWORK, INFO )
  454. *
  455. * Compute the solution matrix X.
  456. *
  457. CALL CLACPY( 'Full', N, NRHS, B, LDB, X, LDX )
  458. CALL CPOTRS( UPLO, N, NRHS, AF, LDAF, X, LDX, INFO )
  459. *
  460. * Use iterative refinement to improve the computed solution and
  461. * compute error bounds and backward error estimates for it.
  462. *
  463. CALL CPORFS( UPLO, N, NRHS, A, LDA, AF, LDAF, B, LDB, X, LDX,
  464. $ FERR, BERR, WORK, RWORK, INFO )
  465. *
  466. * Transform the solution matrix X to a solution of the original
  467. * system.
  468. *
  469. IF( RCEQU ) THEN
  470. DO 50 J = 1, NRHS
  471. DO 40 I = 1, N
  472. X( I, J ) = S( I )*X( I, J )
  473. 40 CONTINUE
  474. 50 CONTINUE
  475. DO 60 J = 1, NRHS
  476. FERR( J ) = FERR( J ) / SCOND
  477. 60 CONTINUE
  478. END IF
  479. *
  480. * Set INFO = N+1 if the matrix is singular to working precision.
  481. *
  482. IF( RCOND.LT.SLAMCH( 'Epsilon' ) )
  483. $ INFO = N + 1
  484. *
  485. RETURN
  486. *
  487. * End of CPOSVX
  488. *
  489. END