You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

dlatrs.f 24 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784
  1. *> \brief \b DLATRS solves a triangular system of equations with the scale factor set to prevent overflow.
  2. *
  3. * =========== DOCUMENTATION ===========
  4. *
  5. * Online html documentation available at
  6. * http://www.netlib.org/lapack/explore-html/
  7. *
  8. *> \htmlonly
  9. *> Download DLATRS + dependencies
  10. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dlatrs.f">
  11. *> [TGZ]</a>
  12. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dlatrs.f">
  13. *> [ZIP]</a>
  14. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dlatrs.f">
  15. *> [TXT]</a>
  16. *> \endhtmlonly
  17. *
  18. * Definition:
  19. * ===========
  20. *
  21. * SUBROUTINE DLATRS( UPLO, TRANS, DIAG, NORMIN, N, A, LDA, X, SCALE,
  22. * CNORM, INFO )
  23. *
  24. * .. Scalar Arguments ..
  25. * CHARACTER DIAG, NORMIN, TRANS, UPLO
  26. * INTEGER INFO, LDA, N
  27. * DOUBLE PRECISION SCALE
  28. * ..
  29. * .. Array Arguments ..
  30. * DOUBLE PRECISION A( LDA, * ), CNORM( * ), X( * )
  31. * ..
  32. *
  33. *
  34. *> \par Purpose:
  35. * =============
  36. *>
  37. *> \verbatim
  38. *>
  39. *> DLATRS solves one of the triangular systems
  40. *>
  41. *> A *x = s*b or A**T *x = s*b
  42. *>
  43. *> with scaling to prevent overflow. Here A is an upper or lower
  44. *> triangular matrix, A**T denotes the transpose of A, x and b are
  45. *> n-element vectors, and s is a scaling factor, usually less than
  46. *> or equal to 1, chosen so that the components of x will be less than
  47. *> the overflow threshold. If the unscaled problem will not cause
  48. *> overflow, the Level 2 BLAS routine DTRSV is called. If the matrix A
  49. *> is singular (A(j,j) = 0 for some j), then s is set to 0 and a
  50. *> non-trivial solution to A*x = 0 is returned.
  51. *> \endverbatim
  52. *
  53. * Arguments:
  54. * ==========
  55. *
  56. *> \param[in] UPLO
  57. *> \verbatim
  58. *> UPLO is CHARACTER*1
  59. *> Specifies whether the matrix A is upper or lower triangular.
  60. *> = 'U': Upper triangular
  61. *> = 'L': Lower triangular
  62. *> \endverbatim
  63. *>
  64. *> \param[in] TRANS
  65. *> \verbatim
  66. *> TRANS is CHARACTER*1
  67. *> Specifies the operation applied to A.
  68. *> = 'N': Solve A * x = s*b (No transpose)
  69. *> = 'T': Solve A**T* x = s*b (Transpose)
  70. *> = 'C': Solve A**T* x = s*b (Conjugate transpose = Transpose)
  71. *> \endverbatim
  72. *>
  73. *> \param[in] DIAG
  74. *> \verbatim
  75. *> DIAG is CHARACTER*1
  76. *> Specifies whether or not the matrix A is unit triangular.
  77. *> = 'N': Non-unit triangular
  78. *> = 'U': Unit triangular
  79. *> \endverbatim
  80. *>
  81. *> \param[in] NORMIN
  82. *> \verbatim
  83. *> NORMIN is CHARACTER*1
  84. *> Specifies whether CNORM has been set or not.
  85. *> = 'Y': CNORM contains the column norms on entry
  86. *> = 'N': CNORM is not set on entry. On exit, the norms will
  87. *> be computed and stored in CNORM.
  88. *> \endverbatim
  89. *>
  90. *> \param[in] N
  91. *> \verbatim
  92. *> N is INTEGER
  93. *> The order of the matrix A. N >= 0.
  94. *> \endverbatim
  95. *>
  96. *> \param[in] A
  97. *> \verbatim
  98. *> A is DOUBLE PRECISION array, dimension (LDA,N)
  99. *> The triangular matrix A. If UPLO = 'U', the leading n by n
  100. *> upper triangular part of the array A contains the upper
  101. *> triangular matrix, and the strictly lower triangular part of
  102. *> A is not referenced. If UPLO = 'L', the leading n by n lower
  103. *> triangular part of the array A contains the lower triangular
  104. *> matrix, and the strictly upper triangular part of A is not
  105. *> referenced. If DIAG = 'U', the diagonal elements of A are
  106. *> also not referenced and are assumed to be 1.
  107. *> \endverbatim
  108. *>
  109. *> \param[in] LDA
  110. *> \verbatim
  111. *> LDA is INTEGER
  112. *> The leading dimension of the array A. LDA >= max (1,N).
  113. *> \endverbatim
  114. *>
  115. *> \param[in,out] X
  116. *> \verbatim
  117. *> X is DOUBLE PRECISION array, dimension (N)
  118. *> On entry, the right hand side b of the triangular system.
  119. *> On exit, X is overwritten by the solution vector x.
  120. *> \endverbatim
  121. *>
  122. *> \param[out] SCALE
  123. *> \verbatim
  124. *> SCALE is DOUBLE PRECISION
  125. *> The scaling factor s for the triangular system
  126. *> A * x = s*b or A**T* x = s*b.
  127. *> If SCALE = 0, the matrix A is singular or badly scaled, and
  128. *> the vector x is an exact or approximate solution to A*x = 0.
  129. *> \endverbatim
  130. *>
  131. *> \param[in,out] CNORM
  132. *> \verbatim
  133. *> CNORM is DOUBLE PRECISION array, dimension (N)
  134. *>
  135. *> If NORMIN = 'Y', CNORM is an input argument and CNORM(j)
  136. *> contains the norm of the off-diagonal part of the j-th column
  137. *> of A. If TRANS = 'N', CNORM(j) must be greater than or equal
  138. *> to the infinity-norm, and if TRANS = 'T' or 'C', CNORM(j)
  139. *> must be greater than or equal to the 1-norm.
  140. *>
  141. *> If NORMIN = 'N', CNORM is an output argument and CNORM(j)
  142. *> returns the 1-norm of the offdiagonal part of the j-th column
  143. *> of A.
  144. *> \endverbatim
  145. *>
  146. *> \param[out] INFO
  147. *> \verbatim
  148. *> INFO is INTEGER
  149. *> = 0: successful exit
  150. *> < 0: if INFO = -k, the k-th argument had an illegal value
  151. *> \endverbatim
  152. *
  153. * Authors:
  154. * ========
  155. *
  156. *> \author Univ. of Tennessee
  157. *> \author Univ. of California Berkeley
  158. *> \author Univ. of Colorado Denver
  159. *> \author NAG Ltd.
  160. *
  161. *> \ingroup doubleOTHERauxiliary
  162. *
  163. *> \par Further Details:
  164. * =====================
  165. *>
  166. *> \verbatim
  167. *>
  168. *> A rough bound on x is computed; if that is less than overflow, DTRSV
  169. *> is called, otherwise, specific code is used which checks for possible
  170. *> overflow or divide-by-zero at every operation.
  171. *>
  172. *> A columnwise scheme is used for solving A*x = b. The basic algorithm
  173. *> if A is lower triangular is
  174. *>
  175. *> x[1:n] := b[1:n]
  176. *> for j = 1, ..., n
  177. *> x(j) := x(j) / A(j,j)
  178. *> x[j+1:n] := x[j+1:n] - x(j) * A[j+1:n,j]
  179. *> end
  180. *>
  181. *> Define bounds on the components of x after j iterations of the loop:
  182. *> M(j) = bound on x[1:j]
  183. *> G(j) = bound on x[j+1:n]
  184. *> Initially, let M(0) = 0 and G(0) = max{x(i), i=1,...,n}.
  185. *>
  186. *> Then for iteration j+1 we have
  187. *> M(j+1) <= G(j) / | A(j+1,j+1) |
  188. *> G(j+1) <= G(j) + M(j+1) * | A[j+2:n,j+1] |
  189. *> <= G(j) ( 1 + CNORM(j+1) / | A(j+1,j+1) | )
  190. *>
  191. *> where CNORM(j+1) is greater than or equal to the infinity-norm of
  192. *> column j+1 of A, not counting the diagonal. Hence
  193. *>
  194. *> G(j) <= G(0) product ( 1 + CNORM(i) / | A(i,i) | )
  195. *> 1<=i<=j
  196. *> and
  197. *>
  198. *> |x(j)| <= ( G(0) / |A(j,j)| ) product ( 1 + CNORM(i) / |A(i,i)| )
  199. *> 1<=i< j
  200. *>
  201. *> Since |x(j)| <= M(j), we use the Level 2 BLAS routine DTRSV if the
  202. *> reciprocal of the largest M(j), j=1,..,n, is larger than
  203. *> max(underflow, 1/overflow).
  204. *>
  205. *> The bound on x(j) is also used to determine when a step in the
  206. *> columnwise method can be performed without fear of overflow. If
  207. *> the computed bound is greater than a large constant, x is scaled to
  208. *> prevent overflow, but if the bound overflows, x is set to 0, x(j) to
  209. *> 1, and scale to 0, and a non-trivial solution to A*x = 0 is found.
  210. *>
  211. *> Similarly, a row-wise scheme is used to solve A**T*x = b. The basic
  212. *> algorithm for A upper triangular is
  213. *>
  214. *> for j = 1, ..., n
  215. *> x(j) := ( b(j) - A[1:j-1,j]**T * x[1:j-1] ) / A(j,j)
  216. *> end
  217. *>
  218. *> We simultaneously compute two bounds
  219. *> G(j) = bound on ( b(i) - A[1:i-1,i]**T * x[1:i-1] ), 1<=i<=j
  220. *> M(j) = bound on x(i), 1<=i<=j
  221. *>
  222. *> The initial values are G(0) = 0, M(0) = max{b(i), i=1,..,n}, and we
  223. *> add the constraint G(j) >= G(j-1) and M(j) >= M(j-1) for j >= 1.
  224. *> Then the bound on x(j) is
  225. *>
  226. *> M(j) <= M(j-1) * ( 1 + CNORM(j) ) / | A(j,j) |
  227. *>
  228. *> <= M(0) * product ( ( 1 + CNORM(i) ) / |A(i,i)| )
  229. *> 1<=i<=j
  230. *>
  231. *> and we can safely call DTRSV if 1/M(n) and 1/G(n) are both greater
  232. *> than max(underflow, 1/overflow).
  233. *> \endverbatim
  234. *>
  235. * =====================================================================
  236. SUBROUTINE DLATRS( UPLO, TRANS, DIAG, NORMIN, N, A, LDA, X, SCALE,
  237. $ CNORM, INFO )
  238. *
  239. * -- LAPACK auxiliary routine --
  240. * -- LAPACK is a software package provided by Univ. of Tennessee, --
  241. * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
  242. *
  243. * .. Scalar Arguments ..
  244. CHARACTER DIAG, NORMIN, TRANS, UPLO
  245. INTEGER INFO, LDA, N
  246. DOUBLE PRECISION SCALE
  247. * ..
  248. * .. Array Arguments ..
  249. DOUBLE PRECISION A( LDA, * ), CNORM( * ), X( * )
  250. * ..
  251. *
  252. * =====================================================================
  253. *
  254. * .. Parameters ..
  255. DOUBLE PRECISION ZERO, HALF, ONE
  256. PARAMETER ( ZERO = 0.0D+0, HALF = 0.5D+0, ONE = 1.0D+0 )
  257. * ..
  258. * .. Local Scalars ..
  259. LOGICAL NOTRAN, NOUNIT, UPPER
  260. INTEGER I, IMAX, J, JFIRST, JINC, JLAST
  261. DOUBLE PRECISION BIGNUM, GROW, REC, SMLNUM, SUMJ, TJJ, TJJS,
  262. $ TMAX, TSCAL, USCAL, XBND, XJ, XMAX
  263. * ..
  264. * .. External Functions ..
  265. LOGICAL LSAME
  266. INTEGER IDAMAX
  267. DOUBLE PRECISION DASUM, DDOT, DLAMCH
  268. EXTERNAL LSAME, IDAMAX, DASUM, DDOT, DLAMCH
  269. * ..
  270. * .. External Subroutines ..
  271. EXTERNAL DAXPY, DSCAL, DTRSV, XERBLA
  272. * ..
  273. * .. Intrinsic Functions ..
  274. INTRINSIC ABS, MAX, MIN
  275. * ..
  276. * .. Executable Statements ..
  277. *
  278. INFO = 0
  279. UPPER = LSAME( UPLO, 'U' )
  280. NOTRAN = LSAME( TRANS, 'N' )
  281. NOUNIT = LSAME( DIAG, 'N' )
  282. *
  283. * Test the input parameters.
  284. *
  285. IF( .NOT.UPPER .AND. .NOT.LSAME( UPLO, 'L' ) ) THEN
  286. INFO = -1
  287. ELSE IF( .NOT.NOTRAN .AND. .NOT.LSAME( TRANS, 'T' ) .AND. .NOT.
  288. $ LSAME( TRANS, 'C' ) ) THEN
  289. INFO = -2
  290. ELSE IF( .NOT.NOUNIT .AND. .NOT.LSAME( DIAG, 'U' ) ) THEN
  291. INFO = -3
  292. ELSE IF( .NOT.LSAME( NORMIN, 'Y' ) .AND. .NOT.
  293. $ LSAME( NORMIN, 'N' ) ) THEN
  294. INFO = -4
  295. ELSE IF( N.LT.0 ) THEN
  296. INFO = -5
  297. ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
  298. INFO = -7
  299. END IF
  300. IF( INFO.NE.0 ) THEN
  301. CALL XERBLA( 'DLATRS', -INFO )
  302. RETURN
  303. END IF
  304. *
  305. * Quick return if possible
  306. *
  307. IF( N.EQ.0 )
  308. $ RETURN
  309. *
  310. * Determine machine dependent parameters to control overflow.
  311. *
  312. SMLNUM = DLAMCH( 'Safe minimum' ) / DLAMCH( 'Precision' )
  313. BIGNUM = ONE / SMLNUM
  314. SCALE = ONE
  315. *
  316. IF( LSAME( NORMIN, 'N' ) ) THEN
  317. *
  318. * Compute the 1-norm of each column, not including the diagonal.
  319. *
  320. IF( UPPER ) THEN
  321. *
  322. * A is upper triangular.
  323. *
  324. DO 10 J = 1, N
  325. CNORM( J ) = DASUM( J-1, A( 1, J ), 1 )
  326. 10 CONTINUE
  327. ELSE
  328. *
  329. * A is lower triangular.
  330. *
  331. DO 20 J = 1, N - 1
  332. CNORM( J ) = DASUM( N-J, A( J+1, J ), 1 )
  333. 20 CONTINUE
  334. CNORM( N ) = ZERO
  335. END IF
  336. END IF
  337. *
  338. * Scale the column norms by TSCAL if the maximum element in CNORM is
  339. * greater than BIGNUM.
  340. *
  341. IMAX = IDAMAX( N, CNORM, 1 )
  342. TMAX = CNORM( IMAX )
  343. IF( TMAX.LE.BIGNUM ) THEN
  344. TSCAL = ONE
  345. ELSE
  346. TSCAL = ONE / ( SMLNUM*TMAX )
  347. CALL DSCAL( N, TSCAL, CNORM, 1 )
  348. END IF
  349. *
  350. * Compute a bound on the computed solution vector to see if the
  351. * Level 2 BLAS routine DTRSV can be used.
  352. *
  353. J = IDAMAX( N, X, 1 )
  354. XMAX = ABS( X( J ) )
  355. XBND = XMAX
  356. IF( NOTRAN ) THEN
  357. *
  358. * Compute the growth in A * x = b.
  359. *
  360. IF( UPPER ) THEN
  361. JFIRST = N
  362. JLAST = 1
  363. JINC = -1
  364. ELSE
  365. JFIRST = 1
  366. JLAST = N
  367. JINC = 1
  368. END IF
  369. *
  370. IF( TSCAL.NE.ONE ) THEN
  371. GROW = ZERO
  372. GO TO 50
  373. END IF
  374. *
  375. IF( NOUNIT ) THEN
  376. *
  377. * A is non-unit triangular.
  378. *
  379. * Compute GROW = 1/G(j) and XBND = 1/M(j).
  380. * Initially, G(0) = max{x(i), i=1,...,n}.
  381. *
  382. GROW = ONE / MAX( XBND, SMLNUM )
  383. XBND = GROW
  384. DO 30 J = JFIRST, JLAST, JINC
  385. *
  386. * Exit the loop if the growth factor is too small.
  387. *
  388. IF( GROW.LE.SMLNUM )
  389. $ GO TO 50
  390. *
  391. * M(j) = G(j-1) / abs(A(j,j))
  392. *
  393. TJJ = ABS( A( J, J ) )
  394. XBND = MIN( XBND, MIN( ONE, TJJ )*GROW )
  395. IF( TJJ+CNORM( J ).GE.SMLNUM ) THEN
  396. *
  397. * G(j) = G(j-1)*( 1 + CNORM(j) / abs(A(j,j)) )
  398. *
  399. GROW = GROW*( TJJ / ( TJJ+CNORM( J ) ) )
  400. ELSE
  401. *
  402. * G(j) could overflow, set GROW to 0.
  403. *
  404. GROW = ZERO
  405. END IF
  406. 30 CONTINUE
  407. GROW = XBND
  408. ELSE
  409. *
  410. * A is unit triangular.
  411. *
  412. * Compute GROW = 1/G(j), where G(0) = max{x(i), i=1,...,n}.
  413. *
  414. GROW = MIN( ONE, ONE / MAX( XBND, SMLNUM ) )
  415. DO 40 J = JFIRST, JLAST, JINC
  416. *
  417. * Exit the loop if the growth factor is too small.
  418. *
  419. IF( GROW.LE.SMLNUM )
  420. $ GO TO 50
  421. *
  422. * G(j) = G(j-1)*( 1 + CNORM(j) )
  423. *
  424. GROW = GROW*( ONE / ( ONE+CNORM( J ) ) )
  425. 40 CONTINUE
  426. END IF
  427. 50 CONTINUE
  428. *
  429. ELSE
  430. *
  431. * Compute the growth in A**T * x = b.
  432. *
  433. IF( UPPER ) THEN
  434. JFIRST = 1
  435. JLAST = N
  436. JINC = 1
  437. ELSE
  438. JFIRST = N
  439. JLAST = 1
  440. JINC = -1
  441. END IF
  442. *
  443. IF( TSCAL.NE.ONE ) THEN
  444. GROW = ZERO
  445. GO TO 80
  446. END IF
  447. *
  448. IF( NOUNIT ) THEN
  449. *
  450. * A is non-unit triangular.
  451. *
  452. * Compute GROW = 1/G(j) and XBND = 1/M(j).
  453. * Initially, M(0) = max{x(i), i=1,...,n}.
  454. *
  455. GROW = ONE / MAX( XBND, SMLNUM )
  456. XBND = GROW
  457. DO 60 J = JFIRST, JLAST, JINC
  458. *
  459. * Exit the loop if the growth factor is too small.
  460. *
  461. IF( GROW.LE.SMLNUM )
  462. $ GO TO 80
  463. *
  464. * G(j) = max( G(j-1), M(j-1)*( 1 + CNORM(j) ) )
  465. *
  466. XJ = ONE + CNORM( J )
  467. GROW = MIN( GROW, XBND / XJ )
  468. *
  469. * M(j) = M(j-1)*( 1 + CNORM(j) ) / abs(A(j,j))
  470. *
  471. TJJ = ABS( A( J, J ) )
  472. IF( XJ.GT.TJJ )
  473. $ XBND = XBND*( TJJ / XJ )
  474. 60 CONTINUE
  475. GROW = MIN( GROW, XBND )
  476. ELSE
  477. *
  478. * A is unit triangular.
  479. *
  480. * Compute GROW = 1/G(j), where G(0) = max{x(i), i=1,...,n}.
  481. *
  482. GROW = MIN( ONE, ONE / MAX( XBND, SMLNUM ) )
  483. DO 70 J = JFIRST, JLAST, JINC
  484. *
  485. * Exit the loop if the growth factor is too small.
  486. *
  487. IF( GROW.LE.SMLNUM )
  488. $ GO TO 80
  489. *
  490. * G(j) = ( 1 + CNORM(j) )*G(j-1)
  491. *
  492. XJ = ONE + CNORM( J )
  493. GROW = GROW / XJ
  494. 70 CONTINUE
  495. END IF
  496. 80 CONTINUE
  497. END IF
  498. *
  499. IF( ( GROW*TSCAL ).GT.SMLNUM ) THEN
  500. *
  501. * Use the Level 2 BLAS solve if the reciprocal of the bound on
  502. * elements of X is not too small.
  503. *
  504. CALL DTRSV( UPLO, TRANS, DIAG, N, A, LDA, X, 1 )
  505. ELSE
  506. *
  507. * Use a Level 1 BLAS solve, scaling intermediate results.
  508. *
  509. IF( XMAX.GT.BIGNUM ) THEN
  510. *
  511. * Scale X so that its components are less than or equal to
  512. * BIGNUM in absolute value.
  513. *
  514. SCALE = BIGNUM / XMAX
  515. CALL DSCAL( N, SCALE, X, 1 )
  516. XMAX = BIGNUM
  517. END IF
  518. *
  519. IF( NOTRAN ) THEN
  520. *
  521. * Solve A * x = b
  522. *
  523. DO 110 J = JFIRST, JLAST, JINC
  524. *
  525. * Compute x(j) = b(j) / A(j,j), scaling x if necessary.
  526. *
  527. XJ = ABS( X( J ) )
  528. IF( NOUNIT ) THEN
  529. TJJS = A( J, J )*TSCAL
  530. ELSE
  531. TJJS = TSCAL
  532. IF( TSCAL.EQ.ONE )
  533. $ GO TO 100
  534. END IF
  535. TJJ = ABS( TJJS )
  536. IF( TJJ.GT.SMLNUM ) THEN
  537. *
  538. * abs(A(j,j)) > SMLNUM:
  539. *
  540. IF( TJJ.LT.ONE ) THEN
  541. IF( XJ.GT.TJJ*BIGNUM ) THEN
  542. *
  543. * Scale x by 1/b(j).
  544. *
  545. REC = ONE / XJ
  546. CALL DSCAL( N, REC, X, 1 )
  547. SCALE = SCALE*REC
  548. XMAX = XMAX*REC
  549. END IF
  550. END IF
  551. X( J ) = X( J ) / TJJS
  552. XJ = ABS( X( J ) )
  553. ELSE IF( TJJ.GT.ZERO ) THEN
  554. *
  555. * 0 < abs(A(j,j)) <= SMLNUM:
  556. *
  557. IF( XJ.GT.TJJ*BIGNUM ) THEN
  558. *
  559. * Scale x by (1/abs(x(j)))*abs(A(j,j))*BIGNUM
  560. * to avoid overflow when dividing by A(j,j).
  561. *
  562. REC = ( TJJ*BIGNUM ) / XJ
  563. IF( CNORM( J ).GT.ONE ) THEN
  564. *
  565. * Scale by 1/CNORM(j) to avoid overflow when
  566. * multiplying x(j) times column j.
  567. *
  568. REC = REC / CNORM( J )
  569. END IF
  570. CALL DSCAL( N, REC, X, 1 )
  571. SCALE = SCALE*REC
  572. XMAX = XMAX*REC
  573. END IF
  574. X( J ) = X( J ) / TJJS
  575. XJ = ABS( X( J ) )
  576. ELSE
  577. *
  578. * A(j,j) = 0: Set x(1:n) = 0, x(j) = 1, and
  579. * scale = 0, and compute a solution to A*x = 0.
  580. *
  581. DO 90 I = 1, N
  582. X( I ) = ZERO
  583. 90 CONTINUE
  584. X( J ) = ONE
  585. XJ = ONE
  586. SCALE = ZERO
  587. XMAX = ZERO
  588. END IF
  589. 100 CONTINUE
  590. *
  591. * Scale x if necessary to avoid overflow when adding a
  592. * multiple of column j of A.
  593. *
  594. IF( XJ.GT.ONE ) THEN
  595. REC = ONE / XJ
  596. IF( CNORM( J ).GT.( BIGNUM-XMAX )*REC ) THEN
  597. *
  598. * Scale x by 1/(2*abs(x(j))).
  599. *
  600. REC = REC*HALF
  601. CALL DSCAL( N, REC, X, 1 )
  602. SCALE = SCALE*REC
  603. END IF
  604. ELSE IF( XJ*CNORM( J ).GT.( BIGNUM-XMAX ) ) THEN
  605. *
  606. * Scale x by 1/2.
  607. *
  608. CALL DSCAL( N, HALF, X, 1 )
  609. SCALE = SCALE*HALF
  610. END IF
  611. *
  612. IF( UPPER ) THEN
  613. IF( J.GT.1 ) THEN
  614. *
  615. * Compute the update
  616. * x(1:j-1) := x(1:j-1) - x(j) * A(1:j-1,j)
  617. *
  618. CALL DAXPY( J-1, -X( J )*TSCAL, A( 1, J ), 1, X,
  619. $ 1 )
  620. I = IDAMAX( J-1, X, 1 )
  621. XMAX = ABS( X( I ) )
  622. END IF
  623. ELSE
  624. IF( J.LT.N ) THEN
  625. *
  626. * Compute the update
  627. * x(j+1:n) := x(j+1:n) - x(j) * A(j+1:n,j)
  628. *
  629. CALL DAXPY( N-J, -X( J )*TSCAL, A( J+1, J ), 1,
  630. $ X( J+1 ), 1 )
  631. I = J + IDAMAX( N-J, X( J+1 ), 1 )
  632. XMAX = ABS( X( I ) )
  633. END IF
  634. END IF
  635. 110 CONTINUE
  636. *
  637. ELSE
  638. *
  639. * Solve A**T * x = b
  640. *
  641. DO 160 J = JFIRST, JLAST, JINC
  642. *
  643. * Compute x(j) = b(j) - sum A(k,j)*x(k).
  644. * k<>j
  645. *
  646. XJ = ABS( X( J ) )
  647. USCAL = TSCAL
  648. REC = ONE / MAX( XMAX, ONE )
  649. IF( CNORM( J ).GT.( BIGNUM-XJ )*REC ) THEN
  650. *
  651. * If x(j) could overflow, scale x by 1/(2*XMAX).
  652. *
  653. REC = REC*HALF
  654. IF( NOUNIT ) THEN
  655. TJJS = A( J, J )*TSCAL
  656. ELSE
  657. TJJS = TSCAL
  658. END IF
  659. TJJ = ABS( TJJS )
  660. IF( TJJ.GT.ONE ) THEN
  661. *
  662. * Divide by A(j,j) when scaling x if A(j,j) > 1.
  663. *
  664. REC = MIN( ONE, REC*TJJ )
  665. USCAL = USCAL / TJJS
  666. END IF
  667. IF( REC.LT.ONE ) THEN
  668. CALL DSCAL( N, REC, X, 1 )
  669. SCALE = SCALE*REC
  670. XMAX = XMAX*REC
  671. END IF
  672. END IF
  673. *
  674. SUMJ = ZERO
  675. IF( USCAL.EQ.ONE ) THEN
  676. *
  677. * If the scaling needed for A in the dot product is 1,
  678. * call DDOT to perform the dot product.
  679. *
  680. IF( UPPER ) THEN
  681. SUMJ = DDOT( J-1, A( 1, J ), 1, X, 1 )
  682. ELSE IF( J.LT.N ) THEN
  683. SUMJ = DDOT( N-J, A( J+1, J ), 1, X( J+1 ), 1 )
  684. END IF
  685. ELSE
  686. *
  687. * Otherwise, use in-line code for the dot product.
  688. *
  689. IF( UPPER ) THEN
  690. DO 120 I = 1, J - 1
  691. SUMJ = SUMJ + ( A( I, J )*USCAL )*X( I )
  692. 120 CONTINUE
  693. ELSE IF( J.LT.N ) THEN
  694. DO 130 I = J + 1, N
  695. SUMJ = SUMJ + ( A( I, J )*USCAL )*X( I )
  696. 130 CONTINUE
  697. END IF
  698. END IF
  699. *
  700. IF( USCAL.EQ.TSCAL ) THEN
  701. *
  702. * Compute x(j) := ( x(j) - sumj ) / A(j,j) if 1/A(j,j)
  703. * was not used to scale the dotproduct.
  704. *
  705. X( J ) = X( J ) - SUMJ
  706. XJ = ABS( X( J ) )
  707. IF( NOUNIT ) THEN
  708. TJJS = A( J, J )*TSCAL
  709. ELSE
  710. TJJS = TSCAL
  711. IF( TSCAL.EQ.ONE )
  712. $ GO TO 150
  713. END IF
  714. *
  715. * Compute x(j) = x(j) / A(j,j), scaling if necessary.
  716. *
  717. TJJ = ABS( TJJS )
  718. IF( TJJ.GT.SMLNUM ) THEN
  719. *
  720. * abs(A(j,j)) > SMLNUM:
  721. *
  722. IF( TJJ.LT.ONE ) THEN
  723. IF( XJ.GT.TJJ*BIGNUM ) THEN
  724. *
  725. * Scale X by 1/abs(x(j)).
  726. *
  727. REC = ONE / XJ
  728. CALL DSCAL( N, REC, X, 1 )
  729. SCALE = SCALE*REC
  730. XMAX = XMAX*REC
  731. END IF
  732. END IF
  733. X( J ) = X( J ) / TJJS
  734. ELSE IF( TJJ.GT.ZERO ) THEN
  735. *
  736. * 0 < abs(A(j,j)) <= SMLNUM:
  737. *
  738. IF( XJ.GT.TJJ*BIGNUM ) THEN
  739. *
  740. * Scale x by (1/abs(x(j)))*abs(A(j,j))*BIGNUM.
  741. *
  742. REC = ( TJJ*BIGNUM ) / XJ
  743. CALL DSCAL( N, REC, X, 1 )
  744. SCALE = SCALE*REC
  745. XMAX = XMAX*REC
  746. END IF
  747. X( J ) = X( J ) / TJJS
  748. ELSE
  749. *
  750. * A(j,j) = 0: Set x(1:n) = 0, x(j) = 1, and
  751. * scale = 0, and compute a solution to A**T*x = 0.
  752. *
  753. DO 140 I = 1, N
  754. X( I ) = ZERO
  755. 140 CONTINUE
  756. X( J ) = ONE
  757. SCALE = ZERO
  758. XMAX = ZERO
  759. END IF
  760. 150 CONTINUE
  761. ELSE
  762. *
  763. * Compute x(j) := x(j) / A(j,j) - sumj if the dot
  764. * product has already been divided by 1/A(j,j).
  765. *
  766. X( J ) = X( J ) / TJJS - SUMJ
  767. END IF
  768. XMAX = MAX( XMAX, ABS( X( J ) ) )
  769. 160 CONTINUE
  770. END IF
  771. SCALE = SCALE / TSCAL
  772. END IF
  773. *
  774. * Scale the column norms by 1/TSCAL for return.
  775. *
  776. IF( TSCAL.NE.ONE ) THEN
  777. CALL DSCAL( N, ONE / TSCAL, CNORM, 1 )
  778. END IF
  779. *
  780. RETURN
  781. *
  782. * End of DLATRS
  783. *
  784. END