You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

dgesvx.f 21 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599
  1. *> \brief <b> DGESVX computes the solution to system of linear equations A * X = B for GE matrices</b>
  2. *
  3. * =========== DOCUMENTATION ===========
  4. *
  5. * Online html documentation available at
  6. * http://www.netlib.org/lapack/explore-html/
  7. *
  8. *> \htmlonly
  9. *> Download DGESVX + dependencies
  10. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dgesvx.f">
  11. *> [TGZ]</a>
  12. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dgesvx.f">
  13. *> [ZIP]</a>
  14. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dgesvx.f">
  15. *> [TXT]</a>
  16. *> \endhtmlonly
  17. *
  18. * Definition:
  19. * ===========
  20. *
  21. * SUBROUTINE DGESVX( FACT, TRANS, N, NRHS, A, LDA, AF, LDAF, IPIV,
  22. * EQUED, R, C, B, LDB, X, LDX, RCOND, FERR, BERR,
  23. * WORK, IWORK, INFO )
  24. *
  25. * .. Scalar Arguments ..
  26. * CHARACTER EQUED, FACT, TRANS
  27. * INTEGER INFO, LDA, LDAF, LDB, LDX, N, NRHS
  28. * DOUBLE PRECISION RCOND
  29. * ..
  30. * .. Array Arguments ..
  31. * INTEGER IPIV( * ), IWORK( * )
  32. * DOUBLE PRECISION A( LDA, * ), AF( LDAF, * ), B( LDB, * ),
  33. * $ BERR( * ), C( * ), FERR( * ), R( * ),
  34. * $ WORK( * ), X( LDX, * )
  35. * ..
  36. *
  37. *
  38. *> \par Purpose:
  39. * =============
  40. *>
  41. *> \verbatim
  42. *>
  43. *> DGESVX uses the LU factorization to compute the solution to a real
  44. *> system of linear equations
  45. *> A * X = B,
  46. *> where A is an N-by-N matrix and X and B are N-by-NRHS matrices.
  47. *>
  48. *> Error bounds on the solution and a condition estimate are also
  49. *> provided.
  50. *> \endverbatim
  51. *
  52. *> \par Description:
  53. * =================
  54. *>
  55. *> \verbatim
  56. *>
  57. *> The following steps are performed:
  58. *>
  59. *> 1. If FACT = 'E', real scaling factors are computed to equilibrate
  60. *> the system:
  61. *> TRANS = 'N': diag(R)*A*diag(C) *inv(diag(C))*X = diag(R)*B
  62. *> TRANS = 'T': (diag(R)*A*diag(C))**T *inv(diag(R))*X = diag(C)*B
  63. *> TRANS = 'C': (diag(R)*A*diag(C))**H *inv(diag(R))*X = diag(C)*B
  64. *> Whether or not the system will be equilibrated depends on the
  65. *> scaling of the matrix A, but if equilibration is used, A is
  66. *> overwritten by diag(R)*A*diag(C) and B by diag(R)*B (if TRANS='N')
  67. *> or diag(C)*B (if TRANS = 'T' or 'C').
  68. *>
  69. *> 2. If FACT = 'N' or 'E', the LU decomposition is used to factor the
  70. *> matrix A (after equilibration if FACT = 'E') as
  71. *> A = P * L * U,
  72. *> where P is a permutation matrix, L is a unit lower triangular
  73. *> matrix, and U is upper triangular.
  74. *>
  75. *> 3. If some U(i,i)=0, so that U is exactly singular, then the routine
  76. *> returns with INFO = i. Otherwise, the factored form of A is used
  77. *> to estimate the condition number of the matrix A. If the
  78. *> reciprocal of the condition number is less than machine precision,
  79. *> INFO = N+1 is returned as a warning, but the routine still goes on
  80. *> to solve for X and compute error bounds as described below.
  81. *>
  82. *> 4. The system of equations is solved for X using the factored form
  83. *> of A.
  84. *>
  85. *> 5. Iterative refinement is applied to improve the computed solution
  86. *> matrix and calculate error bounds and backward error estimates
  87. *> for it.
  88. *>
  89. *> 6. If equilibration was used, the matrix X is premultiplied by
  90. *> diag(C) (if TRANS = 'N') or diag(R) (if TRANS = 'T' or 'C') so
  91. *> that it solves the original system before equilibration.
  92. *> \endverbatim
  93. *
  94. * Arguments:
  95. * ==========
  96. *
  97. *> \param[in] FACT
  98. *> \verbatim
  99. *> FACT is CHARACTER*1
  100. *> Specifies whether or not the factored form of the matrix A is
  101. *> supplied on entry, and if not, whether the matrix A should be
  102. *> equilibrated before it is factored.
  103. *> = 'F': On entry, AF and IPIV contain the factored form of A.
  104. *> If EQUED is not 'N', the matrix A has been
  105. *> equilibrated with scaling factors given by R and C.
  106. *> A, AF, and IPIV are not modified.
  107. *> = 'N': The matrix A will be copied to AF and factored.
  108. *> = 'E': The matrix A will be equilibrated if necessary, then
  109. *> copied to AF and factored.
  110. *> \endverbatim
  111. *>
  112. *> \param[in] TRANS
  113. *> \verbatim
  114. *> TRANS is CHARACTER*1
  115. *> Specifies the form of the system of equations:
  116. *> = 'N': A * X = B (No transpose)
  117. *> = 'T': A**T * X = B (Transpose)
  118. *> = 'C': A**H * X = B (Transpose)
  119. *> \endverbatim
  120. *>
  121. *> \param[in] N
  122. *> \verbatim
  123. *> N is INTEGER
  124. *> The number of linear equations, i.e., the order of the
  125. *> matrix A. N >= 0.
  126. *> \endverbatim
  127. *>
  128. *> \param[in] NRHS
  129. *> \verbatim
  130. *> NRHS is INTEGER
  131. *> The number of right hand sides, i.e., the number of columns
  132. *> of the matrices B and X. NRHS >= 0.
  133. *> \endverbatim
  134. *>
  135. *> \param[in,out] A
  136. *> \verbatim
  137. *> A is DOUBLE PRECISION array, dimension (LDA,N)
  138. *> On entry, the N-by-N matrix A. If FACT = 'F' and EQUED is
  139. *> not 'N', then A must have been equilibrated by the scaling
  140. *> factors in R and/or C. A is not modified if FACT = 'F' or
  141. *> 'N', or if FACT = 'E' and EQUED = 'N' on exit.
  142. *>
  143. *> On exit, if EQUED .ne. 'N', A is scaled as follows:
  144. *> EQUED = 'R': A := diag(R) * A
  145. *> EQUED = 'C': A := A * diag(C)
  146. *> EQUED = 'B': A := diag(R) * A * diag(C).
  147. *> \endverbatim
  148. *>
  149. *> \param[in] LDA
  150. *> \verbatim
  151. *> LDA is INTEGER
  152. *> The leading dimension of the array A. LDA >= max(1,N).
  153. *> \endverbatim
  154. *>
  155. *> \param[in,out] AF
  156. *> \verbatim
  157. *> AF is DOUBLE PRECISION array, dimension (LDAF,N)
  158. *> If FACT = 'F', then AF is an input argument and on entry
  159. *> contains the factors L and U from the factorization
  160. *> A = P*L*U as computed by DGETRF. If EQUED .ne. 'N', then
  161. *> AF is the factored form of the equilibrated matrix A.
  162. *>
  163. *> If FACT = 'N', then AF is an output argument and on exit
  164. *> returns the factors L and U from the factorization A = P*L*U
  165. *> of the original matrix A.
  166. *>
  167. *> If FACT = 'E', then AF is an output argument and on exit
  168. *> returns the factors L and U from the factorization A = P*L*U
  169. *> of the equilibrated matrix A (see the description of A for
  170. *> the form of the equilibrated matrix).
  171. *> \endverbatim
  172. *>
  173. *> \param[in] LDAF
  174. *> \verbatim
  175. *> LDAF is INTEGER
  176. *> The leading dimension of the array AF. LDAF >= max(1,N).
  177. *> \endverbatim
  178. *>
  179. *> \param[in,out] IPIV
  180. *> \verbatim
  181. *> IPIV is INTEGER array, dimension (N)
  182. *> If FACT = 'F', then IPIV is an input argument and on entry
  183. *> contains the pivot indices from the factorization A = P*L*U
  184. *> as computed by DGETRF; row i of the matrix was interchanged
  185. *> with row IPIV(i).
  186. *>
  187. *> If FACT = 'N', then IPIV is an output argument and on exit
  188. *> contains the pivot indices from the factorization A = P*L*U
  189. *> of the original matrix A.
  190. *>
  191. *> If FACT = 'E', then IPIV is an output argument and on exit
  192. *> contains the pivot indices from the factorization A = P*L*U
  193. *> of the equilibrated matrix A.
  194. *> \endverbatim
  195. *>
  196. *> \param[in,out] EQUED
  197. *> \verbatim
  198. *> EQUED is CHARACTER*1
  199. *> Specifies the form of equilibration that was done.
  200. *> = 'N': No equilibration (always true if FACT = 'N').
  201. *> = 'R': Row equilibration, i.e., A has been premultiplied by
  202. *> diag(R).
  203. *> = 'C': Column equilibration, i.e., A has been postmultiplied
  204. *> by diag(C).
  205. *> = 'B': Both row and column equilibration, i.e., A has been
  206. *> replaced by diag(R) * A * diag(C).
  207. *> EQUED is an input argument if FACT = 'F'; otherwise, it is an
  208. *> output argument.
  209. *> \endverbatim
  210. *>
  211. *> \param[in,out] R
  212. *> \verbatim
  213. *> R is DOUBLE PRECISION array, dimension (N)
  214. *> The row scale factors for A. If EQUED = 'R' or 'B', A is
  215. *> multiplied on the left by diag(R); if EQUED = 'N' or 'C', R
  216. *> is not accessed. R is an input argument if FACT = 'F';
  217. *> otherwise, R is an output argument. If FACT = 'F' and
  218. *> EQUED = 'R' or 'B', each element of R must be positive.
  219. *> \endverbatim
  220. *>
  221. *> \param[in,out] C
  222. *> \verbatim
  223. *> C is DOUBLE PRECISION array, dimension (N)
  224. *> The column scale factors for A. If EQUED = 'C' or 'B', A is
  225. *> multiplied on the right by diag(C); if EQUED = 'N' or 'R', C
  226. *> is not accessed. C is an input argument if FACT = 'F';
  227. *> otherwise, C is an output argument. If FACT = 'F' and
  228. *> EQUED = 'C' or 'B', each element of C must be positive.
  229. *> \endverbatim
  230. *>
  231. *> \param[in,out] B
  232. *> \verbatim
  233. *> B is DOUBLE PRECISION array, dimension (LDB,NRHS)
  234. *> On entry, the N-by-NRHS right hand side matrix B.
  235. *> On exit,
  236. *> if EQUED = 'N', B is not modified;
  237. *> if TRANS = 'N' and EQUED = 'R' or 'B', B is overwritten by
  238. *> diag(R)*B;
  239. *> if TRANS = 'T' or 'C' and EQUED = 'C' or 'B', B is
  240. *> overwritten by diag(C)*B.
  241. *> \endverbatim
  242. *>
  243. *> \param[in] LDB
  244. *> \verbatim
  245. *> LDB is INTEGER
  246. *> The leading dimension of the array B. LDB >= max(1,N).
  247. *> \endverbatim
  248. *>
  249. *> \param[out] X
  250. *> \verbatim
  251. *> X is DOUBLE PRECISION array, dimension (LDX,NRHS)
  252. *> If INFO = 0 or INFO = N+1, the N-by-NRHS solution matrix X
  253. *> to the original system of equations. Note that A and B are
  254. *> modified on exit if EQUED .ne. 'N', and the solution to the
  255. *> equilibrated system is inv(diag(C))*X if TRANS = 'N' and
  256. *> EQUED = 'C' or 'B', or inv(diag(R))*X if TRANS = 'T' or 'C'
  257. *> and EQUED = 'R' or 'B'.
  258. *> \endverbatim
  259. *>
  260. *> \param[in] LDX
  261. *> \verbatim
  262. *> LDX is INTEGER
  263. *> The leading dimension of the array X. LDX >= max(1,N).
  264. *> \endverbatim
  265. *>
  266. *> \param[out] RCOND
  267. *> \verbatim
  268. *> RCOND is DOUBLE PRECISION
  269. *> The estimate of the reciprocal condition number of the matrix
  270. *> A after equilibration (if done). If RCOND is less than the
  271. *> machine precision (in particular, if RCOND = 0), the matrix
  272. *> is singular to working precision. This condition is
  273. *> indicated by a return code of INFO > 0.
  274. *> \endverbatim
  275. *>
  276. *> \param[out] FERR
  277. *> \verbatim
  278. *> FERR is DOUBLE PRECISION array, dimension (NRHS)
  279. *> The estimated forward error bound for each solution vector
  280. *> X(j) (the j-th column of the solution matrix X).
  281. *> If XTRUE is the true solution corresponding to X(j), FERR(j)
  282. *> is an estimated upper bound for the magnitude of the largest
  283. *> element in (X(j) - XTRUE) divided by the magnitude of the
  284. *> largest element in X(j). The estimate is as reliable as
  285. *> the estimate for RCOND, and is almost always a slight
  286. *> overestimate of the true error.
  287. *> \endverbatim
  288. *>
  289. *> \param[out] BERR
  290. *> \verbatim
  291. *> BERR is DOUBLE PRECISION array, dimension (NRHS)
  292. *> The componentwise relative backward error of each solution
  293. *> vector X(j) (i.e., the smallest relative change in
  294. *> any element of A or B that makes X(j) an exact solution).
  295. *> \endverbatim
  296. *>
  297. *> \param[out] WORK
  298. *> \verbatim
  299. *> WORK is DOUBLE PRECISION array, dimension (4*N)
  300. *> On exit, WORK(1) contains the reciprocal pivot growth
  301. *> factor norm(A)/norm(U). The "max absolute element" norm is
  302. *> used. If WORK(1) is much less than 1, then the stability
  303. *> of the LU factorization of the (equilibrated) matrix A
  304. *> could be poor. This also means that the solution X, condition
  305. *> estimator RCOND, and forward error bound FERR could be
  306. *> unreliable. If factorization fails with 0<INFO<=N, then
  307. *> WORK(1) contains the reciprocal pivot growth factor for the
  308. *> leading INFO columns of A.
  309. *> \endverbatim
  310. *>
  311. *> \param[out] IWORK
  312. *> \verbatim
  313. *> IWORK is INTEGER array, dimension (N)
  314. *> \endverbatim
  315. *>
  316. *> \param[out] INFO
  317. *> \verbatim
  318. *> INFO is INTEGER
  319. *> = 0: successful exit
  320. *> < 0: if INFO = -i, the i-th argument had an illegal value
  321. *> > 0: if INFO = i, and i is
  322. *> <= N: U(i,i) is exactly zero. The factorization has
  323. *> been completed, but the factor U is exactly
  324. *> singular, so the solution and error bounds
  325. *> could not be computed. RCOND = 0 is returned.
  326. *> = N+1: U is nonsingular, but RCOND is less than machine
  327. *> precision, meaning that the matrix is singular
  328. *> to working precision. Nevertheless, the
  329. *> solution and error bounds are computed because
  330. *> there are a number of situations where the
  331. *> computed solution can be more accurate than the
  332. *> value of RCOND would suggest.
  333. *> \endverbatim
  334. *
  335. * Authors:
  336. * ========
  337. *
  338. *> \author Univ. of Tennessee
  339. *> \author Univ. of California Berkeley
  340. *> \author Univ. of Colorado Denver
  341. *> \author NAG Ltd.
  342. *
  343. *> \ingroup doubleGEsolve
  344. *
  345. * =====================================================================
  346. SUBROUTINE DGESVX( FACT, TRANS, N, NRHS, A, LDA, AF, LDAF, IPIV,
  347. $ EQUED, R, C, B, LDB, X, LDX, RCOND, FERR, BERR,
  348. $ WORK, IWORK, INFO )
  349. *
  350. * -- LAPACK driver routine --
  351. * -- LAPACK is a software package provided by Univ. of Tennessee, --
  352. * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
  353. *
  354. * .. Scalar Arguments ..
  355. CHARACTER EQUED, FACT, TRANS
  356. INTEGER INFO, LDA, LDAF, LDB, LDX, N, NRHS
  357. DOUBLE PRECISION RCOND
  358. * ..
  359. * .. Array Arguments ..
  360. INTEGER IPIV( * ), IWORK( * )
  361. DOUBLE PRECISION A( LDA, * ), AF( LDAF, * ), B( LDB, * ),
  362. $ BERR( * ), C( * ), FERR( * ), R( * ),
  363. $ WORK( * ), X( LDX, * )
  364. * ..
  365. *
  366. * =====================================================================
  367. *
  368. * .. Parameters ..
  369. DOUBLE PRECISION ZERO, ONE
  370. PARAMETER ( ZERO = 0.0D+0, ONE = 1.0D+0 )
  371. * ..
  372. * .. Local Scalars ..
  373. LOGICAL COLEQU, EQUIL, NOFACT, NOTRAN, ROWEQU
  374. CHARACTER NORM
  375. INTEGER I, INFEQU, J
  376. DOUBLE PRECISION AMAX, ANORM, BIGNUM, COLCND, RCMAX, RCMIN,
  377. $ ROWCND, RPVGRW, SMLNUM
  378. * ..
  379. * .. External Functions ..
  380. LOGICAL LSAME
  381. DOUBLE PRECISION DLAMCH, DLANGE, DLANTR
  382. EXTERNAL LSAME, DLAMCH, DLANGE, DLANTR
  383. * ..
  384. * .. External Subroutines ..
  385. EXTERNAL DGECON, DGEEQU, DGERFS, DGETRF, DGETRS, DLACPY,
  386. $ DLAQGE, XERBLA
  387. * ..
  388. * .. Intrinsic Functions ..
  389. INTRINSIC MAX, MIN
  390. * ..
  391. * .. Executable Statements ..
  392. *
  393. INFO = 0
  394. NOFACT = LSAME( FACT, 'N' )
  395. EQUIL = LSAME( FACT, 'E' )
  396. NOTRAN = LSAME( TRANS, 'N' )
  397. IF( NOFACT .OR. EQUIL ) THEN
  398. EQUED = 'N'
  399. ROWEQU = .FALSE.
  400. COLEQU = .FALSE.
  401. ELSE
  402. ROWEQU = LSAME( EQUED, 'R' ) .OR. LSAME( EQUED, 'B' )
  403. COLEQU = LSAME( EQUED, 'C' ) .OR. LSAME( EQUED, 'B' )
  404. SMLNUM = DLAMCH( 'Safe minimum' )
  405. BIGNUM = ONE / SMLNUM
  406. END IF
  407. *
  408. * Test the input parameters.
  409. *
  410. IF( .NOT.NOFACT .AND. .NOT.EQUIL .AND. .NOT.LSAME( FACT, 'F' ) )
  411. $ THEN
  412. INFO = -1
  413. ELSE IF( .NOT.NOTRAN .AND. .NOT.LSAME( TRANS, 'T' ) .AND. .NOT.
  414. $ LSAME( TRANS, 'C' ) ) THEN
  415. INFO = -2
  416. ELSE IF( N.LT.0 ) THEN
  417. INFO = -3
  418. ELSE IF( NRHS.LT.0 ) THEN
  419. INFO = -4
  420. ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
  421. INFO = -6
  422. ELSE IF( LDAF.LT.MAX( 1, N ) ) THEN
  423. INFO = -8
  424. ELSE IF( LSAME( FACT, 'F' ) .AND. .NOT.
  425. $ ( ROWEQU .OR. COLEQU .OR. LSAME( EQUED, 'N' ) ) ) THEN
  426. INFO = -10
  427. ELSE
  428. IF( ROWEQU ) THEN
  429. RCMIN = BIGNUM
  430. RCMAX = ZERO
  431. DO 10 J = 1, N
  432. RCMIN = MIN( RCMIN, R( J ) )
  433. RCMAX = MAX( RCMAX, R( J ) )
  434. 10 CONTINUE
  435. IF( RCMIN.LE.ZERO ) THEN
  436. INFO = -11
  437. ELSE IF( N.GT.0 ) THEN
  438. ROWCND = MAX( RCMIN, SMLNUM ) / MIN( RCMAX, BIGNUM )
  439. ELSE
  440. ROWCND = ONE
  441. END IF
  442. END IF
  443. IF( COLEQU .AND. INFO.EQ.0 ) THEN
  444. RCMIN = BIGNUM
  445. RCMAX = ZERO
  446. DO 20 J = 1, N
  447. RCMIN = MIN( RCMIN, C( J ) )
  448. RCMAX = MAX( RCMAX, C( J ) )
  449. 20 CONTINUE
  450. IF( RCMIN.LE.ZERO ) THEN
  451. INFO = -12
  452. ELSE IF( N.GT.0 ) THEN
  453. COLCND = MAX( RCMIN, SMLNUM ) / MIN( RCMAX, BIGNUM )
  454. ELSE
  455. COLCND = ONE
  456. END IF
  457. END IF
  458. IF( INFO.EQ.0 ) THEN
  459. IF( LDB.LT.MAX( 1, N ) ) THEN
  460. INFO = -14
  461. ELSE IF( LDX.LT.MAX( 1, N ) ) THEN
  462. INFO = -16
  463. END IF
  464. END IF
  465. END IF
  466. *
  467. IF( INFO.NE.0 ) THEN
  468. CALL XERBLA( 'DGESVX', -INFO )
  469. RETURN
  470. END IF
  471. *
  472. IF( EQUIL ) THEN
  473. *
  474. * Compute row and column scalings to equilibrate the matrix A.
  475. *
  476. CALL DGEEQU( N, N, A, LDA, R, C, ROWCND, COLCND, AMAX, INFEQU )
  477. IF( INFEQU.EQ.0 ) THEN
  478. *
  479. * Equilibrate the matrix.
  480. *
  481. CALL DLAQGE( N, N, A, LDA, R, C, ROWCND, COLCND, AMAX,
  482. $ EQUED )
  483. ROWEQU = LSAME( EQUED, 'R' ) .OR. LSAME( EQUED, 'B' )
  484. COLEQU = LSAME( EQUED, 'C' ) .OR. LSAME( EQUED, 'B' )
  485. END IF
  486. END IF
  487. *
  488. * Scale the right hand side.
  489. *
  490. IF( NOTRAN ) THEN
  491. IF( ROWEQU ) THEN
  492. DO 40 J = 1, NRHS
  493. DO 30 I = 1, N
  494. B( I, J ) = R( I )*B( I, J )
  495. 30 CONTINUE
  496. 40 CONTINUE
  497. END IF
  498. ELSE IF( COLEQU ) THEN
  499. DO 60 J = 1, NRHS
  500. DO 50 I = 1, N
  501. B( I, J ) = C( I )*B( I, J )
  502. 50 CONTINUE
  503. 60 CONTINUE
  504. END IF
  505. *
  506. IF( NOFACT .OR. EQUIL ) THEN
  507. *
  508. * Compute the LU factorization of A.
  509. *
  510. CALL DLACPY( 'Full', N, N, A, LDA, AF, LDAF )
  511. CALL DGETRF( N, N, AF, LDAF, IPIV, INFO )
  512. *
  513. * Return if INFO is non-zero.
  514. *
  515. IF( INFO.GT.0 ) THEN
  516. *
  517. * Compute the reciprocal pivot growth factor of the
  518. * leading rank-deficient INFO columns of A.
  519. *
  520. RPVGRW = DLANTR( 'M', 'U', 'N', INFO, INFO, AF, LDAF,
  521. $ WORK )
  522. IF( RPVGRW.EQ.ZERO ) THEN
  523. RPVGRW = ONE
  524. ELSE
  525. RPVGRW = DLANGE( 'M', N, INFO, A, LDA, WORK ) / RPVGRW
  526. END IF
  527. WORK( 1 ) = RPVGRW
  528. RCOND = ZERO
  529. RETURN
  530. END IF
  531. END IF
  532. *
  533. * Compute the norm of the matrix A and the
  534. * reciprocal pivot growth factor RPVGRW.
  535. *
  536. IF( NOTRAN ) THEN
  537. NORM = '1'
  538. ELSE
  539. NORM = 'I'
  540. END IF
  541. ANORM = DLANGE( NORM, N, N, A, LDA, WORK )
  542. RPVGRW = DLANTR( 'M', 'U', 'N', N, N, AF, LDAF, WORK )
  543. IF( RPVGRW.EQ.ZERO ) THEN
  544. RPVGRW = ONE
  545. ELSE
  546. RPVGRW = DLANGE( 'M', N, N, A, LDA, WORK ) / RPVGRW
  547. END IF
  548. *
  549. * Compute the reciprocal of the condition number of A.
  550. *
  551. CALL DGECON( NORM, N, AF, LDAF, ANORM, RCOND, WORK, IWORK, INFO )
  552. *
  553. * Compute the solution matrix X.
  554. *
  555. CALL DLACPY( 'Full', N, NRHS, B, LDB, X, LDX )
  556. CALL DGETRS( TRANS, N, NRHS, AF, LDAF, IPIV, X, LDX, INFO )
  557. *
  558. * Use iterative refinement to improve the computed solution and
  559. * compute error bounds and backward error estimates for it.
  560. *
  561. CALL DGERFS( TRANS, N, NRHS, A, LDA, AF, LDAF, IPIV, B, LDB, X,
  562. $ LDX, FERR, BERR, WORK, IWORK, INFO )
  563. *
  564. * Transform the solution matrix X to a solution of the original
  565. * system.
  566. *
  567. IF( NOTRAN ) THEN
  568. IF( COLEQU ) THEN
  569. DO 80 J = 1, NRHS
  570. DO 70 I = 1, N
  571. X( I, J ) = C( I )*X( I, J )
  572. 70 CONTINUE
  573. 80 CONTINUE
  574. DO 90 J = 1, NRHS
  575. FERR( J ) = FERR( J ) / COLCND
  576. 90 CONTINUE
  577. END IF
  578. ELSE IF( ROWEQU ) THEN
  579. DO 110 J = 1, NRHS
  580. DO 100 I = 1, N
  581. X( I, J ) = R( I )*X( I, J )
  582. 100 CONTINUE
  583. 110 CONTINUE
  584. DO 120 J = 1, NRHS
  585. FERR( J ) = FERR( J ) / ROWCND
  586. 120 CONTINUE
  587. END IF
  588. *
  589. WORK( 1 ) = RPVGRW
  590. *
  591. * Set INFO = N+1 if the matrix is singular to working precision.
  592. *
  593. IF( RCOND.LT.DLAMCH( 'Epsilon' ) )
  594. $ INFO = N + 1
  595. RETURN
  596. *
  597. * End of DGESVX
  598. *
  599. END