You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

dpotrf2.f 6.3 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234
  1. *> \brief \b DPOTRF2
  2. *
  3. * =========== DOCUMENTATION ===========
  4. *
  5. * Online html documentation available at
  6. * http://www.netlib.org/lapack/explore-html/
  7. *
  8. * Definition:
  9. * ===========
  10. *
  11. * RECURSIVE SUBROUTINE DPOTRF2( UPLO, N, A, LDA, INFO )
  12. *
  13. * .. Scalar Arguments ..
  14. * CHARACTER UPLO
  15. * INTEGER INFO, LDA, N
  16. * ..
  17. * .. Array Arguments ..
  18. * REAL A( LDA, * )
  19. * ..
  20. *
  21. *
  22. *> \par Purpose:
  23. * =============
  24. *>
  25. *> \verbatim
  26. *>
  27. *> DPOTRF2 computes the Cholesky factorization of a real symmetric
  28. *> positive definite matrix A using the recursive algorithm.
  29. *>
  30. *> The factorization has the form
  31. *> A = U**T * U, if UPLO = 'U', or
  32. *> A = L * L**T, if UPLO = 'L',
  33. *> where U is an upper triangular matrix and L is lower triangular.
  34. *>
  35. *> This is the recursive version of the algorithm. It divides
  36. *> the matrix into four submatrices:
  37. *>
  38. *> [ A11 | A12 ] where A11 is n1 by n1 and A22 is n2 by n2
  39. *> A = [ -----|----- ] with n1 = n/2
  40. *> [ A21 | A22 ] n2 = n-n1
  41. *>
  42. *> The subroutine calls itself to factor A11. Update and scale A21
  43. *> or A12, update A22 then calls itself to factor A22.
  44. *>
  45. *> \endverbatim
  46. *
  47. * Arguments:
  48. * ==========
  49. *
  50. *> \param[in] UPLO
  51. *> \verbatim
  52. *> UPLO is CHARACTER*1
  53. *> = 'U': Upper triangle of A is stored;
  54. *> = 'L': Lower triangle of A is stored.
  55. *> \endverbatim
  56. *>
  57. *> \param[in] N
  58. *> \verbatim
  59. *> N is INTEGER
  60. *> The order of the matrix A. N >= 0.
  61. *> \endverbatim
  62. *>
  63. *> \param[in,out] A
  64. *> \verbatim
  65. *> A is DOUBLE PRECISION array, dimension (LDA,N)
  66. *> On entry, the symmetric matrix A. If UPLO = 'U', the leading
  67. *> N-by-N upper triangular part of A contains the upper
  68. *> triangular part of the matrix A, and the strictly lower
  69. *> triangular part of A is not referenced. If UPLO = 'L', the
  70. *> leading N-by-N lower triangular part of A contains the lower
  71. *> triangular part of the matrix A, and the strictly upper
  72. *> triangular part of A is not referenced.
  73. *>
  74. *> On exit, if INFO = 0, the factor U or L from the Cholesky
  75. *> factorization A = U**T*U or A = L*L**T.
  76. *> \endverbatim
  77. *>
  78. *> \param[in] LDA
  79. *> \verbatim
  80. *> LDA is INTEGER
  81. *> The leading dimension of the array A. LDA >= max(1,N).
  82. *> \endverbatim
  83. *>
  84. *> \param[out] INFO
  85. *> \verbatim
  86. *> INFO is INTEGER
  87. *> = 0: successful exit
  88. *> < 0: if INFO = -i, the i-th argument had an illegal value
  89. *> > 0: if INFO = i, the leading minor of order i is not
  90. *> positive definite, and the factorization could not be
  91. *> completed.
  92. *> \endverbatim
  93. *
  94. * Authors:
  95. * ========
  96. *
  97. *> \author Univ. of Tennessee
  98. *> \author Univ. of California Berkeley
  99. *> \author Univ. of Colorado Denver
  100. *> \author NAG Ltd.
  101. *
  102. *> \ingroup doublePOcomputational
  103. *
  104. * =====================================================================
  105. RECURSIVE SUBROUTINE DPOTRF2( UPLO, N, A, LDA, INFO )
  106. *
  107. * -- LAPACK computational routine --
  108. * -- LAPACK is a software package provided by Univ. of Tennessee, --
  109. * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
  110. *
  111. * .. Scalar Arguments ..
  112. CHARACTER UPLO
  113. INTEGER INFO, LDA, N
  114. * ..
  115. * .. Array Arguments ..
  116. DOUBLE PRECISION A( LDA, * )
  117. * ..
  118. *
  119. * =====================================================================
  120. *
  121. * .. Parameters ..
  122. DOUBLE PRECISION ONE, ZERO
  123. PARAMETER ( ONE = 1.0D+0, ZERO = 0.0D+0 )
  124. * ..
  125. * .. Local Scalars ..
  126. LOGICAL UPPER
  127. INTEGER N1, N2, IINFO
  128. * ..
  129. * .. External Functions ..
  130. LOGICAL LSAME, DISNAN
  131. EXTERNAL LSAME, DISNAN
  132. * ..
  133. * .. External Subroutines ..
  134. EXTERNAL DSYRK, DTRSM, XERBLA
  135. * ..
  136. * .. Intrinsic Functions ..
  137. INTRINSIC MAX, SQRT
  138. * ..
  139. * .. Executable Statements ..
  140. *
  141. * Test the input parameters
  142. *
  143. INFO = 0
  144. UPPER = LSAME( UPLO, 'U' )
  145. IF( .NOT.UPPER .AND. .NOT.LSAME( UPLO, 'L' ) ) THEN
  146. INFO = -1
  147. ELSE IF( N.LT.0 ) THEN
  148. INFO = -2
  149. ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
  150. INFO = -4
  151. END IF
  152. IF( INFO.NE.0 ) THEN
  153. CALL XERBLA( 'DPOTRF2', -INFO )
  154. RETURN
  155. END IF
  156. *
  157. * Quick return if possible
  158. *
  159. IF( N.EQ.0 )
  160. $ RETURN
  161. *
  162. * N=1 case
  163. *
  164. IF( N.EQ.1 ) THEN
  165. *
  166. * Test for non-positive-definiteness
  167. *
  168. IF( A( 1, 1 ).LE.ZERO.OR.DISNAN( A( 1, 1 ) ) ) THEN
  169. INFO = 1
  170. RETURN
  171. END IF
  172. *
  173. * Factor
  174. *
  175. A( 1, 1 ) = SQRT( A( 1, 1 ) )
  176. *
  177. * Use recursive code
  178. *
  179. ELSE
  180. N1 = N/2
  181. N2 = N-N1
  182. *
  183. * Factor A11
  184. *
  185. CALL DPOTRF2( UPLO, N1, A( 1, 1 ), LDA, IINFO )
  186. IF ( IINFO.NE.0 ) THEN
  187. INFO = IINFO
  188. RETURN
  189. END IF
  190. *
  191. * Compute the Cholesky factorization A = U**T*U
  192. *
  193. IF( UPPER ) THEN
  194. *
  195. * Update and scale A12
  196. *
  197. CALL DTRSM( 'L', 'U', 'T', 'N', N1, N2, ONE,
  198. $ A( 1, 1 ), LDA, A( 1, N1+1 ), LDA )
  199. *
  200. * Update and factor A22
  201. *
  202. CALL DSYRK( UPLO, 'T', N2, N1, -ONE, A( 1, N1+1 ), LDA,
  203. $ ONE, A( N1+1, N1+1 ), LDA )
  204. CALL DPOTRF2( UPLO, N2, A( N1+1, N1+1 ), LDA, IINFO )
  205. IF ( IINFO.NE.0 ) THEN
  206. INFO = IINFO + N1
  207. RETURN
  208. END IF
  209. *
  210. * Compute the Cholesky factorization A = L*L**T
  211. *
  212. ELSE
  213. *
  214. * Update and scale A21
  215. *
  216. CALL DTRSM( 'R', 'L', 'T', 'N', N2, N1, ONE,
  217. $ A( 1, 1 ), LDA, A( N1+1, 1 ), LDA )
  218. *
  219. * Update and factor A22
  220. *
  221. CALL DSYRK( UPLO, 'N', N2, N1, -ONE, A( N1+1, 1 ), LDA,
  222. $ ONE, A( N1+1, N1+1 ), LDA )
  223. CALL DPOTRF2( UPLO, N2, A( N1+1, N1+1 ), LDA, IINFO )
  224. IF ( IINFO.NE.0 ) THEN
  225. INFO = IINFO + N1
  226. RETURN
  227. END IF
  228. END IF
  229. END IF
  230. RETURN
  231. *
  232. * End of DPOTRF2
  233. *
  234. END