You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

zlarfb.f 22 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731
  1. *> \brief \b ZLARFB applies a block reflector or its conjugate-transpose to a general rectangular matrix.
  2. *
  3. * =========== DOCUMENTATION ===========
  4. *
  5. * Online html documentation available at
  6. * http://www.netlib.org/lapack/explore-html/
  7. *
  8. *> \htmlonly
  9. *> Download ZLARFB + dependencies
  10. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/zlarfb.f">
  11. *> [TGZ]</a>
  12. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/zlarfb.f">
  13. *> [ZIP]</a>
  14. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/zlarfb.f">
  15. *> [TXT]</a>
  16. *> \endhtmlonly
  17. *
  18. * Definition:
  19. * ===========
  20. *
  21. * SUBROUTINE ZLARFB( SIDE, TRANS, DIRECT, STOREV, M, N, K, V, LDV,
  22. * T, LDT, C, LDC, WORK, LDWORK )
  23. *
  24. * .. Scalar Arguments ..
  25. * CHARACTER DIRECT, SIDE, STOREV, TRANS
  26. * INTEGER K, LDC, LDT, LDV, LDWORK, M, N
  27. * ..
  28. * .. Array Arguments ..
  29. * COMPLEX*16 C( LDC, * ), T( LDT, * ), V( LDV, * ),
  30. * $ WORK( LDWORK, * )
  31. * ..
  32. *
  33. *
  34. *> \par Purpose:
  35. * =============
  36. *>
  37. *> \verbatim
  38. *>
  39. *> ZLARFB applies a complex block reflector H or its transpose H**H to a
  40. *> complex M-by-N matrix C, from either the left or the right.
  41. *> \endverbatim
  42. *
  43. * Arguments:
  44. * ==========
  45. *
  46. *> \param[in] SIDE
  47. *> \verbatim
  48. *> SIDE is CHARACTER*1
  49. *> = 'L': apply H or H**H from the Left
  50. *> = 'R': apply H or H**H from the Right
  51. *> \endverbatim
  52. *>
  53. *> \param[in] TRANS
  54. *> \verbatim
  55. *> TRANS is CHARACTER*1
  56. *> = 'N': apply H (No transpose)
  57. *> = 'C': apply H**H (Conjugate transpose)
  58. *> \endverbatim
  59. *>
  60. *> \param[in] DIRECT
  61. *> \verbatim
  62. *> DIRECT is CHARACTER*1
  63. *> Indicates how H is formed from a product of elementary
  64. *> reflectors
  65. *> = 'F': H = H(1) H(2) . . . H(k) (Forward)
  66. *> = 'B': H = H(k) . . . H(2) H(1) (Backward)
  67. *> \endverbatim
  68. *>
  69. *> \param[in] STOREV
  70. *> \verbatim
  71. *> STOREV is CHARACTER*1
  72. *> Indicates how the vectors which define the elementary
  73. *> reflectors are stored:
  74. *> = 'C': Columnwise
  75. *> = 'R': Rowwise
  76. *> \endverbatim
  77. *>
  78. *> \param[in] M
  79. *> \verbatim
  80. *> M is INTEGER
  81. *> The number of rows of the matrix C.
  82. *> \endverbatim
  83. *>
  84. *> \param[in] N
  85. *> \verbatim
  86. *> N is INTEGER
  87. *> The number of columns of the matrix C.
  88. *> \endverbatim
  89. *>
  90. *> \param[in] K
  91. *> \verbatim
  92. *> K is INTEGER
  93. *> The order of the matrix T (= the number of elementary
  94. *> reflectors whose product defines the block reflector).
  95. *> \endverbatim
  96. *>
  97. *> \param[in] V
  98. *> \verbatim
  99. *> V is COMPLEX*16 array, dimension
  100. *> (LDV,K) if STOREV = 'C'
  101. *> (LDV,M) if STOREV = 'R' and SIDE = 'L'
  102. *> (LDV,N) if STOREV = 'R' and SIDE = 'R'
  103. *> See Further Details.
  104. *> \endverbatim
  105. *>
  106. *> \param[in] LDV
  107. *> \verbatim
  108. *> LDV is INTEGER
  109. *> The leading dimension of the array V.
  110. *> If STOREV = 'C' and SIDE = 'L', LDV >= max(1,M);
  111. *> if STOREV = 'C' and SIDE = 'R', LDV >= max(1,N);
  112. *> if STOREV = 'R', LDV >= K.
  113. *> \endverbatim
  114. *>
  115. *> \param[in] T
  116. *> \verbatim
  117. *> T is COMPLEX*16 array, dimension (LDT,K)
  118. *> The triangular K-by-K matrix T in the representation of the
  119. *> block reflector.
  120. *> \endverbatim
  121. *>
  122. *> \param[in] LDT
  123. *> \verbatim
  124. *> LDT is INTEGER
  125. *> The leading dimension of the array T. LDT >= K.
  126. *> \endverbatim
  127. *>
  128. *> \param[in,out] C
  129. *> \verbatim
  130. *> C is COMPLEX*16 array, dimension (LDC,N)
  131. *> On entry, the M-by-N matrix C.
  132. *> On exit, C is overwritten by H*C or H**H*C or C*H or C*H**H.
  133. *> \endverbatim
  134. *>
  135. *> \param[in] LDC
  136. *> \verbatim
  137. *> LDC is INTEGER
  138. *> The leading dimension of the array C. LDC >= max(1,M).
  139. *> \endverbatim
  140. *>
  141. *> \param[out] WORK
  142. *> \verbatim
  143. *> WORK is COMPLEX*16 array, dimension (LDWORK,K)
  144. *> \endverbatim
  145. *>
  146. *> \param[in] LDWORK
  147. *> \verbatim
  148. *> LDWORK is INTEGER
  149. *> The leading dimension of the array WORK.
  150. *> If SIDE = 'L', LDWORK >= max(1,N);
  151. *> if SIDE = 'R', LDWORK >= max(1,M).
  152. *> \endverbatim
  153. *
  154. * Authors:
  155. * ========
  156. *
  157. *> \author Univ. of Tennessee
  158. *> \author Univ. of California Berkeley
  159. *> \author Univ. of Colorado Denver
  160. *> \author NAG Ltd.
  161. *
  162. *> \date June 2013
  163. *
  164. *> \ingroup complex16OTHERauxiliary
  165. *
  166. *> \par Further Details:
  167. * =====================
  168. *>
  169. *> \verbatim
  170. *>
  171. *> The shape of the matrix V and the storage of the vectors which define
  172. *> the H(i) is best illustrated by the following example with n = 5 and
  173. *> k = 3. The elements equal to 1 are not stored; the corresponding
  174. *> array elements are modified but restored on exit. The rest of the
  175. *> array is not used.
  176. *>
  177. *> DIRECT = 'F' and STOREV = 'C': DIRECT = 'F' and STOREV = 'R':
  178. *>
  179. *> V = ( 1 ) V = ( 1 v1 v1 v1 v1 )
  180. *> ( v1 1 ) ( 1 v2 v2 v2 )
  181. *> ( v1 v2 1 ) ( 1 v3 v3 )
  182. *> ( v1 v2 v3 )
  183. *> ( v1 v2 v3 )
  184. *>
  185. *> DIRECT = 'B' and STOREV = 'C': DIRECT = 'B' and STOREV = 'R':
  186. *>
  187. *> V = ( v1 v2 v3 ) V = ( v1 v1 1 )
  188. *> ( v1 v2 v3 ) ( v2 v2 v2 1 )
  189. *> ( 1 v2 v3 ) ( v3 v3 v3 v3 1 )
  190. *> ( 1 v3 )
  191. *> ( 1 )
  192. *> \endverbatim
  193. *>
  194. * =====================================================================
  195. SUBROUTINE ZLARFB( SIDE, TRANS, DIRECT, STOREV, M, N, K, V, LDV,
  196. $ T, LDT, C, LDC, WORK, LDWORK )
  197. *
  198. * -- LAPACK auxiliary routine (version 3.7.0) --
  199. * -- LAPACK is a software package provided by Univ. of Tennessee, --
  200. * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
  201. * June 2013
  202. *
  203. * .. Scalar Arguments ..
  204. CHARACTER DIRECT, SIDE, STOREV, TRANS
  205. INTEGER K, LDC, LDT, LDV, LDWORK, M, N
  206. * ..
  207. * .. Array Arguments ..
  208. COMPLEX*16 C( LDC, * ), T( LDT, * ), V( LDV, * ),
  209. $ WORK( LDWORK, * )
  210. * ..
  211. *
  212. * =====================================================================
  213. *
  214. * .. Parameters ..
  215. COMPLEX*16 ONE
  216. PARAMETER ( ONE = ( 1.0D+0, 0.0D+0 ) )
  217. * ..
  218. * .. Local Scalars ..
  219. CHARACTER TRANST
  220. INTEGER I, J
  221. * ..
  222. * .. External Functions ..
  223. LOGICAL LSAME
  224. EXTERNAL LSAME
  225. * ..
  226. * .. External Subroutines ..
  227. EXTERNAL ZCOPY, ZGEMM, ZLACGV, ZTRMM
  228. * ..
  229. * .. Intrinsic Functions ..
  230. INTRINSIC DCONJG
  231. * ..
  232. * .. Executable Statements ..
  233. *
  234. * Quick return if possible
  235. *
  236. IF( M.LE.0 .OR. N.LE.0 )
  237. $ RETURN
  238. *
  239. IF( LSAME( TRANS, 'N' ) ) THEN
  240. TRANST = 'C'
  241. ELSE
  242. TRANST = 'N'
  243. END IF
  244. *
  245. IF( LSAME( STOREV, 'C' ) ) THEN
  246. *
  247. IF( LSAME( DIRECT, 'F' ) ) THEN
  248. *
  249. * Let V = ( V1 ) (first K rows)
  250. * ( V2 )
  251. * where V1 is unit lower triangular.
  252. *
  253. IF( LSAME( SIDE, 'L' ) ) THEN
  254. *
  255. * Form H * C or H**H * C where C = ( C1 )
  256. * ( C2 )
  257. *
  258. * W := C**H * V = (C1**H * V1 + C2**H * V2) (stored in WORK)
  259. *
  260. * W := C1**H
  261. *
  262. DO 10 J = 1, K
  263. CALL ZCOPY( N, C( J, 1 ), LDC, WORK( 1, J ), 1 )
  264. CALL ZLACGV( N, WORK( 1, J ), 1 )
  265. 10 CONTINUE
  266. *
  267. * W := W * V1
  268. *
  269. CALL ZTRMM( 'Right', 'Lower', 'No transpose', 'Unit', N,
  270. $ K, ONE, V, LDV, WORK, LDWORK )
  271. IF( M.GT.K ) THEN
  272. *
  273. * W := W + C2**H * V2
  274. *
  275. CALL ZGEMM( 'Conjugate transpose', 'No transpose', N,
  276. $ K, M-K, ONE, C( K+1, 1 ), LDC,
  277. $ V( K+1, 1 ), LDV, ONE, WORK, LDWORK )
  278. END IF
  279. *
  280. * W := W * T**H or W * T
  281. *
  282. CALL ZTRMM( 'Right', 'Upper', TRANST, 'Non-unit', N, K,
  283. $ ONE, T, LDT, WORK, LDWORK )
  284. *
  285. * C := C - V * W**H
  286. *
  287. IF( M.GT.K ) THEN
  288. *
  289. * C2 := C2 - V2 * W**H
  290. *
  291. CALL ZGEMM( 'No transpose', 'Conjugate transpose',
  292. $ M-K, N, K, -ONE, V( K+1, 1 ), LDV, WORK,
  293. $ LDWORK, ONE, C( K+1, 1 ), LDC )
  294. END IF
  295. *
  296. * W := W * V1**H
  297. *
  298. CALL ZTRMM( 'Right', 'Lower', 'Conjugate transpose',
  299. $ 'Unit', N, K, ONE, V, LDV, WORK, LDWORK )
  300. *
  301. * C1 := C1 - W**H
  302. *
  303. DO 30 J = 1, K
  304. DO 20 I = 1, N
  305. C( J, I ) = C( J, I ) - DCONJG( WORK( I, J ) )
  306. 20 CONTINUE
  307. 30 CONTINUE
  308. *
  309. ELSE IF( LSAME( SIDE, 'R' ) ) THEN
  310. *
  311. * Form C * H or C * H**H where C = ( C1 C2 )
  312. *
  313. * W := C * V = (C1*V1 + C2*V2) (stored in WORK)
  314. *
  315. * W := C1
  316. *
  317. DO 40 J = 1, K
  318. CALL ZCOPY( M, C( 1, J ), 1, WORK( 1, J ), 1 )
  319. 40 CONTINUE
  320. *
  321. * W := W * V1
  322. *
  323. CALL ZTRMM( 'Right', 'Lower', 'No transpose', 'Unit', M,
  324. $ K, ONE, V, LDV, WORK, LDWORK )
  325. IF( N.GT.K ) THEN
  326. *
  327. * W := W + C2 * V2
  328. *
  329. CALL ZGEMM( 'No transpose', 'No transpose', M, K, N-K,
  330. $ ONE, C( 1, K+1 ), LDC, V( K+1, 1 ), LDV,
  331. $ ONE, WORK, LDWORK )
  332. END IF
  333. *
  334. * W := W * T or W * T**H
  335. *
  336. CALL ZTRMM( 'Right', 'Upper', TRANS, 'Non-unit', M, K,
  337. $ ONE, T, LDT, WORK, LDWORK )
  338. *
  339. * C := C - W * V**H
  340. *
  341. IF( N.GT.K ) THEN
  342. *
  343. * C2 := C2 - W * V2**H
  344. *
  345. CALL ZGEMM( 'No transpose', 'Conjugate transpose', M,
  346. $ N-K, K, -ONE, WORK, LDWORK, V( K+1, 1 ),
  347. $ LDV, ONE, C( 1, K+1 ), LDC )
  348. END IF
  349. *
  350. * W := W * V1**H
  351. *
  352. CALL ZTRMM( 'Right', 'Lower', 'Conjugate transpose',
  353. $ 'Unit', M, K, ONE, V, LDV, WORK, LDWORK )
  354. *
  355. * C1 := C1 - W
  356. *
  357. DO 60 J = 1, K
  358. DO 50 I = 1, M
  359. C( I, J ) = C( I, J ) - WORK( I, J )
  360. 50 CONTINUE
  361. 60 CONTINUE
  362. END IF
  363. *
  364. ELSE
  365. *
  366. * Let V = ( V1 )
  367. * ( V2 ) (last K rows)
  368. * where V2 is unit upper triangular.
  369. *
  370. IF( LSAME( SIDE, 'L' ) ) THEN
  371. *
  372. * Form H * C or H**H * C where C = ( C1 )
  373. * ( C2 )
  374. *
  375. * W := C**H * V = (C1**H * V1 + C2**H * V2) (stored in WORK)
  376. *
  377. * W := C2**H
  378. *
  379. DO 70 J = 1, K
  380. CALL ZCOPY( N, C( M-K+J, 1 ), LDC, WORK( 1, J ), 1 )
  381. CALL ZLACGV( N, WORK( 1, J ), 1 )
  382. 70 CONTINUE
  383. *
  384. * W := W * V2
  385. *
  386. CALL ZTRMM( 'Right', 'Upper', 'No transpose', 'Unit', N,
  387. $ K, ONE, V( M-K+1, 1 ), LDV, WORK, LDWORK )
  388. IF( M.GT.K ) THEN
  389. *
  390. * W := W + C1**H * V1
  391. *
  392. CALL ZGEMM( 'Conjugate transpose', 'No transpose', N,
  393. $ K, M-K, ONE, C, LDC, V, LDV, ONE, WORK,
  394. $ LDWORK )
  395. END IF
  396. *
  397. * W := W * T**H or W * T
  398. *
  399. CALL ZTRMM( 'Right', 'Lower', TRANST, 'Non-unit', N, K,
  400. $ ONE, T, LDT, WORK, LDWORK )
  401. *
  402. * C := C - V * W**H
  403. *
  404. IF( M.GT.K ) THEN
  405. *
  406. * C1 := C1 - V1 * W**H
  407. *
  408. CALL ZGEMM( 'No transpose', 'Conjugate transpose',
  409. $ M-K, N, K, -ONE, V, LDV, WORK, LDWORK,
  410. $ ONE, C, LDC )
  411. END IF
  412. *
  413. * W := W * V2**H
  414. *
  415. CALL ZTRMM( 'Right', 'Upper', 'Conjugate transpose',
  416. $ 'Unit', N, K, ONE, V( M-K+1, 1 ), LDV, WORK,
  417. $ LDWORK )
  418. *
  419. * C2 := C2 - W**H
  420. *
  421. DO 90 J = 1, K
  422. DO 80 I = 1, N
  423. C( M-K+J, I ) = C( M-K+J, I ) -
  424. $ DCONJG( WORK( I, J ) )
  425. 80 CONTINUE
  426. 90 CONTINUE
  427. *
  428. ELSE IF( LSAME( SIDE, 'R' ) ) THEN
  429. *
  430. * Form C * H or C * H**H where C = ( C1 C2 )
  431. *
  432. * W := C * V = (C1*V1 + C2*V2) (stored in WORK)
  433. *
  434. * W := C2
  435. *
  436. DO 100 J = 1, K
  437. CALL ZCOPY( M, C( 1, N-K+J ), 1, WORK( 1, J ), 1 )
  438. 100 CONTINUE
  439. *
  440. * W := W * V2
  441. *
  442. CALL ZTRMM( 'Right', 'Upper', 'No transpose', 'Unit', M,
  443. $ K, ONE, V( N-K+1, 1 ), LDV, WORK, LDWORK )
  444. IF( N.GT.K ) THEN
  445. *
  446. * W := W + C1 * V1
  447. *
  448. CALL ZGEMM( 'No transpose', 'No transpose', M, K, N-K,
  449. $ ONE, C, LDC, V, LDV, ONE, WORK, LDWORK )
  450. END IF
  451. *
  452. * W := W * T or W * T**H
  453. *
  454. CALL ZTRMM( 'Right', 'Lower', TRANS, 'Non-unit', M, K,
  455. $ ONE, T, LDT, WORK, LDWORK )
  456. *
  457. * C := C - W * V**H
  458. *
  459. IF( N.GT.K ) THEN
  460. *
  461. * C1 := C1 - W * V1**H
  462. *
  463. CALL ZGEMM( 'No transpose', 'Conjugate transpose', M,
  464. $ N-K, K, -ONE, WORK, LDWORK, V, LDV, ONE,
  465. $ C, LDC )
  466. END IF
  467. *
  468. * W := W * V2**H
  469. *
  470. CALL ZTRMM( 'Right', 'Upper', 'Conjugate transpose',
  471. $ 'Unit', M, K, ONE, V( N-K+1, 1 ), LDV, WORK,
  472. $ LDWORK )
  473. *
  474. * C2 := C2 - W
  475. *
  476. DO 120 J = 1, K
  477. DO 110 I = 1, M
  478. C( I, N-K+J ) = C( I, N-K+J ) - WORK( I, J )
  479. 110 CONTINUE
  480. 120 CONTINUE
  481. END IF
  482. END IF
  483. *
  484. ELSE IF( LSAME( STOREV, 'R' ) ) THEN
  485. *
  486. IF( LSAME( DIRECT, 'F' ) ) THEN
  487. *
  488. * Let V = ( V1 V2 ) (V1: first K columns)
  489. * where V1 is unit upper triangular.
  490. *
  491. IF( LSAME( SIDE, 'L' ) ) THEN
  492. *
  493. * Form H * C or H**H * C where C = ( C1 )
  494. * ( C2 )
  495. *
  496. * W := C**H * V**H = (C1**H * V1**H + C2**H * V2**H) (stored in WORK)
  497. *
  498. * W := C1**H
  499. *
  500. DO 130 J = 1, K
  501. CALL ZCOPY( N, C( J, 1 ), LDC, WORK( 1, J ), 1 )
  502. CALL ZLACGV( N, WORK( 1, J ), 1 )
  503. 130 CONTINUE
  504. *
  505. * W := W * V1**H
  506. *
  507. CALL ZTRMM( 'Right', 'Upper', 'Conjugate transpose',
  508. $ 'Unit', N, K, ONE, V, LDV, WORK, LDWORK )
  509. IF( M.GT.K ) THEN
  510. *
  511. * W := W + C2**H * V2**H
  512. *
  513. CALL ZGEMM( 'Conjugate transpose',
  514. $ 'Conjugate transpose', N, K, M-K, ONE,
  515. $ C( K+1, 1 ), LDC, V( 1, K+1 ), LDV, ONE,
  516. $ WORK, LDWORK )
  517. END IF
  518. *
  519. * W := W * T**H or W * T
  520. *
  521. CALL ZTRMM( 'Right', 'Upper', TRANST, 'Non-unit', N, K,
  522. $ ONE, T, LDT, WORK, LDWORK )
  523. *
  524. * C := C - V**H * W**H
  525. *
  526. IF( M.GT.K ) THEN
  527. *
  528. * C2 := C2 - V2**H * W**H
  529. *
  530. CALL ZGEMM( 'Conjugate transpose',
  531. $ 'Conjugate transpose', M-K, N, K, -ONE,
  532. $ V( 1, K+1 ), LDV, WORK, LDWORK, ONE,
  533. $ C( K+1, 1 ), LDC )
  534. END IF
  535. *
  536. * W := W * V1
  537. *
  538. CALL ZTRMM( 'Right', 'Upper', 'No transpose', 'Unit', N,
  539. $ K, ONE, V, LDV, WORK, LDWORK )
  540. *
  541. * C1 := C1 - W**H
  542. *
  543. DO 150 J = 1, K
  544. DO 140 I = 1, N
  545. C( J, I ) = C( J, I ) - DCONJG( WORK( I, J ) )
  546. 140 CONTINUE
  547. 150 CONTINUE
  548. *
  549. ELSE IF( LSAME( SIDE, 'R' ) ) THEN
  550. *
  551. * Form C * H or C * H**H where C = ( C1 C2 )
  552. *
  553. * W := C * V**H = (C1*V1**H + C2*V2**H) (stored in WORK)
  554. *
  555. * W := C1
  556. *
  557. DO 160 J = 1, K
  558. CALL ZCOPY( M, C( 1, J ), 1, WORK( 1, J ), 1 )
  559. 160 CONTINUE
  560. *
  561. * W := W * V1**H
  562. *
  563. CALL ZTRMM( 'Right', 'Upper', 'Conjugate transpose',
  564. $ 'Unit', M, K, ONE, V, LDV, WORK, LDWORK )
  565. IF( N.GT.K ) THEN
  566. *
  567. * W := W + C2 * V2**H
  568. *
  569. CALL ZGEMM( 'No transpose', 'Conjugate transpose', M,
  570. $ K, N-K, ONE, C( 1, K+1 ), LDC,
  571. $ V( 1, K+1 ), LDV, ONE, WORK, LDWORK )
  572. END IF
  573. *
  574. * W := W * T or W * T**H
  575. *
  576. CALL ZTRMM( 'Right', 'Upper', TRANS, 'Non-unit', M, K,
  577. $ ONE, T, LDT, WORK, LDWORK )
  578. *
  579. * C := C - W * V
  580. *
  581. IF( N.GT.K ) THEN
  582. *
  583. * C2 := C2 - W * V2
  584. *
  585. CALL ZGEMM( 'No transpose', 'No transpose', M, N-K, K,
  586. $ -ONE, WORK, LDWORK, V( 1, K+1 ), LDV, ONE,
  587. $ C( 1, K+1 ), LDC )
  588. END IF
  589. *
  590. * W := W * V1
  591. *
  592. CALL ZTRMM( 'Right', 'Upper', 'No transpose', 'Unit', M,
  593. $ K, ONE, V, LDV, WORK, LDWORK )
  594. *
  595. * C1 := C1 - W
  596. *
  597. DO 180 J = 1, K
  598. DO 170 I = 1, M
  599. C( I, J ) = C( I, J ) - WORK( I, J )
  600. 170 CONTINUE
  601. 180 CONTINUE
  602. *
  603. END IF
  604. *
  605. ELSE
  606. *
  607. * Let V = ( V1 V2 ) (V2: last K columns)
  608. * where V2 is unit lower triangular.
  609. *
  610. IF( LSAME( SIDE, 'L' ) ) THEN
  611. *
  612. * Form H * C or H**H * C where C = ( C1 )
  613. * ( C2 )
  614. *
  615. * W := C**H * V**H = (C1**H * V1**H + C2**H * V2**H) (stored in WORK)
  616. *
  617. * W := C2**H
  618. *
  619. DO 190 J = 1, K
  620. CALL ZCOPY( N, C( M-K+J, 1 ), LDC, WORK( 1, J ), 1 )
  621. CALL ZLACGV( N, WORK( 1, J ), 1 )
  622. 190 CONTINUE
  623. *
  624. * W := W * V2**H
  625. *
  626. CALL ZTRMM( 'Right', 'Lower', 'Conjugate transpose',
  627. $ 'Unit', N, K, ONE, V( 1, M-K+1 ), LDV, WORK,
  628. $ LDWORK )
  629. IF( M.GT.K ) THEN
  630. *
  631. * W := W + C1**H * V1**H
  632. *
  633. CALL ZGEMM( 'Conjugate transpose',
  634. $ 'Conjugate transpose', N, K, M-K, ONE, C,
  635. $ LDC, V, LDV, ONE, WORK, LDWORK )
  636. END IF
  637. *
  638. * W := W * T**H or W * T
  639. *
  640. CALL ZTRMM( 'Right', 'Lower', TRANST, 'Non-unit', N, K,
  641. $ ONE, T, LDT, WORK, LDWORK )
  642. *
  643. * C := C - V**H * W**H
  644. *
  645. IF( M.GT.K ) THEN
  646. *
  647. * C1 := C1 - V1**H * W**H
  648. *
  649. CALL ZGEMM( 'Conjugate transpose',
  650. $ 'Conjugate transpose', M-K, N, K, -ONE, V,
  651. $ LDV, WORK, LDWORK, ONE, C, LDC )
  652. END IF
  653. *
  654. * W := W * V2
  655. *
  656. CALL ZTRMM( 'Right', 'Lower', 'No transpose', 'Unit', N,
  657. $ K, ONE, V( 1, M-K+1 ), LDV, WORK, LDWORK )
  658. *
  659. * C2 := C2 - W**H
  660. *
  661. DO 210 J = 1, K
  662. DO 200 I = 1, N
  663. C( M-K+J, I ) = C( M-K+J, I ) -
  664. $ DCONJG( WORK( I, J ) )
  665. 200 CONTINUE
  666. 210 CONTINUE
  667. *
  668. ELSE IF( LSAME( SIDE, 'R' ) ) THEN
  669. *
  670. * Form C * H or C * H**H where C = ( C1 C2 )
  671. *
  672. * W := C * V**H = (C1*V1**H + C2*V2**H) (stored in WORK)
  673. *
  674. * W := C2
  675. *
  676. DO 220 J = 1, K
  677. CALL ZCOPY( M, C( 1, N-K+J ), 1, WORK( 1, J ), 1 )
  678. 220 CONTINUE
  679. *
  680. * W := W * V2**H
  681. *
  682. CALL ZTRMM( 'Right', 'Lower', 'Conjugate transpose',
  683. $ 'Unit', M, K, ONE, V( 1, N-K+1 ), LDV, WORK,
  684. $ LDWORK )
  685. IF( N.GT.K ) THEN
  686. *
  687. * W := W + C1 * V1**H
  688. *
  689. CALL ZGEMM( 'No transpose', 'Conjugate transpose', M,
  690. $ K, N-K, ONE, C, LDC, V, LDV, ONE, WORK,
  691. $ LDWORK )
  692. END IF
  693. *
  694. * W := W * T or W * T**H
  695. *
  696. CALL ZTRMM( 'Right', 'Lower', TRANS, 'Non-unit', M, K,
  697. $ ONE, T, LDT, WORK, LDWORK )
  698. *
  699. * C := C - W * V
  700. *
  701. IF( N.GT.K ) THEN
  702. *
  703. * C1 := C1 - W * V1
  704. *
  705. CALL ZGEMM( 'No transpose', 'No transpose', M, N-K, K,
  706. $ -ONE, WORK, LDWORK, V, LDV, ONE, C, LDC )
  707. END IF
  708. *
  709. * W := W * V2
  710. *
  711. CALL ZTRMM( 'Right', 'Lower', 'No transpose', 'Unit', M,
  712. $ K, ONE, V( 1, N-K+1 ), LDV, WORK, LDWORK )
  713. *
  714. * C1 := C1 - W
  715. *
  716. DO 240 J = 1, K
  717. DO 230 I = 1, M
  718. C( I, N-K+J ) = C( I, N-K+J ) - WORK( I, J )
  719. 230 CONTINUE
  720. 240 CONTINUE
  721. *
  722. END IF
  723. *
  724. END IF
  725. END IF
  726. *
  727. RETURN
  728. *
  729. * End of ZLARFB
  730. *
  731. END