You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

csbmv.f 11 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345
  1. *> \brief \b CSBMV
  2. *
  3. * =========== DOCUMENTATION ===========
  4. *
  5. * Online html documentation available at
  6. * http://www.netlib.org/lapack/explore-html/
  7. *
  8. * Definition:
  9. * ===========
  10. *
  11. * SUBROUTINE CSBMV( UPLO, N, K, ALPHA, A, LDA, X, INCX, BETA, Y,
  12. * INCY )
  13. *
  14. * .. Scalar Arguments ..
  15. * CHARACTER UPLO
  16. * INTEGER INCX, INCY, K, LDA, N
  17. * COMPLEX ALPHA, BETA
  18. * ..
  19. * .. Array Arguments ..
  20. * COMPLEX A( LDA, * ), X( * ), Y( * )
  21. * ..
  22. *
  23. *
  24. *> \par Purpose:
  25. * =============
  26. *>
  27. *> \verbatim
  28. *>
  29. *> CSBMV performs the matrix-vector operation
  30. *>
  31. *> y := alpha*A*x + beta*y,
  32. *>
  33. *> where alpha and beta are scalars, x and y are n element vectors and
  34. *> A is an n by n symmetric band matrix, with k super-diagonals.
  35. *> \endverbatim
  36. *
  37. * Arguments:
  38. * ==========
  39. *
  40. *> \verbatim
  41. *> UPLO - CHARACTER*1
  42. *> On entry, UPLO specifies whether the upper or lower
  43. *> triangular part of the band matrix A is being supplied as
  44. *> follows:
  45. *>
  46. *> UPLO = 'U' or 'u' The upper triangular part of A is
  47. *> being supplied.
  48. *>
  49. *> UPLO = 'L' or 'l' The lower triangular part of A is
  50. *> being supplied.
  51. *>
  52. *> Unchanged on exit.
  53. *>
  54. *> N - INTEGER
  55. *> On entry, N specifies the order of the matrix A.
  56. *> N must be at least zero.
  57. *> Unchanged on exit.
  58. *>
  59. *> K - INTEGER
  60. *> On entry, K specifies the number of super-diagonals of the
  61. *> matrix A. K must satisfy 0 .le. K.
  62. *> Unchanged on exit.
  63. *>
  64. *> ALPHA - COMPLEX
  65. *> On entry, ALPHA specifies the scalar alpha.
  66. *> Unchanged on exit.
  67. *>
  68. *> A - COMPLEX array, dimension( LDA, N )
  69. *> Before entry with UPLO = 'U' or 'u', the leading ( k + 1 )
  70. *> by n part of the array A must contain the upper triangular
  71. *> band part of the symmetric matrix, supplied column by
  72. *> column, with the leading diagonal of the matrix in row
  73. *> ( k + 1 ) of the array, the first super-diagonal starting at
  74. *> position 2 in row k, and so on. The top left k by k triangle
  75. *> of the array A is not referenced.
  76. *> The following program segment will transfer the upper
  77. *> triangular part of a symmetric band matrix from conventional
  78. *> full matrix storage to band storage:
  79. *>
  80. *> DO 20, J = 1, N
  81. *> M = K + 1 - J
  82. *> DO 10, I = MAX( 1, J - K ), J
  83. *> A( M + I, J ) = matrix( I, J )
  84. *> 10 CONTINUE
  85. *> 20 CONTINUE
  86. *>
  87. *> Before entry with UPLO = 'L' or 'l', the leading ( k + 1 )
  88. *> by n part of the array A must contain the lower triangular
  89. *> band part of the symmetric matrix, supplied column by
  90. *> column, with the leading diagonal of the matrix in row 1 of
  91. *> the array, the first sub-diagonal starting at position 1 in
  92. *> row 2, and so on. The bottom right k by k triangle of the
  93. *> array A is not referenced.
  94. *> The following program segment will transfer the lower
  95. *> triangular part of a symmetric band matrix from conventional
  96. *> full matrix storage to band storage:
  97. *>
  98. *> DO 20, J = 1, N
  99. *> M = 1 - J
  100. *> DO 10, I = J, MIN( N, J + K )
  101. *> A( M + I, J ) = matrix( I, J )
  102. *> 10 CONTINUE
  103. *> 20 CONTINUE
  104. *>
  105. *> Unchanged on exit.
  106. *>
  107. *> LDA - INTEGER
  108. *> On entry, LDA specifies the first dimension of A as declared
  109. *> in the calling (sub) program. LDA must be at least
  110. *> ( k + 1 ).
  111. *> Unchanged on exit.
  112. *>
  113. *> X - COMPLEX array, dimension at least
  114. *> ( 1 + ( N - 1 )*abs( INCX ) ).
  115. *> Before entry, the incremented array X must contain the
  116. *> vector x.
  117. *> Unchanged on exit.
  118. *>
  119. *> INCX - INTEGER
  120. *> On entry, INCX specifies the increment for the elements of
  121. *> X. INCX must not be zero.
  122. *> Unchanged on exit.
  123. *>
  124. *> BETA - COMPLEX
  125. *> On entry, BETA specifies the scalar beta.
  126. *> Unchanged on exit.
  127. *>
  128. *> Y - COMPLEX array, dimension at least
  129. *> ( 1 + ( N - 1 )*abs( INCY ) ).
  130. *> Before entry, the incremented array Y must contain the
  131. *> vector y. On exit, Y is overwritten by the updated vector y.
  132. *>
  133. *> INCY - INTEGER
  134. *> On entry, INCY specifies the increment for the elements of
  135. *> Y. INCY must not be zero.
  136. *> Unchanged on exit.
  137. *> \endverbatim
  138. *
  139. * Authors:
  140. * ========
  141. *
  142. *> \author Univ. of Tennessee
  143. *> \author Univ. of California Berkeley
  144. *> \author Univ. of Colorado Denver
  145. *> \author NAG Ltd.
  146. *
  147. *> \ingroup complex_eig
  148. *
  149. * =====================================================================
  150. SUBROUTINE CSBMV( UPLO, N, K, ALPHA, A, LDA, X, INCX, BETA, Y,
  151. $ INCY )
  152. *
  153. * -- LAPACK test routine --
  154. * -- LAPACK is a software package provided by Univ. of Tennessee, --
  155. * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
  156. *
  157. * .. Scalar Arguments ..
  158. CHARACTER UPLO
  159. INTEGER INCX, INCY, K, LDA, N
  160. COMPLEX ALPHA, BETA
  161. * ..
  162. * .. Array Arguments ..
  163. COMPLEX A( LDA, * ), X( * ), Y( * )
  164. * ..
  165. *
  166. * =====================================================================
  167. *
  168. * .. Parameters ..
  169. COMPLEX ONE
  170. PARAMETER ( ONE = ( 1.0E+0, 0.0E+0 ) )
  171. COMPLEX ZERO
  172. PARAMETER ( ZERO = ( 0.0E+0, 0.0E+0 ) )
  173. * ..
  174. * .. Local Scalars ..
  175. INTEGER I, INFO, IX, IY, J, JX, JY, KPLUS1, KX, KY, L
  176. COMPLEX TEMP1, TEMP2
  177. * ..
  178. * .. External Functions ..
  179. LOGICAL LSAME
  180. EXTERNAL LSAME
  181. * ..
  182. * .. External Subroutines ..
  183. EXTERNAL XERBLA
  184. * ..
  185. * .. Intrinsic Functions ..
  186. INTRINSIC MAX, MIN
  187. * ..
  188. * .. Executable Statements ..
  189. *
  190. * Test the input parameters.
  191. *
  192. INFO = 0
  193. IF( .NOT.LSAME( UPLO, 'U' ) .AND. .NOT.LSAME( UPLO, 'L' ) ) THEN
  194. INFO = 1
  195. ELSE IF( N.LT.0 ) THEN
  196. INFO = 2
  197. ELSE IF( K.LT.0 ) THEN
  198. INFO = 3
  199. ELSE IF( LDA.LT.( K+1 ) ) THEN
  200. INFO = 6
  201. ELSE IF( INCX.EQ.0 ) THEN
  202. INFO = 8
  203. ELSE IF( INCY.EQ.0 ) THEN
  204. INFO = 11
  205. END IF
  206. IF( INFO.NE.0 ) THEN
  207. CALL XERBLA( 'CSBMV ', INFO )
  208. RETURN
  209. END IF
  210. *
  211. * Quick return if possible.
  212. *
  213. IF( ( N.EQ.0 ) .OR. ( ( ALPHA.EQ.ZERO ) .AND. ( BETA.EQ.ONE ) ) )
  214. $ RETURN
  215. *
  216. * Set up the start points in X and Y.
  217. *
  218. IF( INCX.GT.0 ) THEN
  219. KX = 1
  220. ELSE
  221. KX = 1 - ( N-1 )*INCX
  222. END IF
  223. IF( INCY.GT.0 ) THEN
  224. KY = 1
  225. ELSE
  226. KY = 1 - ( N-1 )*INCY
  227. END IF
  228. *
  229. * Start the operations. In this version the elements of the array A
  230. * are accessed sequentially with one pass through A.
  231. *
  232. * First form y := beta*y.
  233. *
  234. IF( BETA.NE.ONE ) THEN
  235. IF( INCY.EQ.1 ) THEN
  236. IF( BETA.EQ.ZERO ) THEN
  237. DO 10 I = 1, N
  238. Y( I ) = ZERO
  239. 10 CONTINUE
  240. ELSE
  241. DO 20 I = 1, N
  242. Y( I ) = BETA*Y( I )
  243. 20 CONTINUE
  244. END IF
  245. ELSE
  246. IY = KY
  247. IF( BETA.EQ.ZERO ) THEN
  248. DO 30 I = 1, N
  249. Y( IY ) = ZERO
  250. IY = IY + INCY
  251. 30 CONTINUE
  252. ELSE
  253. DO 40 I = 1, N
  254. Y( IY ) = BETA*Y( IY )
  255. IY = IY + INCY
  256. 40 CONTINUE
  257. END IF
  258. END IF
  259. END IF
  260. IF( ALPHA.EQ.ZERO )
  261. $ RETURN
  262. IF( LSAME( UPLO, 'U' ) ) THEN
  263. *
  264. * Form y when upper triangle of A is stored.
  265. *
  266. KPLUS1 = K + 1
  267. IF( ( INCX.EQ.1 ) .AND. ( INCY.EQ.1 ) ) THEN
  268. DO 60 J = 1, N
  269. TEMP1 = ALPHA*X( J )
  270. TEMP2 = ZERO
  271. L = KPLUS1 - J
  272. DO 50 I = MAX( 1, J-K ), J - 1
  273. Y( I ) = Y( I ) + TEMP1*A( L+I, J )
  274. TEMP2 = TEMP2 + A( L+I, J )*X( I )
  275. 50 CONTINUE
  276. Y( J ) = Y( J ) + TEMP1*A( KPLUS1, J ) + ALPHA*TEMP2
  277. 60 CONTINUE
  278. ELSE
  279. JX = KX
  280. JY = KY
  281. DO 80 J = 1, N
  282. TEMP1 = ALPHA*X( JX )
  283. TEMP2 = ZERO
  284. IX = KX
  285. IY = KY
  286. L = KPLUS1 - J
  287. DO 70 I = MAX( 1, J-K ), J - 1
  288. Y( IY ) = Y( IY ) + TEMP1*A( L+I, J )
  289. TEMP2 = TEMP2 + A( L+I, J )*X( IX )
  290. IX = IX + INCX
  291. IY = IY + INCY
  292. 70 CONTINUE
  293. Y( JY ) = Y( JY ) + TEMP1*A( KPLUS1, J ) + ALPHA*TEMP2
  294. JX = JX + INCX
  295. JY = JY + INCY
  296. IF( J.GT.K ) THEN
  297. KX = KX + INCX
  298. KY = KY + INCY
  299. END IF
  300. 80 CONTINUE
  301. END IF
  302. ELSE
  303. *
  304. * Form y when lower triangle of A is stored.
  305. *
  306. IF( ( INCX.EQ.1 ) .AND. ( INCY.EQ.1 ) ) THEN
  307. DO 100 J = 1, N
  308. TEMP1 = ALPHA*X( J )
  309. TEMP2 = ZERO
  310. Y( J ) = Y( J ) + TEMP1*A( 1, J )
  311. L = 1 - J
  312. DO 90 I = J + 1, MIN( N, J+K )
  313. Y( I ) = Y( I ) + TEMP1*A( L+I, J )
  314. TEMP2 = TEMP2 + A( L+I, J )*X( I )
  315. 90 CONTINUE
  316. Y( J ) = Y( J ) + ALPHA*TEMP2
  317. 100 CONTINUE
  318. ELSE
  319. JX = KX
  320. JY = KY
  321. DO 120 J = 1, N
  322. TEMP1 = ALPHA*X( JX )
  323. TEMP2 = ZERO
  324. Y( JY ) = Y( JY ) + TEMP1*A( 1, J )
  325. L = 1 - J
  326. IX = JX
  327. IY = JY
  328. DO 110 I = J + 1, MIN( N, J+K )
  329. IX = IX + INCX
  330. IY = IY + INCY
  331. Y( IY ) = Y( IY ) + TEMP1*A( L+I, J )
  332. TEMP2 = TEMP2 + A( L+I, J )*X( IX )
  333. 110 CONTINUE
  334. Y( JY ) = Y( JY ) + ALPHA*TEMP2
  335. JX = JX + INCX
  336. JY = JY + INCY
  337. 120 CONTINUE
  338. END IF
  339. END IF
  340. *
  341. RETURN
  342. *
  343. * End of CSBMV
  344. *
  345. END