You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

slaeda.f 9.8 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305
  1. *> \brief \b SLAEDA used by SSTEDC. Computes the Z vector determining the rank-one modification of the diagonal matrix. Used when the original matrix is dense.
  2. *
  3. * =========== DOCUMENTATION ===========
  4. *
  5. * Online html documentation available at
  6. * http://www.netlib.org/lapack/explore-html/
  7. *
  8. *> \htmlonly
  9. *> Download SLAEDA + dependencies
  10. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/slaeda.f">
  11. *> [TGZ]</a>
  12. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/slaeda.f">
  13. *> [ZIP]</a>
  14. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/slaeda.f">
  15. *> [TXT]</a>
  16. *> \endhtmlonly
  17. *
  18. * Definition:
  19. * ===========
  20. *
  21. * SUBROUTINE SLAEDA( N, TLVLS, CURLVL, CURPBM, PRMPTR, PERM, GIVPTR,
  22. * GIVCOL, GIVNUM, Q, QPTR, Z, ZTEMP, INFO )
  23. *
  24. * .. Scalar Arguments ..
  25. * INTEGER CURLVL, CURPBM, INFO, N, TLVLS
  26. * ..
  27. * .. Array Arguments ..
  28. * INTEGER GIVCOL( 2, * ), GIVPTR( * ), PERM( * ),
  29. * $ PRMPTR( * ), QPTR( * )
  30. * REAL GIVNUM( 2, * ), Q( * ), Z( * ), ZTEMP( * )
  31. * ..
  32. *
  33. *
  34. *> \par Purpose:
  35. * =============
  36. *>
  37. *> \verbatim
  38. *>
  39. *> SLAEDA computes the Z vector corresponding to the merge step in the
  40. *> CURLVLth step of the merge process with TLVLS steps for the CURPBMth
  41. *> problem.
  42. *> \endverbatim
  43. *
  44. * Arguments:
  45. * ==========
  46. *
  47. *> \param[in] N
  48. *> \verbatim
  49. *> N is INTEGER
  50. *> The dimension of the symmetric tridiagonal matrix. N >= 0.
  51. *> \endverbatim
  52. *>
  53. *> \param[in] TLVLS
  54. *> \verbatim
  55. *> TLVLS is INTEGER
  56. *> The total number of merging levels in the overall divide and
  57. *> conquer tree.
  58. *> \endverbatim
  59. *>
  60. *> \param[in] CURLVL
  61. *> \verbatim
  62. *> CURLVL is INTEGER
  63. *> The current level in the overall merge routine,
  64. *> 0 <= curlvl <= tlvls.
  65. *> \endverbatim
  66. *>
  67. *> \param[in] CURPBM
  68. *> \verbatim
  69. *> CURPBM is INTEGER
  70. *> The current problem in the current level in the overall
  71. *> merge routine (counting from upper left to lower right).
  72. *> \endverbatim
  73. *>
  74. *> \param[in] PRMPTR
  75. *> \verbatim
  76. *> PRMPTR is INTEGER array, dimension (N lg N)
  77. *> Contains a list of pointers which indicate where in PERM a
  78. *> level's permutation is stored. PRMPTR(i+1) - PRMPTR(i)
  79. *> indicates the size of the permutation and incidentally the
  80. *> size of the full, non-deflated problem.
  81. *> \endverbatim
  82. *>
  83. *> \param[in] PERM
  84. *> \verbatim
  85. *> PERM is INTEGER array, dimension (N lg N)
  86. *> Contains the permutations (from deflation and sorting) to be
  87. *> applied to each eigenblock.
  88. *> \endverbatim
  89. *>
  90. *> \param[in] GIVPTR
  91. *> \verbatim
  92. *> GIVPTR is INTEGER array, dimension (N lg N)
  93. *> Contains a list of pointers which indicate where in GIVCOL a
  94. *> level's Givens rotations are stored. GIVPTR(i+1) - GIVPTR(i)
  95. *> indicates the number of Givens rotations.
  96. *> \endverbatim
  97. *>
  98. *> \param[in] GIVCOL
  99. *> \verbatim
  100. *> GIVCOL is INTEGER array, dimension (2, N lg N)
  101. *> Each pair of numbers indicates a pair of columns to take place
  102. *> in a Givens rotation.
  103. *> \endverbatim
  104. *>
  105. *> \param[in] GIVNUM
  106. *> \verbatim
  107. *> GIVNUM is REAL array, dimension (2, N lg N)
  108. *> Each number indicates the S value to be used in the
  109. *> corresponding Givens rotation.
  110. *> \endverbatim
  111. *>
  112. *> \param[in] Q
  113. *> \verbatim
  114. *> Q is REAL array, dimension (N**2)
  115. *> Contains the square eigenblocks from previous levels, the
  116. *> starting positions for blocks are given by QPTR.
  117. *> \endverbatim
  118. *>
  119. *> \param[in] QPTR
  120. *> \verbatim
  121. *> QPTR is INTEGER array, dimension (N+2)
  122. *> Contains a list of pointers which indicate where in Q an
  123. *> eigenblock is stored. SQRT( QPTR(i+1) - QPTR(i) ) indicates
  124. *> the size of the block.
  125. *> \endverbatim
  126. *>
  127. *> \param[out] Z
  128. *> \verbatim
  129. *> Z is REAL array, dimension (N)
  130. *> On output this vector contains the updating vector (the last
  131. *> row of the first sub-eigenvector matrix and the first row of
  132. *> the second sub-eigenvector matrix).
  133. *> \endverbatim
  134. *>
  135. *> \param[out] ZTEMP
  136. *> \verbatim
  137. *> ZTEMP is REAL array, dimension (N)
  138. *> \endverbatim
  139. *>
  140. *> \param[out] INFO
  141. *> \verbatim
  142. *> INFO is INTEGER
  143. *> = 0: successful exit.
  144. *> < 0: if INFO = -i, the i-th argument had an illegal value.
  145. *> \endverbatim
  146. *
  147. * Authors:
  148. * ========
  149. *
  150. *> \author Univ. of Tennessee
  151. *> \author Univ. of California Berkeley
  152. *> \author Univ. of Colorado Denver
  153. *> \author NAG Ltd.
  154. *
  155. *> \ingroup auxOTHERcomputational
  156. *
  157. *> \par Contributors:
  158. * ==================
  159. *>
  160. *> Jeff Rutter, Computer Science Division, University of California
  161. *> at Berkeley, USA
  162. *
  163. * =====================================================================
  164. SUBROUTINE SLAEDA( N, TLVLS, CURLVL, CURPBM, PRMPTR, PERM, GIVPTR,
  165. $ GIVCOL, GIVNUM, Q, QPTR, Z, ZTEMP, INFO )
  166. *
  167. * -- LAPACK computational routine --
  168. * -- LAPACK is a software package provided by Univ. of Tennessee, --
  169. * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
  170. *
  171. * .. Scalar Arguments ..
  172. INTEGER CURLVL, CURPBM, INFO, N, TLVLS
  173. * ..
  174. * .. Array Arguments ..
  175. INTEGER GIVCOL( 2, * ), GIVPTR( * ), PERM( * ),
  176. $ PRMPTR( * ), QPTR( * )
  177. REAL GIVNUM( 2, * ), Q( * ), Z( * ), ZTEMP( * )
  178. * ..
  179. *
  180. * =====================================================================
  181. *
  182. * .. Parameters ..
  183. REAL ZERO, HALF, ONE
  184. PARAMETER ( ZERO = 0.0E0, HALF = 0.5E0, ONE = 1.0E0 )
  185. * ..
  186. * .. Local Scalars ..
  187. INTEGER BSIZ1, BSIZ2, CURR, I, K, MID, PSIZ1, PSIZ2,
  188. $ PTR, ZPTR1
  189. * ..
  190. * .. External Subroutines ..
  191. EXTERNAL SCOPY, SGEMV, SROT, XERBLA
  192. * ..
  193. * .. Intrinsic Functions ..
  194. INTRINSIC INT, REAL, SQRT
  195. * ..
  196. * .. Executable Statements ..
  197. *
  198. * Test the input parameters.
  199. *
  200. INFO = 0
  201. *
  202. IF( N.LT.0 ) THEN
  203. INFO = -1
  204. END IF
  205. IF( INFO.NE.0 ) THEN
  206. CALL XERBLA( 'SLAEDA', -INFO )
  207. RETURN
  208. END IF
  209. *
  210. * Quick return if possible
  211. *
  212. IF( N.EQ.0 )
  213. $ RETURN
  214. *
  215. * Determine location of first number in second half.
  216. *
  217. MID = N / 2 + 1
  218. *
  219. * Gather last/first rows of appropriate eigenblocks into center of Z
  220. *
  221. PTR = 1
  222. *
  223. * Determine location of lowest level subproblem in the full storage
  224. * scheme
  225. *
  226. CURR = PTR + CURPBM*2**CURLVL + 2**( CURLVL-1 ) - 1
  227. *
  228. * Determine size of these matrices. We add HALF to the value of
  229. * the SQRT in case the machine underestimates one of these square
  230. * roots.
  231. *
  232. BSIZ1 = INT( HALF+SQRT( REAL( QPTR( CURR+1 )-QPTR( CURR ) ) ) )
  233. BSIZ2 = INT( HALF+SQRT( REAL( QPTR( CURR+2 )-QPTR( CURR+1 ) ) ) )
  234. DO 10 K = 1, MID - BSIZ1 - 1
  235. Z( K ) = ZERO
  236. 10 CONTINUE
  237. CALL SCOPY( BSIZ1, Q( QPTR( CURR )+BSIZ1-1 ), BSIZ1,
  238. $ Z( MID-BSIZ1 ), 1 )
  239. CALL SCOPY( BSIZ2, Q( QPTR( CURR+1 ) ), BSIZ2, Z( MID ), 1 )
  240. DO 20 K = MID + BSIZ2, N
  241. Z( K ) = ZERO
  242. 20 CONTINUE
  243. *
  244. * Loop through remaining levels 1 -> CURLVL applying the Givens
  245. * rotations and permutation and then multiplying the center matrices
  246. * against the current Z.
  247. *
  248. PTR = 2**TLVLS + 1
  249. DO 70 K = 1, CURLVL - 1
  250. CURR = PTR + CURPBM*2**( CURLVL-K ) + 2**( CURLVL-K-1 ) - 1
  251. PSIZ1 = PRMPTR( CURR+1 ) - PRMPTR( CURR )
  252. PSIZ2 = PRMPTR( CURR+2 ) - PRMPTR( CURR+1 )
  253. ZPTR1 = MID - PSIZ1
  254. *
  255. * Apply Givens at CURR and CURR+1
  256. *
  257. DO 30 I = GIVPTR( CURR ), GIVPTR( CURR+1 ) - 1
  258. CALL SROT( 1, Z( ZPTR1+GIVCOL( 1, I )-1 ), 1,
  259. $ Z( ZPTR1+GIVCOL( 2, I )-1 ), 1, GIVNUM( 1, I ),
  260. $ GIVNUM( 2, I ) )
  261. 30 CONTINUE
  262. DO 40 I = GIVPTR( CURR+1 ), GIVPTR( CURR+2 ) - 1
  263. CALL SROT( 1, Z( MID-1+GIVCOL( 1, I ) ), 1,
  264. $ Z( MID-1+GIVCOL( 2, I ) ), 1, GIVNUM( 1, I ),
  265. $ GIVNUM( 2, I ) )
  266. 40 CONTINUE
  267. PSIZ1 = PRMPTR( CURR+1 ) - PRMPTR( CURR )
  268. PSIZ2 = PRMPTR( CURR+2 ) - PRMPTR( CURR+1 )
  269. DO 50 I = 0, PSIZ1 - 1
  270. ZTEMP( I+1 ) = Z( ZPTR1+PERM( PRMPTR( CURR )+I )-1 )
  271. 50 CONTINUE
  272. DO 60 I = 0, PSIZ2 - 1
  273. ZTEMP( PSIZ1+I+1 ) = Z( MID+PERM( PRMPTR( CURR+1 )+I )-1 )
  274. 60 CONTINUE
  275. *
  276. * Multiply Blocks at CURR and CURR+1
  277. *
  278. * Determine size of these matrices. We add HALF to the value of
  279. * the SQRT in case the machine underestimates one of these
  280. * square roots.
  281. *
  282. BSIZ1 = INT( HALF+SQRT( REAL( QPTR( CURR+1 )-QPTR( CURR ) ) ) )
  283. BSIZ2 = INT( HALF+SQRT( REAL( QPTR( CURR+2 )-QPTR( CURR+
  284. $ 1 ) ) ) )
  285. IF( BSIZ1.GT.0 ) THEN
  286. CALL SGEMV( 'T', BSIZ1, BSIZ1, ONE, Q( QPTR( CURR ) ),
  287. $ BSIZ1, ZTEMP( 1 ), 1, ZERO, Z( ZPTR1 ), 1 )
  288. END IF
  289. CALL SCOPY( PSIZ1-BSIZ1, ZTEMP( BSIZ1+1 ), 1, Z( ZPTR1+BSIZ1 ),
  290. $ 1 )
  291. IF( BSIZ2.GT.0 ) THEN
  292. CALL SGEMV( 'T', BSIZ2, BSIZ2, ONE, Q( QPTR( CURR+1 ) ),
  293. $ BSIZ2, ZTEMP( PSIZ1+1 ), 1, ZERO, Z( MID ), 1 )
  294. END IF
  295. CALL SCOPY( PSIZ2-BSIZ2, ZTEMP( PSIZ1+BSIZ2+1 ), 1,
  296. $ Z( MID+BSIZ2 ), 1 )
  297. *
  298. PTR = PTR + 2**( TLVLS-K )
  299. 70 CONTINUE
  300. *
  301. RETURN
  302. *
  303. * End of SLAEDA
  304. *
  305. END