You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

dormr2.f 7.3 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275
  1. *> \brief \b DORMR2 multiplies a general matrix by the orthogonal matrix from a RQ factorization determined by sgerqf (unblocked algorithm).
  2. *
  3. * =========== DOCUMENTATION ===========
  4. *
  5. * Online html documentation available at
  6. * http://www.netlib.org/lapack/explore-html/
  7. *
  8. *> \htmlonly
  9. *> Download DORMR2 + dependencies
  10. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dormr2.f">
  11. *> [TGZ]</a>
  12. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dormr2.f">
  13. *> [ZIP]</a>
  14. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dormr2.f">
  15. *> [TXT]</a>
  16. *> \endhtmlonly
  17. *
  18. * Definition:
  19. * ===========
  20. *
  21. * SUBROUTINE DORMR2( SIDE, TRANS, M, N, K, A, LDA, TAU, C, LDC,
  22. * WORK, INFO )
  23. *
  24. * .. Scalar Arguments ..
  25. * CHARACTER SIDE, TRANS
  26. * INTEGER INFO, K, LDA, LDC, M, N
  27. * ..
  28. * .. Array Arguments ..
  29. * DOUBLE PRECISION A( LDA, * ), C( LDC, * ), TAU( * ), WORK( * )
  30. * ..
  31. *
  32. *
  33. *> \par Purpose:
  34. * =============
  35. *>
  36. *> \verbatim
  37. *>
  38. *> DORMR2 overwrites the general real m by n matrix C with
  39. *>
  40. *> Q * C if SIDE = 'L' and TRANS = 'N', or
  41. *>
  42. *> Q**T* C if SIDE = 'L' and TRANS = 'T', or
  43. *>
  44. *> C * Q if SIDE = 'R' and TRANS = 'N', or
  45. *>
  46. *> C * Q**T if SIDE = 'R' and TRANS = 'T',
  47. *>
  48. *> where Q is a real orthogonal matrix defined as the product of k
  49. *> elementary reflectors
  50. *>
  51. *> Q = H(1) H(2) . . . H(k)
  52. *>
  53. *> as returned by DGERQF. Q is of order m if SIDE = 'L' and of order n
  54. *> if SIDE = 'R'.
  55. *> \endverbatim
  56. *
  57. * Arguments:
  58. * ==========
  59. *
  60. *> \param[in] SIDE
  61. *> \verbatim
  62. *> SIDE is CHARACTER*1
  63. *> = 'L': apply Q or Q**T from the Left
  64. *> = 'R': apply Q or Q**T from the Right
  65. *> \endverbatim
  66. *>
  67. *> \param[in] TRANS
  68. *> \verbatim
  69. *> TRANS is CHARACTER*1
  70. *> = 'N': apply Q (No transpose)
  71. *> = 'T': apply Q' (Transpose)
  72. *> \endverbatim
  73. *>
  74. *> \param[in] M
  75. *> \verbatim
  76. *> M is INTEGER
  77. *> The number of rows of the matrix C. M >= 0.
  78. *> \endverbatim
  79. *>
  80. *> \param[in] N
  81. *> \verbatim
  82. *> N is INTEGER
  83. *> The number of columns of the matrix C. N >= 0.
  84. *> \endverbatim
  85. *>
  86. *> \param[in] K
  87. *> \verbatim
  88. *> K is INTEGER
  89. *> The number of elementary reflectors whose product defines
  90. *> the matrix Q.
  91. *> If SIDE = 'L', M >= K >= 0;
  92. *> if SIDE = 'R', N >= K >= 0.
  93. *> \endverbatim
  94. *>
  95. *> \param[in] A
  96. *> \verbatim
  97. *> A is DOUBLE PRECISION array, dimension
  98. *> (LDA,M) if SIDE = 'L',
  99. *> (LDA,N) if SIDE = 'R'
  100. *> The i-th row must contain the vector which defines the
  101. *> elementary reflector H(i), for i = 1,2,...,k, as returned by
  102. *> DGERQF in the last k rows of its array argument A.
  103. *> A is modified by the routine but restored on exit.
  104. *> \endverbatim
  105. *>
  106. *> \param[in] LDA
  107. *> \verbatim
  108. *> LDA is INTEGER
  109. *> The leading dimension of the array A. LDA >= max(1,K).
  110. *> \endverbatim
  111. *>
  112. *> \param[in] TAU
  113. *> \verbatim
  114. *> TAU is DOUBLE PRECISION array, dimension (K)
  115. *> TAU(i) must contain the scalar factor of the elementary
  116. *> reflector H(i), as returned by DGERQF.
  117. *> \endverbatim
  118. *>
  119. *> \param[in,out] C
  120. *> \verbatim
  121. *> C is DOUBLE PRECISION array, dimension (LDC,N)
  122. *> On entry, the m by n matrix C.
  123. *> On exit, C is overwritten by Q*C or Q**T*C or C*Q**T or C*Q.
  124. *> \endverbatim
  125. *>
  126. *> \param[in] LDC
  127. *> \verbatim
  128. *> LDC is INTEGER
  129. *> The leading dimension of the array C. LDC >= max(1,M).
  130. *> \endverbatim
  131. *>
  132. *> \param[out] WORK
  133. *> \verbatim
  134. *> WORK is DOUBLE PRECISION array, dimension
  135. *> (N) if SIDE = 'L',
  136. *> (M) if SIDE = 'R'
  137. *> \endverbatim
  138. *>
  139. *> \param[out] INFO
  140. *> \verbatim
  141. *> INFO is INTEGER
  142. *> = 0: successful exit
  143. *> < 0: if INFO = -i, the i-th argument had an illegal value
  144. *> \endverbatim
  145. *
  146. * Authors:
  147. * ========
  148. *
  149. *> \author Univ. of Tennessee
  150. *> \author Univ. of California Berkeley
  151. *> \author Univ. of Colorado Denver
  152. *> \author NAG Ltd.
  153. *
  154. *> \ingroup doubleOTHERcomputational
  155. *
  156. * =====================================================================
  157. SUBROUTINE DORMR2( SIDE, TRANS, M, N, K, A, LDA, TAU, C, LDC,
  158. $ WORK, INFO )
  159. *
  160. * -- LAPACK computational routine --
  161. * -- LAPACK is a software package provided by Univ. of Tennessee, --
  162. * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
  163. *
  164. * .. Scalar Arguments ..
  165. CHARACTER SIDE, TRANS
  166. INTEGER INFO, K, LDA, LDC, M, N
  167. * ..
  168. * .. Array Arguments ..
  169. DOUBLE PRECISION A( LDA, * ), C( LDC, * ), TAU( * ), WORK( * )
  170. * ..
  171. *
  172. * =====================================================================
  173. *
  174. * .. Parameters ..
  175. DOUBLE PRECISION ONE
  176. PARAMETER ( ONE = 1.0D+0 )
  177. * ..
  178. * .. Local Scalars ..
  179. LOGICAL LEFT, NOTRAN
  180. INTEGER I, I1, I2, I3, MI, NI, NQ
  181. DOUBLE PRECISION AII
  182. * ..
  183. * .. External Functions ..
  184. LOGICAL LSAME
  185. EXTERNAL LSAME
  186. * ..
  187. * .. External Subroutines ..
  188. EXTERNAL DLARF, XERBLA
  189. * ..
  190. * .. Intrinsic Functions ..
  191. INTRINSIC MAX
  192. * ..
  193. * .. Executable Statements ..
  194. *
  195. * Test the input arguments
  196. *
  197. INFO = 0
  198. LEFT = LSAME( SIDE, 'L' )
  199. NOTRAN = LSAME( TRANS, 'N' )
  200. *
  201. * NQ is the order of Q
  202. *
  203. IF( LEFT ) THEN
  204. NQ = M
  205. ELSE
  206. NQ = N
  207. END IF
  208. IF( .NOT.LEFT .AND. .NOT.LSAME( SIDE, 'R' ) ) THEN
  209. INFO = -1
  210. ELSE IF( .NOT.NOTRAN .AND. .NOT.LSAME( TRANS, 'T' ) ) THEN
  211. INFO = -2
  212. ELSE IF( M.LT.0 ) THEN
  213. INFO = -3
  214. ELSE IF( N.LT.0 ) THEN
  215. INFO = -4
  216. ELSE IF( K.LT.0 .OR. K.GT.NQ ) THEN
  217. INFO = -5
  218. ELSE IF( LDA.LT.MAX( 1, K ) ) THEN
  219. INFO = -7
  220. ELSE IF( LDC.LT.MAX( 1, M ) ) THEN
  221. INFO = -10
  222. END IF
  223. IF( INFO.NE.0 ) THEN
  224. CALL XERBLA( 'DORMR2', -INFO )
  225. RETURN
  226. END IF
  227. *
  228. * Quick return if possible
  229. *
  230. IF( M.EQ.0 .OR. N.EQ.0 .OR. K.EQ.0 )
  231. $ RETURN
  232. *
  233. IF( ( LEFT .AND. .NOT.NOTRAN ) .OR. ( .NOT.LEFT .AND. NOTRAN ) )
  234. $ THEN
  235. I1 = 1
  236. I2 = K
  237. I3 = 1
  238. ELSE
  239. I1 = K
  240. I2 = 1
  241. I3 = -1
  242. END IF
  243. *
  244. IF( LEFT ) THEN
  245. NI = N
  246. ELSE
  247. MI = M
  248. END IF
  249. *
  250. DO 10 I = I1, I2, I3
  251. IF( LEFT ) THEN
  252. *
  253. * H(i) is applied to C(1:m-k+i,1:n)
  254. *
  255. MI = M - K + I
  256. ELSE
  257. *
  258. * H(i) is applied to C(1:m,1:n-k+i)
  259. *
  260. NI = N - K + I
  261. END IF
  262. *
  263. * Apply H(i)
  264. *
  265. AII = A( I, NQ-K+I )
  266. A( I, NQ-K+I ) = ONE
  267. CALL DLARF( SIDE, MI, NI, A( I, 1 ), LDA, TAU( I ), C, LDC,
  268. $ WORK )
  269. A( I, NQ-K+I ) = AII
  270. 10 CONTINUE
  271. RETURN
  272. *
  273. * End of DORMR2
  274. *
  275. END