You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

strevc3.f 49 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299
  1. *> \brief \b STREVC3
  2. *
  3. * =========== DOCUMENTATION ===========
  4. *
  5. * Online html documentation available at
  6. * http://www.netlib.org/lapack/explore-html/
  7. *
  8. *> \htmlonly
  9. *> Download STREVC3 + dependencies
  10. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/strevc3.f">
  11. *> [TGZ]</a>
  12. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/strevc3.f">
  13. *> [ZIP]</a>
  14. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/strevc3.f">
  15. *> [TXT]</a>
  16. *> \endhtmlonly
  17. *
  18. * Definition:
  19. * ===========
  20. *
  21. * SUBROUTINE STREVC3( SIDE, HOWMNY, SELECT, N, T, LDT, VL, LDVL,
  22. * VR, LDVR, MM, M, WORK, LWORK, INFO )
  23. *
  24. * .. Scalar Arguments ..
  25. * CHARACTER HOWMNY, SIDE
  26. * INTEGER INFO, LDT, LDVL, LDVR, LWORK, M, MM, N
  27. * ..
  28. * .. Array Arguments ..
  29. * LOGICAL SELECT( * )
  30. * REAL T( LDT, * ), VL( LDVL, * ), VR( LDVR, * ),
  31. * $ WORK( * )
  32. * ..
  33. *
  34. *
  35. *> \par Purpose:
  36. * =============
  37. *>
  38. *> \verbatim
  39. *>
  40. *> STREVC3 computes some or all of the right and/or left eigenvectors of
  41. *> a real upper quasi-triangular matrix T.
  42. *> Matrices of this type are produced by the Schur factorization of
  43. *> a real general matrix: A = Q*T*Q**T, as computed by SHSEQR.
  44. *>
  45. *> The right eigenvector x and the left eigenvector y of T corresponding
  46. *> to an eigenvalue w are defined by:
  47. *>
  48. *> T*x = w*x, (y**T)*T = w*(y**T)
  49. *>
  50. *> where y**T denotes the transpose of the vector y.
  51. *> The eigenvalues are not input to this routine, but are read directly
  52. *> from the diagonal blocks of T.
  53. *>
  54. *> This routine returns the matrices X and/or Y of right and left
  55. *> eigenvectors of T, or the products Q*X and/or Q*Y, where Q is an
  56. *> input matrix. If Q is the orthogonal factor that reduces a matrix
  57. *> A to Schur form T, then Q*X and Q*Y are the matrices of right and
  58. *> left eigenvectors of A.
  59. *>
  60. *> This uses a Level 3 BLAS version of the back transformation.
  61. *> \endverbatim
  62. *
  63. * Arguments:
  64. * ==========
  65. *
  66. *> \param[in] SIDE
  67. *> \verbatim
  68. *> SIDE is CHARACTER*1
  69. *> = 'R': compute right eigenvectors only;
  70. *> = 'L': compute left eigenvectors only;
  71. *> = 'B': compute both right and left eigenvectors.
  72. *> \endverbatim
  73. *>
  74. *> \param[in] HOWMNY
  75. *> \verbatim
  76. *> HOWMNY is CHARACTER*1
  77. *> = 'A': compute all right and/or left eigenvectors;
  78. *> = 'B': compute all right and/or left eigenvectors,
  79. *> backtransformed by the matrices in VR and/or VL;
  80. *> = 'S': compute selected right and/or left eigenvectors,
  81. *> as indicated by the logical array SELECT.
  82. *> \endverbatim
  83. *>
  84. *> \param[in,out] SELECT
  85. *> \verbatim
  86. *> SELECT is LOGICAL array, dimension (N)
  87. *> If HOWMNY = 'S', SELECT specifies the eigenvectors to be
  88. *> computed.
  89. *> If w(j) is a real eigenvalue, the corresponding real
  90. *> eigenvector is computed if SELECT(j) is .TRUE..
  91. *> If w(j) and w(j+1) are the real and imaginary parts of a
  92. *> complex eigenvalue, the corresponding complex eigenvector is
  93. *> computed if either SELECT(j) or SELECT(j+1) is .TRUE., and
  94. *> on exit SELECT(j) is set to .TRUE. and SELECT(j+1) is set to
  95. *> .FALSE..
  96. *> Not referenced if HOWMNY = 'A' or 'B'.
  97. *> \endverbatim
  98. *>
  99. *> \param[in] N
  100. *> \verbatim
  101. *> N is INTEGER
  102. *> The order of the matrix T. N >= 0.
  103. *> \endverbatim
  104. *>
  105. *> \param[in] T
  106. *> \verbatim
  107. *> T is REAL array, dimension (LDT,N)
  108. *> The upper quasi-triangular matrix T in Schur canonical form.
  109. *> \endverbatim
  110. *>
  111. *> \param[in] LDT
  112. *> \verbatim
  113. *> LDT is INTEGER
  114. *> The leading dimension of the array T. LDT >= max(1,N).
  115. *> \endverbatim
  116. *>
  117. *> \param[in,out] VL
  118. *> \verbatim
  119. *> VL is REAL array, dimension (LDVL,MM)
  120. *> On entry, if SIDE = 'L' or 'B' and HOWMNY = 'B', VL must
  121. *> contain an N-by-N matrix Q (usually the orthogonal matrix Q
  122. *> of Schur vectors returned by SHSEQR).
  123. *> On exit, if SIDE = 'L' or 'B', VL contains:
  124. *> if HOWMNY = 'A', the matrix Y of left eigenvectors of T;
  125. *> if HOWMNY = 'B', the matrix Q*Y;
  126. *> if HOWMNY = 'S', the left eigenvectors of T specified by
  127. *> SELECT, stored consecutively in the columns
  128. *> of VL, in the same order as their
  129. *> eigenvalues.
  130. *> A complex eigenvector corresponding to a complex eigenvalue
  131. *> is stored in two consecutive columns, the first holding the
  132. *> real part, and the second the imaginary part.
  133. *> Not referenced if SIDE = 'R'.
  134. *> \endverbatim
  135. *>
  136. *> \param[in] LDVL
  137. *> \verbatim
  138. *> LDVL is INTEGER
  139. *> The leading dimension of the array VL.
  140. *> LDVL >= 1, and if SIDE = 'L' or 'B', LDVL >= N.
  141. *> \endverbatim
  142. *>
  143. *> \param[in,out] VR
  144. *> \verbatim
  145. *> VR is REAL array, dimension (LDVR,MM)
  146. *> On entry, if SIDE = 'R' or 'B' and HOWMNY = 'B', VR must
  147. *> contain an N-by-N matrix Q (usually the orthogonal matrix Q
  148. *> of Schur vectors returned by SHSEQR).
  149. *> On exit, if SIDE = 'R' or 'B', VR contains:
  150. *> if HOWMNY = 'A', the matrix X of right eigenvectors of T;
  151. *> if HOWMNY = 'B', the matrix Q*X;
  152. *> if HOWMNY = 'S', the right eigenvectors of T specified by
  153. *> SELECT, stored consecutively in the columns
  154. *> of VR, in the same order as their
  155. *> eigenvalues.
  156. *> A complex eigenvector corresponding to a complex eigenvalue
  157. *> is stored in two consecutive columns, the first holding the
  158. *> real part and the second the imaginary part.
  159. *> Not referenced if SIDE = 'L'.
  160. *> \endverbatim
  161. *>
  162. *> \param[in] LDVR
  163. *> \verbatim
  164. *> LDVR is INTEGER
  165. *> The leading dimension of the array VR.
  166. *> LDVR >= 1, and if SIDE = 'R' or 'B', LDVR >= N.
  167. *> \endverbatim
  168. *>
  169. *> \param[in] MM
  170. *> \verbatim
  171. *> MM is INTEGER
  172. *> The number of columns in the arrays VL and/or VR. MM >= M.
  173. *> \endverbatim
  174. *>
  175. *> \param[out] M
  176. *> \verbatim
  177. *> M is INTEGER
  178. *> The number of columns in the arrays VL and/or VR actually
  179. *> used to store the eigenvectors.
  180. *> If HOWMNY = 'A' or 'B', M is set to N.
  181. *> Each selected real eigenvector occupies one column and each
  182. *> selected complex eigenvector occupies two columns.
  183. *> \endverbatim
  184. *>
  185. *> \param[out] WORK
  186. *> \verbatim
  187. *> WORK is REAL array, dimension (MAX(1,LWORK))
  188. *> \endverbatim
  189. *>
  190. *> \param[in] LWORK
  191. *> \verbatim
  192. *> LWORK is INTEGER
  193. *> The dimension of array WORK. LWORK >= max(1,3*N).
  194. *> For optimum performance, LWORK >= N + 2*N*NB, where NB is
  195. *> the optimal blocksize.
  196. *>
  197. *> If LWORK = -1, then a workspace query is assumed; the routine
  198. *> only calculates the optimal size of the WORK array, returns
  199. *> this value as the first entry of the WORK array, and no error
  200. *> message related to LWORK is issued by XERBLA.
  201. *> \endverbatim
  202. *>
  203. *> \param[out] INFO
  204. *> \verbatim
  205. *> INFO is INTEGER
  206. *> = 0: successful exit
  207. *> < 0: if INFO = -i, the i-th argument had an illegal value
  208. *> \endverbatim
  209. *
  210. * Authors:
  211. * ========
  212. *
  213. *> \author Univ. of Tennessee
  214. *> \author Univ. of California Berkeley
  215. *> \author Univ. of Colorado Denver
  216. *> \author NAG Ltd.
  217. *
  218. *> \ingroup realOTHERcomputational
  219. *
  220. *> \par Further Details:
  221. * =====================
  222. *>
  223. *> \verbatim
  224. *>
  225. *> The algorithm used in this program is basically backward (forward)
  226. *> substitution, with scaling to make the the code robust against
  227. *> possible overflow.
  228. *>
  229. *> Each eigenvector is normalized so that the element of largest
  230. *> magnitude has magnitude 1; here the magnitude of a complex number
  231. *> (x,y) is taken to be |x| + |y|.
  232. *> \endverbatim
  233. *>
  234. * =====================================================================
  235. SUBROUTINE STREVC3( SIDE, HOWMNY, SELECT, N, T, LDT, VL, LDVL,
  236. $ VR, LDVR, MM, M, WORK, LWORK, INFO )
  237. IMPLICIT NONE
  238. *
  239. * -- LAPACK computational routine --
  240. * -- LAPACK is a software package provided by Univ. of Tennessee, --
  241. * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
  242. *
  243. * .. Scalar Arguments ..
  244. CHARACTER HOWMNY, SIDE
  245. INTEGER INFO, LDT, LDVL, LDVR, LWORK, M, MM, N
  246. * ..
  247. * .. Array Arguments ..
  248. LOGICAL SELECT( * )
  249. REAL T( LDT, * ), VL( LDVL, * ), VR( LDVR, * ),
  250. $ WORK( * )
  251. * ..
  252. *
  253. * =====================================================================
  254. *
  255. * .. Parameters ..
  256. REAL ZERO, ONE
  257. PARAMETER ( ZERO = 0.0E+0, ONE = 1.0E+0 )
  258. INTEGER NBMIN, NBMAX
  259. PARAMETER ( NBMIN = 8, NBMAX = 128 )
  260. * ..
  261. * .. Local Scalars ..
  262. LOGICAL ALLV, BOTHV, LEFTV, LQUERY, OVER, PAIR,
  263. $ RIGHTV, SOMEV
  264. INTEGER I, IERR, II, IP, IS, J, J1, J2, JNXT, K, KI,
  265. $ IV, MAXWRK, NB, KI2
  266. REAL BETA, BIGNUM, EMAX, OVFL, REC, REMAX, SCALE,
  267. $ SMIN, SMLNUM, ULP, UNFL, VCRIT, VMAX, WI, WR,
  268. $ XNORM
  269. * ..
  270. * .. External Functions ..
  271. LOGICAL LSAME
  272. INTEGER ISAMAX, ILAENV
  273. REAL SDOT, SLAMCH
  274. EXTERNAL LSAME, ISAMAX, ILAENV, SDOT, SLAMCH
  275. * ..
  276. * .. External Subroutines ..
  277. EXTERNAL SAXPY, SCOPY, SGEMV, SLALN2, SSCAL, XERBLA,
  278. $ SLACPY, SGEMM, SLABAD, SLASET
  279. * ..
  280. * .. Intrinsic Functions ..
  281. INTRINSIC ABS, MAX, SQRT
  282. * ..
  283. * .. Local Arrays ..
  284. REAL X( 2, 2 )
  285. INTEGER ISCOMPLEX( NBMAX )
  286. * ..
  287. * .. Executable Statements ..
  288. *
  289. * Decode and test the input parameters
  290. *
  291. BOTHV = LSAME( SIDE, 'B' )
  292. RIGHTV = LSAME( SIDE, 'R' ) .OR. BOTHV
  293. LEFTV = LSAME( SIDE, 'L' ) .OR. BOTHV
  294. *
  295. ALLV = LSAME( HOWMNY, 'A' )
  296. OVER = LSAME( HOWMNY, 'B' )
  297. SOMEV = LSAME( HOWMNY, 'S' )
  298. *
  299. INFO = 0
  300. NB = ILAENV( 1, 'STREVC', SIDE // HOWMNY, N, -1, -1, -1 )
  301. MAXWRK = N + 2*N*NB
  302. WORK(1) = MAXWRK
  303. LQUERY = ( LWORK.EQ.-1 )
  304. IF( .NOT.RIGHTV .AND. .NOT.LEFTV ) THEN
  305. INFO = -1
  306. ELSE IF( .NOT.ALLV .AND. .NOT.OVER .AND. .NOT.SOMEV ) THEN
  307. INFO = -2
  308. ELSE IF( N.LT.0 ) THEN
  309. INFO = -4
  310. ELSE IF( LDT.LT.MAX( 1, N ) ) THEN
  311. INFO = -6
  312. ELSE IF( LDVL.LT.1 .OR. ( LEFTV .AND. LDVL.LT.N ) ) THEN
  313. INFO = -8
  314. ELSE IF( LDVR.LT.1 .OR. ( RIGHTV .AND. LDVR.LT.N ) ) THEN
  315. INFO = -10
  316. ELSE IF( LWORK.LT.MAX( 1, 3*N ) .AND. .NOT.LQUERY ) THEN
  317. INFO = -14
  318. ELSE
  319. *
  320. * Set M to the number of columns required to store the selected
  321. * eigenvectors, standardize the array SELECT if necessary, and
  322. * test MM.
  323. *
  324. IF( SOMEV ) THEN
  325. M = 0
  326. PAIR = .FALSE.
  327. DO 10 J = 1, N
  328. IF( PAIR ) THEN
  329. PAIR = .FALSE.
  330. SELECT( J ) = .FALSE.
  331. ELSE
  332. IF( J.LT.N ) THEN
  333. IF( T( J+1, J ).EQ.ZERO ) THEN
  334. IF( SELECT( J ) )
  335. $ M = M + 1
  336. ELSE
  337. PAIR = .TRUE.
  338. IF( SELECT( J ) .OR. SELECT( J+1 ) ) THEN
  339. SELECT( J ) = .TRUE.
  340. M = M + 2
  341. END IF
  342. END IF
  343. ELSE
  344. IF( SELECT( N ) )
  345. $ M = M + 1
  346. END IF
  347. END IF
  348. 10 CONTINUE
  349. ELSE
  350. M = N
  351. END IF
  352. *
  353. IF( MM.LT.M ) THEN
  354. INFO = -11
  355. END IF
  356. END IF
  357. IF( INFO.NE.0 ) THEN
  358. CALL XERBLA( 'STREVC3', -INFO )
  359. RETURN
  360. ELSE IF( LQUERY ) THEN
  361. RETURN
  362. END IF
  363. *
  364. * Quick return if possible.
  365. *
  366. IF( N.EQ.0 )
  367. $ RETURN
  368. *
  369. * Use blocked version of back-transformation if sufficient workspace.
  370. * Zero-out the workspace to avoid potential NaN propagation.
  371. *
  372. IF( OVER .AND. LWORK .GE. N + 2*N*NBMIN ) THEN
  373. NB = (LWORK - N) / (2*N)
  374. NB = MIN( NB, NBMAX )
  375. CALL SLASET( 'F', N, 1+2*NB, ZERO, ZERO, WORK, N )
  376. ELSE
  377. NB = 1
  378. END IF
  379. *
  380. * Set the constants to control overflow.
  381. *
  382. UNFL = SLAMCH( 'Safe minimum' )
  383. OVFL = ONE / UNFL
  384. CALL SLABAD( UNFL, OVFL )
  385. ULP = SLAMCH( 'Precision' )
  386. SMLNUM = UNFL*( N / ULP )
  387. BIGNUM = ( ONE-ULP ) / SMLNUM
  388. *
  389. * Compute 1-norm of each column of strictly upper triangular
  390. * part of T to control overflow in triangular solver.
  391. *
  392. WORK( 1 ) = ZERO
  393. DO 30 J = 2, N
  394. WORK( J ) = ZERO
  395. DO 20 I = 1, J - 1
  396. WORK( J ) = WORK( J ) + ABS( T( I, J ) )
  397. 20 CONTINUE
  398. 30 CONTINUE
  399. *
  400. * Index IP is used to specify the real or complex eigenvalue:
  401. * IP = 0, real eigenvalue,
  402. * 1, first of conjugate complex pair: (wr,wi)
  403. * -1, second of conjugate complex pair: (wr,wi)
  404. * ISCOMPLEX array stores IP for each column in current block.
  405. *
  406. IF( RIGHTV ) THEN
  407. *
  408. * ============================================================
  409. * Compute right eigenvectors.
  410. *
  411. * IV is index of column in current block.
  412. * For complex right vector, uses IV-1 for real part and IV for complex part.
  413. * Non-blocked version always uses IV=2;
  414. * blocked version starts with IV=NB, goes down to 1 or 2.
  415. * (Note the "0-th" column is used for 1-norms computed above.)
  416. IV = 2
  417. IF( NB.GT.2 ) THEN
  418. IV = NB
  419. END IF
  420. IP = 0
  421. IS = M
  422. DO 140 KI = N, 1, -1
  423. IF( IP.EQ.-1 ) THEN
  424. * previous iteration (ki+1) was second of conjugate pair,
  425. * so this ki is first of conjugate pair; skip to end of loop
  426. IP = 1
  427. GO TO 140
  428. ELSE IF( KI.EQ.1 ) THEN
  429. * last column, so this ki must be real eigenvalue
  430. IP = 0
  431. ELSE IF( T( KI, KI-1 ).EQ.ZERO ) THEN
  432. * zero on sub-diagonal, so this ki is real eigenvalue
  433. IP = 0
  434. ELSE
  435. * non-zero on sub-diagonal, so this ki is second of conjugate pair
  436. IP = -1
  437. END IF
  438. IF( SOMEV ) THEN
  439. IF( IP.EQ.0 ) THEN
  440. IF( .NOT.SELECT( KI ) )
  441. $ GO TO 140
  442. ELSE
  443. IF( .NOT.SELECT( KI-1 ) )
  444. $ GO TO 140
  445. END IF
  446. END IF
  447. *
  448. * Compute the KI-th eigenvalue (WR,WI).
  449. *
  450. WR = T( KI, KI )
  451. WI = ZERO
  452. IF( IP.NE.0 )
  453. $ WI = SQRT( ABS( T( KI, KI-1 ) ) )*
  454. $ SQRT( ABS( T( KI-1, KI ) ) )
  455. SMIN = MAX( ULP*( ABS( WR )+ABS( WI ) ), SMLNUM )
  456. *
  457. IF( IP.EQ.0 ) THEN
  458. *
  459. * --------------------------------------------------------
  460. * Real right eigenvector
  461. *
  462. WORK( KI + IV*N ) = ONE
  463. *
  464. * Form right-hand side.
  465. *
  466. DO 50 K = 1, KI - 1
  467. WORK( K + IV*N ) = -T( K, KI )
  468. 50 CONTINUE
  469. *
  470. * Solve upper quasi-triangular system:
  471. * [ T(1:KI-1,1:KI-1) - WR ]*X = SCALE*WORK.
  472. *
  473. JNXT = KI - 1
  474. DO 60 J = KI - 1, 1, -1
  475. IF( J.GT.JNXT )
  476. $ GO TO 60
  477. J1 = J
  478. J2 = J
  479. JNXT = J - 1
  480. IF( J.GT.1 ) THEN
  481. IF( T( J, J-1 ).NE.ZERO ) THEN
  482. J1 = J - 1
  483. JNXT = J - 2
  484. END IF
  485. END IF
  486. *
  487. IF( J1.EQ.J2 ) THEN
  488. *
  489. * 1-by-1 diagonal block
  490. *
  491. CALL SLALN2( .FALSE., 1, 1, SMIN, ONE, T( J, J ),
  492. $ LDT, ONE, ONE, WORK( J+IV*N ), N, WR,
  493. $ ZERO, X, 2, SCALE, XNORM, IERR )
  494. *
  495. * Scale X(1,1) to avoid overflow when updating
  496. * the right-hand side.
  497. *
  498. IF( XNORM.GT.ONE ) THEN
  499. IF( WORK( J ).GT.BIGNUM / XNORM ) THEN
  500. X( 1, 1 ) = X( 1, 1 ) / XNORM
  501. SCALE = SCALE / XNORM
  502. END IF
  503. END IF
  504. *
  505. * Scale if necessary
  506. *
  507. IF( SCALE.NE.ONE )
  508. $ CALL SSCAL( KI, SCALE, WORK( 1+IV*N ), 1 )
  509. WORK( J+IV*N ) = X( 1, 1 )
  510. *
  511. * Update right-hand side
  512. *
  513. CALL SAXPY( J-1, -X( 1, 1 ), T( 1, J ), 1,
  514. $ WORK( 1+IV*N ), 1 )
  515. *
  516. ELSE
  517. *
  518. * 2-by-2 diagonal block
  519. *
  520. CALL SLALN2( .FALSE., 2, 1, SMIN, ONE,
  521. $ T( J-1, J-1 ), LDT, ONE, ONE,
  522. $ WORK( J-1+IV*N ), N, WR, ZERO, X, 2,
  523. $ SCALE, XNORM, IERR )
  524. *
  525. * Scale X(1,1) and X(2,1) to avoid overflow when
  526. * updating the right-hand side.
  527. *
  528. IF( XNORM.GT.ONE ) THEN
  529. BETA = MAX( WORK( J-1 ), WORK( J ) )
  530. IF( BETA.GT.BIGNUM / XNORM ) THEN
  531. X( 1, 1 ) = X( 1, 1 ) / XNORM
  532. X( 2, 1 ) = X( 2, 1 ) / XNORM
  533. SCALE = SCALE / XNORM
  534. END IF
  535. END IF
  536. *
  537. * Scale if necessary
  538. *
  539. IF( SCALE.NE.ONE )
  540. $ CALL SSCAL( KI, SCALE, WORK( 1+IV*N ), 1 )
  541. WORK( J-1+IV*N ) = X( 1, 1 )
  542. WORK( J +IV*N ) = X( 2, 1 )
  543. *
  544. * Update right-hand side
  545. *
  546. CALL SAXPY( J-2, -X( 1, 1 ), T( 1, J-1 ), 1,
  547. $ WORK( 1+IV*N ), 1 )
  548. CALL SAXPY( J-2, -X( 2, 1 ), T( 1, J ), 1,
  549. $ WORK( 1+IV*N ), 1 )
  550. END IF
  551. 60 CONTINUE
  552. *
  553. * Copy the vector x or Q*x to VR and normalize.
  554. *
  555. IF( .NOT.OVER ) THEN
  556. * ------------------------------
  557. * no back-transform: copy x to VR and normalize.
  558. CALL SCOPY( KI, WORK( 1 + IV*N ), 1, VR( 1, IS ), 1 )
  559. *
  560. II = ISAMAX( KI, VR( 1, IS ), 1 )
  561. REMAX = ONE / ABS( VR( II, IS ) )
  562. CALL SSCAL( KI, REMAX, VR( 1, IS ), 1 )
  563. *
  564. DO 70 K = KI + 1, N
  565. VR( K, IS ) = ZERO
  566. 70 CONTINUE
  567. *
  568. ELSE IF( NB.EQ.1 ) THEN
  569. * ------------------------------
  570. * version 1: back-transform each vector with GEMV, Q*x.
  571. IF( KI.GT.1 )
  572. $ CALL SGEMV( 'N', N, KI-1, ONE, VR, LDVR,
  573. $ WORK( 1 + IV*N ), 1, WORK( KI + IV*N ),
  574. $ VR( 1, KI ), 1 )
  575. *
  576. II = ISAMAX( N, VR( 1, KI ), 1 )
  577. REMAX = ONE / ABS( VR( II, KI ) )
  578. CALL SSCAL( N, REMAX, VR( 1, KI ), 1 )
  579. *
  580. ELSE
  581. * ------------------------------
  582. * version 2: back-transform block of vectors with GEMM
  583. * zero out below vector
  584. DO K = KI + 1, N
  585. WORK( K + IV*N ) = ZERO
  586. END DO
  587. ISCOMPLEX( IV ) = IP
  588. * back-transform and normalization is done below
  589. END IF
  590. ELSE
  591. *
  592. * --------------------------------------------------------
  593. * Complex right eigenvector.
  594. *
  595. * Initial solve
  596. * [ ( T(KI-1,KI-1) T(KI-1,KI) ) - (WR + I*WI) ]*X = 0.
  597. * [ ( T(KI, KI-1) T(KI, KI) ) ]
  598. *
  599. IF( ABS( T( KI-1, KI ) ).GE.ABS( T( KI, KI-1 ) ) ) THEN
  600. WORK( KI-1 + (IV-1)*N ) = ONE
  601. WORK( KI + (IV )*N ) = WI / T( KI-1, KI )
  602. ELSE
  603. WORK( KI-1 + (IV-1)*N ) = -WI / T( KI, KI-1 )
  604. WORK( KI + (IV )*N ) = ONE
  605. END IF
  606. WORK( KI + (IV-1)*N ) = ZERO
  607. WORK( KI-1 + (IV )*N ) = ZERO
  608. *
  609. * Form right-hand side.
  610. *
  611. DO 80 K = 1, KI - 2
  612. WORK( K+(IV-1)*N ) = -WORK( KI-1+(IV-1)*N )*T(K,KI-1)
  613. WORK( K+(IV )*N ) = -WORK( KI +(IV )*N )*T(K,KI )
  614. 80 CONTINUE
  615. *
  616. * Solve upper quasi-triangular system:
  617. * [ T(1:KI-2,1:KI-2) - (WR+i*WI) ]*X = SCALE*(WORK+i*WORK2)
  618. *
  619. JNXT = KI - 2
  620. DO 90 J = KI - 2, 1, -1
  621. IF( J.GT.JNXT )
  622. $ GO TO 90
  623. J1 = J
  624. J2 = J
  625. JNXT = J - 1
  626. IF( J.GT.1 ) THEN
  627. IF( T( J, J-1 ).NE.ZERO ) THEN
  628. J1 = J - 1
  629. JNXT = J - 2
  630. END IF
  631. END IF
  632. *
  633. IF( J1.EQ.J2 ) THEN
  634. *
  635. * 1-by-1 diagonal block
  636. *
  637. CALL SLALN2( .FALSE., 1, 2, SMIN, ONE, T( J, J ),
  638. $ LDT, ONE, ONE, WORK( J+(IV-1)*N ), N,
  639. $ WR, WI, X, 2, SCALE, XNORM, IERR )
  640. *
  641. * Scale X(1,1) and X(1,2) to avoid overflow when
  642. * updating the right-hand side.
  643. *
  644. IF( XNORM.GT.ONE ) THEN
  645. IF( WORK( J ).GT.BIGNUM / XNORM ) THEN
  646. X( 1, 1 ) = X( 1, 1 ) / XNORM
  647. X( 1, 2 ) = X( 1, 2 ) / XNORM
  648. SCALE = SCALE / XNORM
  649. END IF
  650. END IF
  651. *
  652. * Scale if necessary
  653. *
  654. IF( SCALE.NE.ONE ) THEN
  655. CALL SSCAL( KI, SCALE, WORK( 1+(IV-1)*N ), 1 )
  656. CALL SSCAL( KI, SCALE, WORK( 1+(IV )*N ), 1 )
  657. END IF
  658. WORK( J+(IV-1)*N ) = X( 1, 1 )
  659. WORK( J+(IV )*N ) = X( 1, 2 )
  660. *
  661. * Update the right-hand side
  662. *
  663. CALL SAXPY( J-1, -X( 1, 1 ), T( 1, J ), 1,
  664. $ WORK( 1+(IV-1)*N ), 1 )
  665. CALL SAXPY( J-1, -X( 1, 2 ), T( 1, J ), 1,
  666. $ WORK( 1+(IV )*N ), 1 )
  667. *
  668. ELSE
  669. *
  670. * 2-by-2 diagonal block
  671. *
  672. CALL SLALN2( .FALSE., 2, 2, SMIN, ONE,
  673. $ T( J-1, J-1 ), LDT, ONE, ONE,
  674. $ WORK( J-1+(IV-1)*N ), N, WR, WI, X, 2,
  675. $ SCALE, XNORM, IERR )
  676. *
  677. * Scale X to avoid overflow when updating
  678. * the right-hand side.
  679. *
  680. IF( XNORM.GT.ONE ) THEN
  681. BETA = MAX( WORK( J-1 ), WORK( J ) )
  682. IF( BETA.GT.BIGNUM / XNORM ) THEN
  683. REC = ONE / XNORM
  684. X( 1, 1 ) = X( 1, 1 )*REC
  685. X( 1, 2 ) = X( 1, 2 )*REC
  686. X( 2, 1 ) = X( 2, 1 )*REC
  687. X( 2, 2 ) = X( 2, 2 )*REC
  688. SCALE = SCALE*REC
  689. END IF
  690. END IF
  691. *
  692. * Scale if necessary
  693. *
  694. IF( SCALE.NE.ONE ) THEN
  695. CALL SSCAL( KI, SCALE, WORK( 1+(IV-1)*N ), 1 )
  696. CALL SSCAL( KI, SCALE, WORK( 1+(IV )*N ), 1 )
  697. END IF
  698. WORK( J-1+(IV-1)*N ) = X( 1, 1 )
  699. WORK( J +(IV-1)*N ) = X( 2, 1 )
  700. WORK( J-1+(IV )*N ) = X( 1, 2 )
  701. WORK( J +(IV )*N ) = X( 2, 2 )
  702. *
  703. * Update the right-hand side
  704. *
  705. CALL SAXPY( J-2, -X( 1, 1 ), T( 1, J-1 ), 1,
  706. $ WORK( 1+(IV-1)*N ), 1 )
  707. CALL SAXPY( J-2, -X( 2, 1 ), T( 1, J ), 1,
  708. $ WORK( 1+(IV-1)*N ), 1 )
  709. CALL SAXPY( J-2, -X( 1, 2 ), T( 1, J-1 ), 1,
  710. $ WORK( 1+(IV )*N ), 1 )
  711. CALL SAXPY( J-2, -X( 2, 2 ), T( 1, J ), 1,
  712. $ WORK( 1+(IV )*N ), 1 )
  713. END IF
  714. 90 CONTINUE
  715. *
  716. * Copy the vector x or Q*x to VR and normalize.
  717. *
  718. IF( .NOT.OVER ) THEN
  719. * ------------------------------
  720. * no back-transform: copy x to VR and normalize.
  721. CALL SCOPY( KI, WORK( 1+(IV-1)*N ), 1, VR(1,IS-1), 1 )
  722. CALL SCOPY( KI, WORK( 1+(IV )*N ), 1, VR(1,IS ), 1 )
  723. *
  724. EMAX = ZERO
  725. DO 100 K = 1, KI
  726. EMAX = MAX( EMAX, ABS( VR( K, IS-1 ) )+
  727. $ ABS( VR( K, IS ) ) )
  728. 100 CONTINUE
  729. REMAX = ONE / EMAX
  730. CALL SSCAL( KI, REMAX, VR( 1, IS-1 ), 1 )
  731. CALL SSCAL( KI, REMAX, VR( 1, IS ), 1 )
  732. *
  733. DO 110 K = KI + 1, N
  734. VR( K, IS-1 ) = ZERO
  735. VR( K, IS ) = ZERO
  736. 110 CONTINUE
  737. *
  738. ELSE IF( NB.EQ.1 ) THEN
  739. * ------------------------------
  740. * version 1: back-transform each vector with GEMV, Q*x.
  741. IF( KI.GT.2 ) THEN
  742. CALL SGEMV( 'N', N, KI-2, ONE, VR, LDVR,
  743. $ WORK( 1 + (IV-1)*N ), 1,
  744. $ WORK( KI-1 + (IV-1)*N ), VR(1,KI-1), 1)
  745. CALL SGEMV( 'N', N, KI-2, ONE, VR, LDVR,
  746. $ WORK( 1 + (IV)*N ), 1,
  747. $ WORK( KI + (IV)*N ), VR( 1, KI ), 1 )
  748. ELSE
  749. CALL SSCAL( N, WORK(KI-1+(IV-1)*N), VR(1,KI-1), 1)
  750. CALL SSCAL( N, WORK(KI +(IV )*N), VR(1,KI ), 1)
  751. END IF
  752. *
  753. EMAX = ZERO
  754. DO 120 K = 1, N
  755. EMAX = MAX( EMAX, ABS( VR( K, KI-1 ) )+
  756. $ ABS( VR( K, KI ) ) )
  757. 120 CONTINUE
  758. REMAX = ONE / EMAX
  759. CALL SSCAL( N, REMAX, VR( 1, KI-1 ), 1 )
  760. CALL SSCAL( N, REMAX, VR( 1, KI ), 1 )
  761. *
  762. ELSE
  763. * ------------------------------
  764. * version 2: back-transform block of vectors with GEMM
  765. * zero out below vector
  766. DO K = KI + 1, N
  767. WORK( K + (IV-1)*N ) = ZERO
  768. WORK( K + (IV )*N ) = ZERO
  769. END DO
  770. ISCOMPLEX( IV-1 ) = -IP
  771. ISCOMPLEX( IV ) = IP
  772. IV = IV - 1
  773. * back-transform and normalization is done below
  774. END IF
  775. END IF
  776. IF( NB.GT.1 ) THEN
  777. * --------------------------------------------------------
  778. * Blocked version of back-transform
  779. * For complex case, KI2 includes both vectors (KI-1 and KI)
  780. IF( IP.EQ.0 ) THEN
  781. KI2 = KI
  782. ELSE
  783. KI2 = KI - 1
  784. END IF
  785. * Columns IV:NB of work are valid vectors.
  786. * When the number of vectors stored reaches NB-1 or NB,
  787. * or if this was last vector, do the GEMM
  788. IF( (IV.LE.2) .OR. (KI2.EQ.1) ) THEN
  789. CALL SGEMM( 'N', 'N', N, NB-IV+1, KI2+NB-IV, ONE,
  790. $ VR, LDVR,
  791. $ WORK( 1 + (IV)*N ), N,
  792. $ ZERO,
  793. $ WORK( 1 + (NB+IV)*N ), N )
  794. * normalize vectors
  795. DO K = IV, NB
  796. IF( ISCOMPLEX(K).EQ.0 ) THEN
  797. * real eigenvector
  798. II = ISAMAX( N, WORK( 1 + (NB+K)*N ), 1 )
  799. REMAX = ONE / ABS( WORK( II + (NB+K)*N ) )
  800. ELSE IF( ISCOMPLEX(K).EQ.1 ) THEN
  801. * first eigenvector of conjugate pair
  802. EMAX = ZERO
  803. DO II = 1, N
  804. EMAX = MAX( EMAX,
  805. $ ABS( WORK( II + (NB+K )*N ) )+
  806. $ ABS( WORK( II + (NB+K+1)*N ) ) )
  807. END DO
  808. REMAX = ONE / EMAX
  809. * else if ISCOMPLEX(K).EQ.-1
  810. * second eigenvector of conjugate pair
  811. * reuse same REMAX as previous K
  812. END IF
  813. CALL SSCAL( N, REMAX, WORK( 1 + (NB+K)*N ), 1 )
  814. END DO
  815. CALL SLACPY( 'F', N, NB-IV+1,
  816. $ WORK( 1 + (NB+IV)*N ), N,
  817. $ VR( 1, KI2 ), LDVR )
  818. IV = NB
  819. ELSE
  820. IV = IV - 1
  821. END IF
  822. END IF ! blocked back-transform
  823. *
  824. IS = IS - 1
  825. IF( IP.NE.0 )
  826. $ IS = IS - 1
  827. 140 CONTINUE
  828. END IF
  829. IF( LEFTV ) THEN
  830. *
  831. * ============================================================
  832. * Compute left eigenvectors.
  833. *
  834. * IV is index of column in current block.
  835. * For complex left vector, uses IV for real part and IV+1 for complex part.
  836. * Non-blocked version always uses IV=1;
  837. * blocked version starts with IV=1, goes up to NB-1 or NB.
  838. * (Note the "0-th" column is used for 1-norms computed above.)
  839. IV = 1
  840. IP = 0
  841. IS = 1
  842. DO 260 KI = 1, N
  843. IF( IP.EQ.1 ) THEN
  844. * previous iteration (ki-1) was first of conjugate pair,
  845. * so this ki is second of conjugate pair; skip to end of loop
  846. IP = -1
  847. GO TO 260
  848. ELSE IF( KI.EQ.N ) THEN
  849. * last column, so this ki must be real eigenvalue
  850. IP = 0
  851. ELSE IF( T( KI+1, KI ).EQ.ZERO ) THEN
  852. * zero on sub-diagonal, so this ki is real eigenvalue
  853. IP = 0
  854. ELSE
  855. * non-zero on sub-diagonal, so this ki is first of conjugate pair
  856. IP = 1
  857. END IF
  858. *
  859. IF( SOMEV ) THEN
  860. IF( .NOT.SELECT( KI ) )
  861. $ GO TO 260
  862. END IF
  863. *
  864. * Compute the KI-th eigenvalue (WR,WI).
  865. *
  866. WR = T( KI, KI )
  867. WI = ZERO
  868. IF( IP.NE.0 )
  869. $ WI = SQRT( ABS( T( KI, KI+1 ) ) )*
  870. $ SQRT( ABS( T( KI+1, KI ) ) )
  871. SMIN = MAX( ULP*( ABS( WR )+ABS( WI ) ), SMLNUM )
  872. *
  873. IF( IP.EQ.0 ) THEN
  874. *
  875. * --------------------------------------------------------
  876. * Real left eigenvector
  877. *
  878. WORK( KI + IV*N ) = ONE
  879. *
  880. * Form right-hand side.
  881. *
  882. DO 160 K = KI + 1, N
  883. WORK( K + IV*N ) = -T( KI, K )
  884. 160 CONTINUE
  885. *
  886. * Solve transposed quasi-triangular system:
  887. * [ T(KI+1:N,KI+1:N) - WR ]**T * X = SCALE*WORK
  888. *
  889. VMAX = ONE
  890. VCRIT = BIGNUM
  891. *
  892. JNXT = KI + 1
  893. DO 170 J = KI + 1, N
  894. IF( J.LT.JNXT )
  895. $ GO TO 170
  896. J1 = J
  897. J2 = J
  898. JNXT = J + 1
  899. IF( J.LT.N ) THEN
  900. IF( T( J+1, J ).NE.ZERO ) THEN
  901. J2 = J + 1
  902. JNXT = J + 2
  903. END IF
  904. END IF
  905. *
  906. IF( J1.EQ.J2 ) THEN
  907. *
  908. * 1-by-1 diagonal block
  909. *
  910. * Scale if necessary to avoid overflow when forming
  911. * the right-hand side.
  912. *
  913. IF( WORK( J ).GT.VCRIT ) THEN
  914. REC = ONE / VMAX
  915. CALL SSCAL( N-KI+1, REC, WORK( KI+IV*N ), 1 )
  916. VMAX = ONE
  917. VCRIT = BIGNUM
  918. END IF
  919. *
  920. WORK( J+IV*N ) = WORK( J+IV*N ) -
  921. $ SDOT( J-KI-1, T( KI+1, J ), 1,
  922. $ WORK( KI+1+IV*N ), 1 )
  923. *
  924. * Solve [ T(J,J) - WR ]**T * X = WORK
  925. *
  926. CALL SLALN2( .FALSE., 1, 1, SMIN, ONE, T( J, J ),
  927. $ LDT, ONE, ONE, WORK( J+IV*N ), N, WR,
  928. $ ZERO, X, 2, SCALE, XNORM, IERR )
  929. *
  930. * Scale if necessary
  931. *
  932. IF( SCALE.NE.ONE )
  933. $ CALL SSCAL( N-KI+1, SCALE, WORK( KI+IV*N ), 1 )
  934. WORK( J+IV*N ) = X( 1, 1 )
  935. VMAX = MAX( ABS( WORK( J+IV*N ) ), VMAX )
  936. VCRIT = BIGNUM / VMAX
  937. *
  938. ELSE
  939. *
  940. * 2-by-2 diagonal block
  941. *
  942. * Scale if necessary to avoid overflow when forming
  943. * the right-hand side.
  944. *
  945. BETA = MAX( WORK( J ), WORK( J+1 ) )
  946. IF( BETA.GT.VCRIT ) THEN
  947. REC = ONE / VMAX
  948. CALL SSCAL( N-KI+1, REC, WORK( KI+IV*N ), 1 )
  949. VMAX = ONE
  950. VCRIT = BIGNUM
  951. END IF
  952. *
  953. WORK( J+IV*N ) = WORK( J+IV*N ) -
  954. $ SDOT( J-KI-1, T( KI+1, J ), 1,
  955. $ WORK( KI+1+IV*N ), 1 )
  956. *
  957. WORK( J+1+IV*N ) = WORK( J+1+IV*N ) -
  958. $ SDOT( J-KI-1, T( KI+1, J+1 ), 1,
  959. $ WORK( KI+1+IV*N ), 1 )
  960. *
  961. * Solve
  962. * [ T(J,J)-WR T(J,J+1) ]**T * X = SCALE*( WORK1 )
  963. * [ T(J+1,J) T(J+1,J+1)-WR ] ( WORK2 )
  964. *
  965. CALL SLALN2( .TRUE., 2, 1, SMIN, ONE, T( J, J ),
  966. $ LDT, ONE, ONE, WORK( J+IV*N ), N, WR,
  967. $ ZERO, X, 2, SCALE, XNORM, IERR )
  968. *
  969. * Scale if necessary
  970. *
  971. IF( SCALE.NE.ONE )
  972. $ CALL SSCAL( N-KI+1, SCALE, WORK( KI+IV*N ), 1 )
  973. WORK( J +IV*N ) = X( 1, 1 )
  974. WORK( J+1+IV*N ) = X( 2, 1 )
  975. *
  976. VMAX = MAX( ABS( WORK( J +IV*N ) ),
  977. $ ABS( WORK( J+1+IV*N ) ), VMAX )
  978. VCRIT = BIGNUM / VMAX
  979. *
  980. END IF
  981. 170 CONTINUE
  982. *
  983. * Copy the vector x or Q*x to VL and normalize.
  984. *
  985. IF( .NOT.OVER ) THEN
  986. * ------------------------------
  987. * no back-transform: copy x to VL and normalize.
  988. CALL SCOPY( N-KI+1, WORK( KI + IV*N ), 1,
  989. $ VL( KI, IS ), 1 )
  990. *
  991. II = ISAMAX( N-KI+1, VL( KI, IS ), 1 ) + KI - 1
  992. REMAX = ONE / ABS( VL( II, IS ) )
  993. CALL SSCAL( N-KI+1, REMAX, VL( KI, IS ), 1 )
  994. *
  995. DO 180 K = 1, KI - 1
  996. VL( K, IS ) = ZERO
  997. 180 CONTINUE
  998. *
  999. ELSE IF( NB.EQ.1 ) THEN
  1000. * ------------------------------
  1001. * version 1: back-transform each vector with GEMV, Q*x.
  1002. IF( KI.LT.N )
  1003. $ CALL SGEMV( 'N', N, N-KI, ONE,
  1004. $ VL( 1, KI+1 ), LDVL,
  1005. $ WORK( KI+1 + IV*N ), 1,
  1006. $ WORK( KI + IV*N ), VL( 1, KI ), 1 )
  1007. *
  1008. II = ISAMAX( N, VL( 1, KI ), 1 )
  1009. REMAX = ONE / ABS( VL( II, KI ) )
  1010. CALL SSCAL( N, REMAX, VL( 1, KI ), 1 )
  1011. *
  1012. ELSE
  1013. * ------------------------------
  1014. * version 2: back-transform block of vectors with GEMM
  1015. * zero out above vector
  1016. * could go from KI-NV+1 to KI-1
  1017. DO K = 1, KI - 1
  1018. WORK( K + IV*N ) = ZERO
  1019. END DO
  1020. ISCOMPLEX( IV ) = IP
  1021. * back-transform and normalization is done below
  1022. END IF
  1023. ELSE
  1024. *
  1025. * --------------------------------------------------------
  1026. * Complex left eigenvector.
  1027. *
  1028. * Initial solve:
  1029. * [ ( T(KI,KI) T(KI,KI+1) )**T - (WR - I* WI) ]*X = 0.
  1030. * [ ( T(KI+1,KI) T(KI+1,KI+1) ) ]
  1031. *
  1032. IF( ABS( T( KI, KI+1 ) ).GE.ABS( T( KI+1, KI ) ) ) THEN
  1033. WORK( KI + (IV )*N ) = WI / T( KI, KI+1 )
  1034. WORK( KI+1 + (IV+1)*N ) = ONE
  1035. ELSE
  1036. WORK( KI + (IV )*N ) = ONE
  1037. WORK( KI+1 + (IV+1)*N ) = -WI / T( KI+1, KI )
  1038. END IF
  1039. WORK( KI+1 + (IV )*N ) = ZERO
  1040. WORK( KI + (IV+1)*N ) = ZERO
  1041. *
  1042. * Form right-hand side.
  1043. *
  1044. DO 190 K = KI + 2, N
  1045. WORK( K+(IV )*N ) = -WORK( KI +(IV )*N )*T(KI, K)
  1046. WORK( K+(IV+1)*N ) = -WORK( KI+1+(IV+1)*N )*T(KI+1,K)
  1047. 190 CONTINUE
  1048. *
  1049. * Solve transposed quasi-triangular system:
  1050. * [ T(KI+2:N,KI+2:N)**T - (WR-i*WI) ]*X = WORK1+i*WORK2
  1051. *
  1052. VMAX = ONE
  1053. VCRIT = BIGNUM
  1054. *
  1055. JNXT = KI + 2
  1056. DO 200 J = KI + 2, N
  1057. IF( J.LT.JNXT )
  1058. $ GO TO 200
  1059. J1 = J
  1060. J2 = J
  1061. JNXT = J + 1
  1062. IF( J.LT.N ) THEN
  1063. IF( T( J+1, J ).NE.ZERO ) THEN
  1064. J2 = J + 1
  1065. JNXT = J + 2
  1066. END IF
  1067. END IF
  1068. *
  1069. IF( J1.EQ.J2 ) THEN
  1070. *
  1071. * 1-by-1 diagonal block
  1072. *
  1073. * Scale if necessary to avoid overflow when
  1074. * forming the right-hand side elements.
  1075. *
  1076. IF( WORK( J ).GT.VCRIT ) THEN
  1077. REC = ONE / VMAX
  1078. CALL SSCAL( N-KI+1, REC, WORK(KI+(IV )*N), 1 )
  1079. CALL SSCAL( N-KI+1, REC, WORK(KI+(IV+1)*N), 1 )
  1080. VMAX = ONE
  1081. VCRIT = BIGNUM
  1082. END IF
  1083. *
  1084. WORK( J+(IV )*N ) = WORK( J+(IV)*N ) -
  1085. $ SDOT( J-KI-2, T( KI+2, J ), 1,
  1086. $ WORK( KI+2+(IV)*N ), 1 )
  1087. WORK( J+(IV+1)*N ) = WORK( J+(IV+1)*N ) -
  1088. $ SDOT( J-KI-2, T( KI+2, J ), 1,
  1089. $ WORK( KI+2+(IV+1)*N ), 1 )
  1090. *
  1091. * Solve [ T(J,J)-(WR-i*WI) ]*(X11+i*X12)= WK+I*WK2
  1092. *
  1093. CALL SLALN2( .FALSE., 1, 2, SMIN, ONE, T( J, J ),
  1094. $ LDT, ONE, ONE, WORK( J+IV*N ), N, WR,
  1095. $ -WI, X, 2, SCALE, XNORM, IERR )
  1096. *
  1097. * Scale if necessary
  1098. *
  1099. IF( SCALE.NE.ONE ) THEN
  1100. CALL SSCAL( N-KI+1, SCALE, WORK(KI+(IV )*N), 1)
  1101. CALL SSCAL( N-KI+1, SCALE, WORK(KI+(IV+1)*N), 1)
  1102. END IF
  1103. WORK( J+(IV )*N ) = X( 1, 1 )
  1104. WORK( J+(IV+1)*N ) = X( 1, 2 )
  1105. VMAX = MAX( ABS( WORK( J+(IV )*N ) ),
  1106. $ ABS( WORK( J+(IV+1)*N ) ), VMAX )
  1107. VCRIT = BIGNUM / VMAX
  1108. *
  1109. ELSE
  1110. *
  1111. * 2-by-2 diagonal block
  1112. *
  1113. * Scale if necessary to avoid overflow when forming
  1114. * the right-hand side elements.
  1115. *
  1116. BETA = MAX( WORK( J ), WORK( J+1 ) )
  1117. IF( BETA.GT.VCRIT ) THEN
  1118. REC = ONE / VMAX
  1119. CALL SSCAL( N-KI+1, REC, WORK(KI+(IV )*N), 1 )
  1120. CALL SSCAL( N-KI+1, REC, WORK(KI+(IV+1)*N), 1 )
  1121. VMAX = ONE
  1122. VCRIT = BIGNUM
  1123. END IF
  1124. *
  1125. WORK( J +(IV )*N ) = WORK( J+(IV)*N ) -
  1126. $ SDOT( J-KI-2, T( KI+2, J ), 1,
  1127. $ WORK( KI+2+(IV)*N ), 1 )
  1128. *
  1129. WORK( J +(IV+1)*N ) = WORK( J+(IV+1)*N ) -
  1130. $ SDOT( J-KI-2, T( KI+2, J ), 1,
  1131. $ WORK( KI+2+(IV+1)*N ), 1 )
  1132. *
  1133. WORK( J+1+(IV )*N ) = WORK( J+1+(IV)*N ) -
  1134. $ SDOT( J-KI-2, T( KI+2, J+1 ), 1,
  1135. $ WORK( KI+2+(IV)*N ), 1 )
  1136. *
  1137. WORK( J+1+(IV+1)*N ) = WORK( J+1+(IV+1)*N ) -
  1138. $ SDOT( J-KI-2, T( KI+2, J+1 ), 1,
  1139. $ WORK( KI+2+(IV+1)*N ), 1 )
  1140. *
  1141. * Solve 2-by-2 complex linear equation
  1142. * [ (T(j,j) T(j,j+1) )**T - (wr-i*wi)*I ]*X = SCALE*B
  1143. * [ (T(j+1,j) T(j+1,j+1)) ]
  1144. *
  1145. CALL SLALN2( .TRUE., 2, 2, SMIN, ONE, T( J, J ),
  1146. $ LDT, ONE, ONE, WORK( J+IV*N ), N, WR,
  1147. $ -WI, X, 2, SCALE, XNORM, IERR )
  1148. *
  1149. * Scale if necessary
  1150. *
  1151. IF( SCALE.NE.ONE ) THEN
  1152. CALL SSCAL( N-KI+1, SCALE, WORK(KI+(IV )*N), 1)
  1153. CALL SSCAL( N-KI+1, SCALE, WORK(KI+(IV+1)*N), 1)
  1154. END IF
  1155. WORK( J +(IV )*N ) = X( 1, 1 )
  1156. WORK( J +(IV+1)*N ) = X( 1, 2 )
  1157. WORK( J+1+(IV )*N ) = X( 2, 1 )
  1158. WORK( J+1+(IV+1)*N ) = X( 2, 2 )
  1159. VMAX = MAX( ABS( X( 1, 1 ) ), ABS( X( 1, 2 ) ),
  1160. $ ABS( X( 2, 1 ) ), ABS( X( 2, 2 ) ),
  1161. $ VMAX )
  1162. VCRIT = BIGNUM / VMAX
  1163. *
  1164. END IF
  1165. 200 CONTINUE
  1166. *
  1167. * Copy the vector x or Q*x to VL and normalize.
  1168. *
  1169. IF( .NOT.OVER ) THEN
  1170. * ------------------------------
  1171. * no back-transform: copy x to VL and normalize.
  1172. CALL SCOPY( N-KI+1, WORK( KI + (IV )*N ), 1,
  1173. $ VL( KI, IS ), 1 )
  1174. CALL SCOPY( N-KI+1, WORK( KI + (IV+1)*N ), 1,
  1175. $ VL( KI, IS+1 ), 1 )
  1176. *
  1177. EMAX = ZERO
  1178. DO 220 K = KI, N
  1179. EMAX = MAX( EMAX, ABS( VL( K, IS ) )+
  1180. $ ABS( VL( K, IS+1 ) ) )
  1181. 220 CONTINUE
  1182. REMAX = ONE / EMAX
  1183. CALL SSCAL( N-KI+1, REMAX, VL( KI, IS ), 1 )
  1184. CALL SSCAL( N-KI+1, REMAX, VL( KI, IS+1 ), 1 )
  1185. *
  1186. DO 230 K = 1, KI - 1
  1187. VL( K, IS ) = ZERO
  1188. VL( K, IS+1 ) = ZERO
  1189. 230 CONTINUE
  1190. *
  1191. ELSE IF( NB.EQ.1 ) THEN
  1192. * ------------------------------
  1193. * version 1: back-transform each vector with GEMV, Q*x.
  1194. IF( KI.LT.N-1 ) THEN
  1195. CALL SGEMV( 'N', N, N-KI-1, ONE,
  1196. $ VL( 1, KI+2 ), LDVL,
  1197. $ WORK( KI+2 + (IV)*N ), 1,
  1198. $ WORK( KI + (IV)*N ),
  1199. $ VL( 1, KI ), 1 )
  1200. CALL SGEMV( 'N', N, N-KI-1, ONE,
  1201. $ VL( 1, KI+2 ), LDVL,
  1202. $ WORK( KI+2 + (IV+1)*N ), 1,
  1203. $ WORK( KI+1 + (IV+1)*N ),
  1204. $ VL( 1, KI+1 ), 1 )
  1205. ELSE
  1206. CALL SSCAL( N, WORK(KI+ (IV )*N), VL(1, KI ), 1)
  1207. CALL SSCAL( N, WORK(KI+1+(IV+1)*N), VL(1, KI+1), 1)
  1208. END IF
  1209. *
  1210. EMAX = ZERO
  1211. DO 240 K = 1, N
  1212. EMAX = MAX( EMAX, ABS( VL( K, KI ) )+
  1213. $ ABS( VL( K, KI+1 ) ) )
  1214. 240 CONTINUE
  1215. REMAX = ONE / EMAX
  1216. CALL SSCAL( N, REMAX, VL( 1, KI ), 1 )
  1217. CALL SSCAL( N, REMAX, VL( 1, KI+1 ), 1 )
  1218. *
  1219. ELSE
  1220. * ------------------------------
  1221. * version 2: back-transform block of vectors with GEMM
  1222. * zero out above vector
  1223. * could go from KI-NV+1 to KI-1
  1224. DO K = 1, KI - 1
  1225. WORK( K + (IV )*N ) = ZERO
  1226. WORK( K + (IV+1)*N ) = ZERO
  1227. END DO
  1228. ISCOMPLEX( IV ) = IP
  1229. ISCOMPLEX( IV+1 ) = -IP
  1230. IV = IV + 1
  1231. * back-transform and normalization is done below
  1232. END IF
  1233. END IF
  1234. IF( NB.GT.1 ) THEN
  1235. * --------------------------------------------------------
  1236. * Blocked version of back-transform
  1237. * For complex case, KI2 includes both vectors (KI and KI+1)
  1238. IF( IP.EQ.0 ) THEN
  1239. KI2 = KI
  1240. ELSE
  1241. KI2 = KI + 1
  1242. END IF
  1243. * Columns 1:IV of work are valid vectors.
  1244. * When the number of vectors stored reaches NB-1 or NB,
  1245. * or if this was last vector, do the GEMM
  1246. IF( (IV.GE.NB-1) .OR. (KI2.EQ.N) ) THEN
  1247. CALL SGEMM( 'N', 'N', N, IV, N-KI2+IV, ONE,
  1248. $ VL( 1, KI2-IV+1 ), LDVL,
  1249. $ WORK( KI2-IV+1 + (1)*N ), N,
  1250. $ ZERO,
  1251. $ WORK( 1 + (NB+1)*N ), N )
  1252. * normalize vectors
  1253. DO K = 1, IV
  1254. IF( ISCOMPLEX(K).EQ.0) THEN
  1255. * real eigenvector
  1256. II = ISAMAX( N, WORK( 1 + (NB+K)*N ), 1 )
  1257. REMAX = ONE / ABS( WORK( II + (NB+K)*N ) )
  1258. ELSE IF( ISCOMPLEX(K).EQ.1) THEN
  1259. * first eigenvector of conjugate pair
  1260. EMAX = ZERO
  1261. DO II = 1, N
  1262. EMAX = MAX( EMAX,
  1263. $ ABS( WORK( II + (NB+K )*N ) )+
  1264. $ ABS( WORK( II + (NB+K+1)*N ) ) )
  1265. END DO
  1266. REMAX = ONE / EMAX
  1267. * else if ISCOMPLEX(K).EQ.-1
  1268. * second eigenvector of conjugate pair
  1269. * reuse same REMAX as previous K
  1270. END IF
  1271. CALL SSCAL( N, REMAX, WORK( 1 + (NB+K)*N ), 1 )
  1272. END DO
  1273. CALL SLACPY( 'F', N, IV,
  1274. $ WORK( 1 + (NB+1)*N ), N,
  1275. $ VL( 1, KI2-IV+1 ), LDVL )
  1276. IV = 1
  1277. ELSE
  1278. IV = IV + 1
  1279. END IF
  1280. END IF ! blocked back-transform
  1281. *
  1282. IS = IS + 1
  1283. IF( IP.NE.0 )
  1284. $ IS = IS + 1
  1285. 260 CONTINUE
  1286. END IF
  1287. *
  1288. RETURN
  1289. *
  1290. * End of STREVC3
  1291. *
  1292. END