You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

zpbstf.f 9.8 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332
  1. *> \brief \b ZPBSTF
  2. *
  3. * =========== DOCUMENTATION ===========
  4. *
  5. * Online html documentation available at
  6. * http://www.netlib.org/lapack/explore-html/
  7. *
  8. *> \htmlonly
  9. *> Download ZPBSTF + dependencies
  10. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/zpbstf.f">
  11. *> [TGZ]</a>
  12. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/zpbstf.f">
  13. *> [ZIP]</a>
  14. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/zpbstf.f">
  15. *> [TXT]</a>
  16. *> \endhtmlonly
  17. *
  18. * Definition:
  19. * ===========
  20. *
  21. * SUBROUTINE ZPBSTF( UPLO, N, KD, AB, LDAB, INFO )
  22. *
  23. * .. Scalar Arguments ..
  24. * CHARACTER UPLO
  25. * INTEGER INFO, KD, LDAB, N
  26. * ..
  27. * .. Array Arguments ..
  28. * COMPLEX*16 AB( LDAB, * )
  29. * ..
  30. *
  31. *
  32. *> \par Purpose:
  33. * =============
  34. *>
  35. *> \verbatim
  36. *>
  37. *> ZPBSTF computes a split Cholesky factorization of a complex
  38. *> Hermitian positive definite band matrix A.
  39. *>
  40. *> This routine is designed to be used in conjunction with ZHBGST.
  41. *>
  42. *> The factorization has the form A = S**H*S where S is a band matrix
  43. *> of the same bandwidth as A and the following structure:
  44. *>
  45. *> S = ( U )
  46. *> ( M L )
  47. *>
  48. *> where U is upper triangular of order m = (n+kd)/2, and L is lower
  49. *> triangular of order n-m.
  50. *> \endverbatim
  51. *
  52. * Arguments:
  53. * ==========
  54. *
  55. *> \param[in] UPLO
  56. *> \verbatim
  57. *> UPLO is CHARACTER*1
  58. *> = 'U': Upper triangle of A is stored;
  59. *> = 'L': Lower triangle of A is stored.
  60. *> \endverbatim
  61. *>
  62. *> \param[in] N
  63. *> \verbatim
  64. *> N is INTEGER
  65. *> The order of the matrix A. N >= 0.
  66. *> \endverbatim
  67. *>
  68. *> \param[in] KD
  69. *> \verbatim
  70. *> KD is INTEGER
  71. *> The number of superdiagonals of the matrix A if UPLO = 'U',
  72. *> or the number of subdiagonals if UPLO = 'L'. KD >= 0.
  73. *> \endverbatim
  74. *>
  75. *> \param[in,out] AB
  76. *> \verbatim
  77. *> AB is COMPLEX*16 array, dimension (LDAB,N)
  78. *> On entry, the upper or lower triangle of the Hermitian band
  79. *> matrix A, stored in the first kd+1 rows of the array. The
  80. *> j-th column of A is stored in the j-th column of the array AB
  81. *> as follows:
  82. *> if UPLO = 'U', AB(kd+1+i-j,j) = A(i,j) for max(1,j-kd)<=i<=j;
  83. *> if UPLO = 'L', AB(1+i-j,j) = A(i,j) for j<=i<=min(n,j+kd).
  84. *>
  85. *> On exit, if INFO = 0, the factor S from the split Cholesky
  86. *> factorization A = S**H*S. See Further Details.
  87. *> \endverbatim
  88. *>
  89. *> \param[in] LDAB
  90. *> \verbatim
  91. *> LDAB is INTEGER
  92. *> The leading dimension of the array AB. LDAB >= KD+1.
  93. *> \endverbatim
  94. *>
  95. *> \param[out] INFO
  96. *> \verbatim
  97. *> INFO is INTEGER
  98. *> = 0: successful exit
  99. *> < 0: if INFO = -i, the i-th argument had an illegal value
  100. *> > 0: if INFO = i, the factorization could not be completed,
  101. *> because the updated element a(i,i) was negative; the
  102. *> matrix A is not positive definite.
  103. *> \endverbatim
  104. *
  105. * Authors:
  106. * ========
  107. *
  108. *> \author Univ. of Tennessee
  109. *> \author Univ. of California Berkeley
  110. *> \author Univ. of Colorado Denver
  111. *> \author NAG Ltd.
  112. *
  113. *> \date December 2016
  114. *
  115. *> \ingroup complex16OTHERcomputational
  116. *
  117. *> \par Further Details:
  118. * =====================
  119. *>
  120. *> \verbatim
  121. *>
  122. *> The band storage scheme is illustrated by the following example, when
  123. *> N = 7, KD = 2:
  124. *>
  125. *> S = ( s11 s12 s13 )
  126. *> ( s22 s23 s24 )
  127. *> ( s33 s34 )
  128. *> ( s44 )
  129. *> ( s53 s54 s55 )
  130. *> ( s64 s65 s66 )
  131. *> ( s75 s76 s77 )
  132. *>
  133. *> If UPLO = 'U', the array AB holds:
  134. *>
  135. *> on entry: on exit:
  136. *>
  137. *> * * a13 a24 a35 a46 a57 * * s13 s24 s53**H s64**H s75**H
  138. *> * a12 a23 a34 a45 a56 a67 * s12 s23 s34 s54**H s65**H s76**H
  139. *> a11 a22 a33 a44 a55 a66 a77 s11 s22 s33 s44 s55 s66 s77
  140. *>
  141. *> If UPLO = 'L', the array AB holds:
  142. *>
  143. *> on entry: on exit:
  144. *>
  145. *> a11 a22 a33 a44 a55 a66 a77 s11 s22 s33 s44 s55 s66 s77
  146. *> a21 a32 a43 a54 a65 a76 * s12**H s23**H s34**H s54 s65 s76 *
  147. *> a31 a42 a53 a64 a64 * * s13**H s24**H s53 s64 s75 * *
  148. *>
  149. *> Array elements marked * are not used by the routine; s12**H denotes
  150. *> conjg(s12); the diagonal elements of S are real.
  151. *> \endverbatim
  152. *>
  153. * =====================================================================
  154. SUBROUTINE ZPBSTF( UPLO, N, KD, AB, LDAB, INFO )
  155. *
  156. * -- LAPACK computational routine (version 3.7.0) --
  157. * -- LAPACK is a software package provided by Univ. of Tennessee, --
  158. * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
  159. * December 2016
  160. *
  161. * .. Scalar Arguments ..
  162. CHARACTER UPLO
  163. INTEGER INFO, KD, LDAB, N
  164. * ..
  165. * .. Array Arguments ..
  166. COMPLEX*16 AB( LDAB, * )
  167. * ..
  168. *
  169. * =====================================================================
  170. *
  171. * .. Parameters ..
  172. DOUBLE PRECISION ONE, ZERO
  173. PARAMETER ( ONE = 1.0D+0, ZERO = 0.0D+0 )
  174. * ..
  175. * .. Local Scalars ..
  176. LOGICAL UPPER
  177. INTEGER J, KLD, KM, M
  178. DOUBLE PRECISION AJJ
  179. * ..
  180. * .. External Functions ..
  181. LOGICAL LSAME
  182. EXTERNAL LSAME
  183. * ..
  184. * .. External Subroutines ..
  185. EXTERNAL XERBLA, ZDSCAL, ZHER, ZLACGV
  186. * ..
  187. * .. Intrinsic Functions ..
  188. INTRINSIC DBLE, MAX, MIN, SQRT
  189. * ..
  190. * .. Executable Statements ..
  191. *
  192. * Test the input parameters.
  193. *
  194. INFO = 0
  195. UPPER = LSAME( UPLO, 'U' )
  196. IF( .NOT.UPPER .AND. .NOT.LSAME( UPLO, 'L' ) ) THEN
  197. INFO = -1
  198. ELSE IF( N.LT.0 ) THEN
  199. INFO = -2
  200. ELSE IF( KD.LT.0 ) THEN
  201. INFO = -3
  202. ELSE IF( LDAB.LT.KD+1 ) THEN
  203. INFO = -5
  204. END IF
  205. IF( INFO.NE.0 ) THEN
  206. CALL XERBLA( 'ZPBSTF', -INFO )
  207. RETURN
  208. END IF
  209. *
  210. * Quick return if possible
  211. *
  212. IF( N.EQ.0 )
  213. $ RETURN
  214. *
  215. KLD = MAX( 1, LDAB-1 )
  216. *
  217. * Set the splitting point m.
  218. *
  219. M = ( N+KD ) / 2
  220. *
  221. IF( UPPER ) THEN
  222. *
  223. * Factorize A(m+1:n,m+1:n) as L**H*L, and update A(1:m,1:m).
  224. *
  225. DO 10 J = N, M + 1, -1
  226. *
  227. * Compute s(j,j) and test for non-positive-definiteness.
  228. *
  229. AJJ = DBLE( AB( KD+1, J ) )
  230. IF( AJJ.LE.ZERO ) THEN
  231. AB( KD+1, J ) = AJJ
  232. GO TO 50
  233. END IF
  234. AJJ = SQRT( AJJ )
  235. AB( KD+1, J ) = AJJ
  236. KM = MIN( J-1, KD )
  237. *
  238. * Compute elements j-km:j-1 of the j-th column and update the
  239. * the leading submatrix within the band.
  240. *
  241. CALL ZDSCAL( KM, ONE / AJJ, AB( KD+1-KM, J ), 1 )
  242. CALL ZHER( 'Upper', KM, -ONE, AB( KD+1-KM, J ), 1,
  243. $ AB( KD+1, J-KM ), KLD )
  244. 10 CONTINUE
  245. *
  246. * Factorize the updated submatrix A(1:m,1:m) as U**H*U.
  247. *
  248. DO 20 J = 1, M
  249. *
  250. * Compute s(j,j) and test for non-positive-definiteness.
  251. *
  252. AJJ = DBLE( AB( KD+1, J ) )
  253. IF( AJJ.LE.ZERO ) THEN
  254. AB( KD+1, J ) = AJJ
  255. GO TO 50
  256. END IF
  257. AJJ = SQRT( AJJ )
  258. AB( KD+1, J ) = AJJ
  259. KM = MIN( KD, M-J )
  260. *
  261. * Compute elements j+1:j+km of the j-th row and update the
  262. * trailing submatrix within the band.
  263. *
  264. IF( KM.GT.0 ) THEN
  265. CALL ZDSCAL( KM, ONE / AJJ, AB( KD, J+1 ), KLD )
  266. CALL ZLACGV( KM, AB( KD, J+1 ), KLD )
  267. CALL ZHER( 'Upper', KM, -ONE, AB( KD, J+1 ), KLD,
  268. $ AB( KD+1, J+1 ), KLD )
  269. CALL ZLACGV( KM, AB( KD, J+1 ), KLD )
  270. END IF
  271. 20 CONTINUE
  272. ELSE
  273. *
  274. * Factorize A(m+1:n,m+1:n) as L**H*L, and update A(1:m,1:m).
  275. *
  276. DO 30 J = N, M + 1, -1
  277. *
  278. * Compute s(j,j) and test for non-positive-definiteness.
  279. *
  280. AJJ = DBLE( AB( 1, J ) )
  281. IF( AJJ.LE.ZERO ) THEN
  282. AB( 1, J ) = AJJ
  283. GO TO 50
  284. END IF
  285. AJJ = SQRT( AJJ )
  286. AB( 1, J ) = AJJ
  287. KM = MIN( J-1, KD )
  288. *
  289. * Compute elements j-km:j-1 of the j-th row and update the
  290. * trailing submatrix within the band.
  291. *
  292. CALL ZDSCAL( KM, ONE / AJJ, AB( KM+1, J-KM ), KLD )
  293. CALL ZLACGV( KM, AB( KM+1, J-KM ), KLD )
  294. CALL ZHER( 'Lower', KM, -ONE, AB( KM+1, J-KM ), KLD,
  295. $ AB( 1, J-KM ), KLD )
  296. CALL ZLACGV( KM, AB( KM+1, J-KM ), KLD )
  297. 30 CONTINUE
  298. *
  299. * Factorize the updated submatrix A(1:m,1:m) as U**H*U.
  300. *
  301. DO 40 J = 1, M
  302. *
  303. * Compute s(j,j) and test for non-positive-definiteness.
  304. *
  305. AJJ = DBLE( AB( 1, J ) )
  306. IF( AJJ.LE.ZERO ) THEN
  307. AB( 1, J ) = AJJ
  308. GO TO 50
  309. END IF
  310. AJJ = SQRT( AJJ )
  311. AB( 1, J ) = AJJ
  312. KM = MIN( KD, M-J )
  313. *
  314. * Compute elements j+1:j+km of the j-th column and update the
  315. * trailing submatrix within the band.
  316. *
  317. IF( KM.GT.0 ) THEN
  318. CALL ZDSCAL( KM, ONE / AJJ, AB( 2, J ), 1 )
  319. CALL ZHER( 'Lower', KM, -ONE, AB( 2, J ), 1,
  320. $ AB( 1, J+1 ), KLD )
  321. END IF
  322. 40 CONTINUE
  323. END IF
  324. RETURN
  325. *
  326. 50 CONTINUE
  327. INFO = J
  328. RETURN
  329. *
  330. * End of ZPBSTF
  331. *
  332. END