You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

zlatrz.f 5.8 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203
  1. *> \brief \b ZLATRZ factors an upper trapezoidal matrix by means of unitary transformations.
  2. *
  3. * =========== DOCUMENTATION ===========
  4. *
  5. * Online html documentation available at
  6. * http://www.netlib.org/lapack/explore-html/
  7. *
  8. *> \htmlonly
  9. *> Download ZLATRZ + dependencies
  10. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/zlatrz.f">
  11. *> [TGZ]</a>
  12. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/zlatrz.f">
  13. *> [ZIP]</a>
  14. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/zlatrz.f">
  15. *> [TXT]</a>
  16. *> \endhtmlonly
  17. *
  18. * Definition:
  19. * ===========
  20. *
  21. * SUBROUTINE ZLATRZ( M, N, L, A, LDA, TAU, WORK )
  22. *
  23. * .. Scalar Arguments ..
  24. * INTEGER L, LDA, M, N
  25. * ..
  26. * .. Array Arguments ..
  27. * COMPLEX*16 A( LDA, * ), TAU( * ), WORK( * )
  28. * ..
  29. *
  30. *
  31. *> \par Purpose:
  32. * =============
  33. *>
  34. *> \verbatim
  35. *>
  36. *> ZLATRZ factors the M-by-(M+L) complex upper trapezoidal matrix
  37. *> [ A1 A2 ] = [ A(1:M,1:M) A(1:M,N-L+1:N) ] as ( R 0 ) * Z by means
  38. *> of unitary transformations, where Z is an (M+L)-by-(M+L) unitary
  39. *> matrix and, R and A1 are M-by-M upper triangular matrices.
  40. *> \endverbatim
  41. *
  42. * Arguments:
  43. * ==========
  44. *
  45. *> \param[in] M
  46. *> \verbatim
  47. *> M is INTEGER
  48. *> The number of rows of the matrix A. M >= 0.
  49. *> \endverbatim
  50. *>
  51. *> \param[in] N
  52. *> \verbatim
  53. *> N is INTEGER
  54. *> The number of columns of the matrix A. N >= 0.
  55. *> \endverbatim
  56. *>
  57. *> \param[in] L
  58. *> \verbatim
  59. *> L is INTEGER
  60. *> The number of columns of the matrix A containing the
  61. *> meaningful part of the Householder vectors. N-M >= L >= 0.
  62. *> \endverbatim
  63. *>
  64. *> \param[in,out] A
  65. *> \verbatim
  66. *> A is COMPLEX*16 array, dimension (LDA,N)
  67. *> On entry, the leading M-by-N upper trapezoidal part of the
  68. *> array A must contain the matrix to be factorized.
  69. *> On exit, the leading M-by-M upper triangular part of A
  70. *> contains the upper triangular matrix R, and elements N-L+1 to
  71. *> N of the first M rows of A, with the array TAU, represent the
  72. *> unitary matrix Z as a product of M elementary reflectors.
  73. *> \endverbatim
  74. *>
  75. *> \param[in] LDA
  76. *> \verbatim
  77. *> LDA is INTEGER
  78. *> The leading dimension of the array A. LDA >= max(1,M).
  79. *> \endverbatim
  80. *>
  81. *> \param[out] TAU
  82. *> \verbatim
  83. *> TAU is COMPLEX*16 array, dimension (M)
  84. *> The scalar factors of the elementary reflectors.
  85. *> \endverbatim
  86. *>
  87. *> \param[out] WORK
  88. *> \verbatim
  89. *> WORK is COMPLEX*16 array, dimension (M)
  90. *> \endverbatim
  91. *
  92. * Authors:
  93. * ========
  94. *
  95. *> \author Univ. of Tennessee
  96. *> \author Univ. of California Berkeley
  97. *> \author Univ. of Colorado Denver
  98. *> \author NAG Ltd.
  99. *
  100. *> \ingroup complex16OTHERcomputational
  101. *
  102. *> \par Contributors:
  103. * ==================
  104. *>
  105. *> A. Petitet, Computer Science Dept., Univ. of Tenn., Knoxville, USA
  106. *
  107. *> \par Further Details:
  108. * =====================
  109. *>
  110. *> \verbatim
  111. *>
  112. *> The factorization is obtained by Householder's method. The kth
  113. *> transformation matrix, Z( k ), which is used to introduce zeros into
  114. *> the ( m - k + 1 )th row of A, is given in the form
  115. *>
  116. *> Z( k ) = ( I 0 ),
  117. *> ( 0 T( k ) )
  118. *>
  119. *> where
  120. *>
  121. *> T( k ) = I - tau*u( k )*u( k )**H, u( k ) = ( 1 ),
  122. *> ( 0 )
  123. *> ( z( k ) )
  124. *>
  125. *> tau is a scalar and z( k ) is an l element vector. tau and z( k )
  126. *> are chosen to annihilate the elements of the kth row of A2.
  127. *>
  128. *> The scalar tau is returned in the kth element of TAU and the vector
  129. *> u( k ) in the kth row of A2, such that the elements of z( k ) are
  130. *> in a( k, l + 1 ), ..., a( k, n ). The elements of R are returned in
  131. *> the upper triangular part of A1.
  132. *>
  133. *> Z is given by
  134. *>
  135. *> Z = Z( 1 ) * Z( 2 ) * ... * Z( m ).
  136. *> \endverbatim
  137. *>
  138. * =====================================================================
  139. SUBROUTINE ZLATRZ( M, N, L, A, LDA, TAU, WORK )
  140. *
  141. * -- LAPACK computational routine --
  142. * -- LAPACK is a software package provided by Univ. of Tennessee, --
  143. * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
  144. *
  145. * .. Scalar Arguments ..
  146. INTEGER L, LDA, M, N
  147. * ..
  148. * .. Array Arguments ..
  149. COMPLEX*16 A( LDA, * ), TAU( * ), WORK( * )
  150. * ..
  151. *
  152. * =====================================================================
  153. *
  154. * .. Parameters ..
  155. COMPLEX*16 ZERO
  156. PARAMETER ( ZERO = ( 0.0D+0, 0.0D+0 ) )
  157. * ..
  158. * .. Local Scalars ..
  159. INTEGER I
  160. COMPLEX*16 ALPHA
  161. * ..
  162. * .. External Subroutines ..
  163. EXTERNAL ZLACGV, ZLARFG, ZLARZ
  164. * ..
  165. * .. Intrinsic Functions ..
  166. INTRINSIC DCONJG
  167. * ..
  168. * .. Executable Statements ..
  169. *
  170. * Quick return if possible
  171. *
  172. IF( M.EQ.0 ) THEN
  173. RETURN
  174. ELSE IF( M.EQ.N ) THEN
  175. DO 10 I = 1, N
  176. TAU( I ) = ZERO
  177. 10 CONTINUE
  178. RETURN
  179. END IF
  180. *
  181. DO 20 I = M, 1, -1
  182. *
  183. * Generate elementary reflector H(i) to annihilate
  184. * [ A(i,i) A(i,n-l+1:n) ]
  185. *
  186. CALL ZLACGV( L, A( I, N-L+1 ), LDA )
  187. ALPHA = DCONJG( A( I, I ) )
  188. CALL ZLARFG( L+1, ALPHA, A( I, N-L+1 ), LDA, TAU( I ) )
  189. TAU( I ) = DCONJG( TAU( I ) )
  190. *
  191. * Apply H(i) to A(1:i-1,i:n) from the right
  192. *
  193. CALL ZLARZ( 'Right', I-1, N-I+1, L, A( I, N-L+1 ), LDA,
  194. $ DCONJG( TAU( I ) ), A( 1, I ), LDA, WORK )
  195. A( I, I ) = DCONJG( ALPHA )
  196. *
  197. 20 CONTINUE
  198. *
  199. RETURN
  200. *
  201. * End of ZLATRZ
  202. *
  203. END