|
123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233 |
- !> \brief \b CLARTG generates a plane rotation with real cosine and complex sine.
- !
- ! =========== DOCUMENTATION ===========
- !
- ! Online html documentation available at
- ! http://www.netlib.org/lapack/explore-html/
- !
- ! Definition:
- ! ===========
- !
- ! SUBROUTINE CLARTG( F, G, C, S, R )
- !
- ! .. Scalar Arguments ..
- ! REAL(wp) C
- ! COMPLEX(wp) F, G, R, S
- ! ..
- !
- !> \par Purpose:
- ! =============
- !>
- !> \verbatim
- !>
- !> CLARTG generates a plane rotation so that
- !>
- !> [ C S ] . [ F ] = [ R ]
- !> [ -conjg(S) C ] [ G ] [ 0 ]
- !>
- !> where C is real and C**2 + |S|**2 = 1.
- !>
- !> The mathematical formulas used for C and S are
- !>
- !> sgn(x) = { x / |x|, x != 0
- !> { 1, x = 0
- !>
- !> R = sgn(F) * sqrt(|F|**2 + |G|**2)
- !>
- !> C = |F| / sqrt(|F|**2 + |G|**2)
- !>
- !> S = sgn(F) * conjg(G) / sqrt(|F|**2 + |G|**2)
- !>
- !> When F and G are real, the formulas simplify to C = F/R and
- !> S = G/R, and the returned values of C, S, and R should be
- !> identical to those returned by CLARTG.
- !>
- !> The algorithm used to compute these quantities incorporates scaling
- !> to avoid overflow or underflow in computing the square root of the
- !> sum of squares.
- !>
- !> This is a faster version of the BLAS1 routine CROTG, except for
- !> the following differences:
- !> F and G are unchanged on return.
- !> If G=0, then C=1 and S=0.
- !> If F=0, then C=0 and S is chosen so that R is real.
- !>
- !> Below, wp=>sp stands for single precision from LA_CONSTANTS module.
- !> \endverbatim
- !
- ! Arguments:
- ! ==========
- !
- !> \param[in] F
- !> \verbatim
- !> F is COMPLEX(wp)
- !> The first component of vector to be rotated.
- !> \endverbatim
- !>
- !> \param[in] G
- !> \verbatim
- !> G is COMPLEX(wp)
- !> The second component of vector to be rotated.
- !> \endverbatim
- !>
- !> \param[out] C
- !> \verbatim
- !> C is REAL(wp)
- !> The cosine of the rotation.
- !> \endverbatim
- !>
- !> \param[out] S
- !> \verbatim
- !> S is COMPLEX(wp)
- !> The sine of the rotation.
- !> \endverbatim
- !>
- !> \param[out] R
- !> \verbatim
- !> R is COMPLEX(wp)
- !> The nonzero component of the rotated vector.
- !> \endverbatim
- !
- ! Authors:
- ! ========
- !
- !> \author Edward Anderson, Lockheed Martin
- !
- !> \date August 2016
- !
- !> \ingroup OTHERauxiliary
- !
- !> \par Contributors:
- ! ==================
- !>
- !> Weslley Pereira, University of Colorado Denver, USA
- !
- !> \par Further Details:
- ! =====================
- !>
- !> \verbatim
- !>
- !> Anderson E. (2017)
- !> Algorithm 978: Safe Scaling in the Level 1 BLAS
- !> ACM Trans Math Softw 44:1--28
- !> https://doi.org/10.1145/3061665
- !>
- !> \endverbatim
- !
- subroutine CLARTG( f, g, c, s, r )
- use LA_CONSTANTS, &
- only: wp=>sp, zero=>szero, one=>sone, two=>stwo, czero, &
- rtmin=>srtmin, rtmax=>srtmax, safmin=>ssafmin, safmax=>ssafmax
- !
- ! -- LAPACK auxiliary routine --
- ! -- LAPACK is a software package provided by Univ. of Tennessee, --
- ! -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
- ! February 2021
- !
- ! .. Scalar Arguments ..
- real(wp) c
- complex(wp) f, g, r, s
- ! ..
- ! .. Local Scalars ..
- real(wp) :: d, f1, f2, g1, g2, h2, p, u, uu, v, vv, w
- complex(wp) :: fs, gs, t
- ! ..
- ! .. Intrinsic Functions ..
- intrinsic :: abs, aimag, conjg, max, min, real, sqrt
- ! ..
- ! .. Statement Functions ..
- real(wp) :: ABSSQ
- ! ..
- ! .. Statement Function definitions ..
- ABSSQ( t ) = real( t )**2 + aimag( t )**2
- ! ..
- ! .. Executable Statements ..
- !
- if( g == czero ) then
- c = one
- s = czero
- r = f
- else if( f == czero ) then
- c = zero
- g1 = max( abs(real(g)), abs(aimag(g)) )
- if( g1 > rtmin .and. g1 < rtmax ) then
- !
- ! Use unscaled algorithm
- !
- g2 = ABSSQ( g )
- d = sqrt( g2 )
- s = conjg( g ) / d
- r = d
- else
- !
- ! Use scaled algorithm
- !
- u = min( safmax, max( safmin, g1 ) )
- uu = one / u
- gs = g*uu
- g2 = ABSSQ( gs )
- d = sqrt( g2 )
- s = conjg( gs ) / d
- r = d*u
- end if
- else
- f1 = max( abs(real(f)), abs(aimag(f)) )
- g1 = max( abs(real(g)), abs(aimag(g)) )
- if( f1 > rtmin .and. f1 < rtmax .and. &
- g1 > rtmin .and. g1 < rtmax ) then
- !
- ! Use unscaled algorithm
- !
- f2 = ABSSQ( f )
- g2 = ABSSQ( g )
- h2 = f2 + g2
- if( f2 > rtmin .and. h2 < rtmax ) then
- d = sqrt( f2*h2 )
- else
- d = sqrt( f2 )*sqrt( h2 )
- end if
- p = 1 / d
- c = f2*p
- s = conjg( g )*( f*p )
- r = f*( h2*p )
- else
- !
- ! Use scaled algorithm
- !
- u = min( safmax, max( safmin, f1, g1 ) )
- uu = one / u
- gs = g*uu
- g2 = ABSSQ( gs )
- if( f1*uu < rtmin ) then
- !
- ! f is not well-scaled when scaled by g1.
- ! Use a different scaling for f.
- !
- v = min( safmax, max( safmin, f1 ) )
- vv = one / v
- w = v * uu
- fs = f*vv
- f2 = ABSSQ( fs )
- h2 = f2*w**2 + g2
- else
- !
- ! Otherwise use the same scaling for f and g.
- !
- w = one
- fs = f*uu
- f2 = ABSSQ( fs )
- h2 = f2 + g2
- end if
- if( f2 > rtmin .and. h2 < rtmax ) then
- d = sqrt( f2*h2 )
- else
- d = sqrt( f2 )*sqrt( h2 )
- end if
- p = 1 / d
- c = ( f2*p )*w
- s = conjg( gs )*( fs*p )
- r = ( fs*( h2*p ) )*u
- end if
- end if
- return
- end subroutine
|