You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

zhpev.f 8.1 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276
  1. *> \brief <b> ZHPEV computes the eigenvalues and, optionally, the left and/or right eigenvectors for OTHER matrices</b>
  2. *
  3. * =========== DOCUMENTATION ===========
  4. *
  5. * Online html documentation available at
  6. * http://www.netlib.org/lapack/explore-html/
  7. *
  8. *> \htmlonly
  9. *> Download ZHPEV + dependencies
  10. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/zhpev.f">
  11. *> [TGZ]</a>
  12. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/zhpev.f">
  13. *> [ZIP]</a>
  14. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/zhpev.f">
  15. *> [TXT]</a>
  16. *> \endhtmlonly
  17. *
  18. * Definition:
  19. * ===========
  20. *
  21. * SUBROUTINE ZHPEV( JOBZ, UPLO, N, AP, W, Z, LDZ, WORK, RWORK,
  22. * INFO )
  23. *
  24. * .. Scalar Arguments ..
  25. * CHARACTER JOBZ, UPLO
  26. * INTEGER INFO, LDZ, N
  27. * ..
  28. * .. Array Arguments ..
  29. * DOUBLE PRECISION RWORK( * ), W( * )
  30. * COMPLEX*16 AP( * ), WORK( * ), Z( LDZ, * )
  31. * ..
  32. *
  33. *
  34. *> \par Purpose:
  35. * =============
  36. *>
  37. *> \verbatim
  38. *>
  39. *> ZHPEV computes all the eigenvalues and, optionally, eigenvectors of a
  40. *> complex Hermitian matrix in packed storage.
  41. *> \endverbatim
  42. *
  43. * Arguments:
  44. * ==========
  45. *
  46. *> \param[in] JOBZ
  47. *> \verbatim
  48. *> JOBZ is CHARACTER*1
  49. *> = 'N': Compute eigenvalues only;
  50. *> = 'V': Compute eigenvalues and eigenvectors.
  51. *> \endverbatim
  52. *>
  53. *> \param[in] UPLO
  54. *> \verbatim
  55. *> UPLO is CHARACTER*1
  56. *> = 'U': Upper triangle of A is stored;
  57. *> = 'L': Lower triangle of A is stored.
  58. *> \endverbatim
  59. *>
  60. *> \param[in] N
  61. *> \verbatim
  62. *> N is INTEGER
  63. *> The order of the matrix A. N >= 0.
  64. *> \endverbatim
  65. *>
  66. *> \param[in,out] AP
  67. *> \verbatim
  68. *> AP is COMPLEX*16 array, dimension (N*(N+1)/2)
  69. *> On entry, the upper or lower triangle of the Hermitian matrix
  70. *> A, packed columnwise in a linear array. The j-th column of A
  71. *> is stored in the array AP as follows:
  72. *> if UPLO = 'U', AP(i + (j-1)*j/2) = A(i,j) for 1<=i<=j;
  73. *> if UPLO = 'L', AP(i + (j-1)*(2*n-j)/2) = A(i,j) for j<=i<=n.
  74. *>
  75. *> On exit, AP is overwritten by values generated during the
  76. *> reduction to tridiagonal form. If UPLO = 'U', the diagonal
  77. *> and first superdiagonal of the tridiagonal matrix T overwrite
  78. *> the corresponding elements of A, and if UPLO = 'L', the
  79. *> diagonal and first subdiagonal of T overwrite the
  80. *> corresponding elements of A.
  81. *> \endverbatim
  82. *>
  83. *> \param[out] W
  84. *> \verbatim
  85. *> W is DOUBLE PRECISION array, dimension (N)
  86. *> If INFO = 0, the eigenvalues in ascending order.
  87. *> \endverbatim
  88. *>
  89. *> \param[out] Z
  90. *> \verbatim
  91. *> Z is COMPLEX*16 array, dimension (LDZ, N)
  92. *> If JOBZ = 'V', then if INFO = 0, Z contains the orthonormal
  93. *> eigenvectors of the matrix A, with the i-th column of Z
  94. *> holding the eigenvector associated with W(i).
  95. *> If JOBZ = 'N', then Z is not referenced.
  96. *> \endverbatim
  97. *>
  98. *> \param[in] LDZ
  99. *> \verbatim
  100. *> LDZ is INTEGER
  101. *> The leading dimension of the array Z. LDZ >= 1, and if
  102. *> JOBZ = 'V', LDZ >= max(1,N).
  103. *> \endverbatim
  104. *>
  105. *> \param[out] WORK
  106. *> \verbatim
  107. *> WORK is COMPLEX*16 array, dimension (max(1, 2*N-1))
  108. *> \endverbatim
  109. *>
  110. *> \param[out] RWORK
  111. *> \verbatim
  112. *> RWORK is DOUBLE PRECISION array, dimension (max(1, 3*N-2))
  113. *> \endverbatim
  114. *>
  115. *> \param[out] INFO
  116. *> \verbatim
  117. *> INFO is INTEGER
  118. *> = 0: successful exit.
  119. *> < 0: if INFO = -i, the i-th argument had an illegal value.
  120. *> > 0: if INFO = i, the algorithm failed to converge; i
  121. *> off-diagonal elements of an intermediate tridiagonal
  122. *> form did not converge to zero.
  123. *> \endverbatim
  124. *
  125. * Authors:
  126. * ========
  127. *
  128. *> \author Univ. of Tennessee
  129. *> \author Univ. of California Berkeley
  130. *> \author Univ. of Colorado Denver
  131. *> \author NAG Ltd.
  132. *
  133. *> \date December 2016
  134. *
  135. *> \ingroup complex16OTHEReigen
  136. *
  137. * =====================================================================
  138. SUBROUTINE ZHPEV( JOBZ, UPLO, N, AP, W, Z, LDZ, WORK, RWORK,
  139. $ INFO )
  140. *
  141. * -- LAPACK driver routine (version 3.7.0) --
  142. * -- LAPACK is a software package provided by Univ. of Tennessee, --
  143. * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
  144. * December 2016
  145. *
  146. * .. Scalar Arguments ..
  147. CHARACTER JOBZ, UPLO
  148. INTEGER INFO, LDZ, N
  149. * ..
  150. * .. Array Arguments ..
  151. DOUBLE PRECISION RWORK( * ), W( * )
  152. COMPLEX*16 AP( * ), WORK( * ), Z( LDZ, * )
  153. * ..
  154. *
  155. * =====================================================================
  156. *
  157. * .. Parameters ..
  158. DOUBLE PRECISION ZERO, ONE
  159. PARAMETER ( ZERO = 0.0D0, ONE = 1.0D0 )
  160. * ..
  161. * .. Local Scalars ..
  162. LOGICAL WANTZ
  163. INTEGER IINFO, IMAX, INDE, INDRWK, INDTAU, INDWRK,
  164. $ ISCALE
  165. DOUBLE PRECISION ANRM, BIGNUM, EPS, RMAX, RMIN, SAFMIN, SIGMA,
  166. $ SMLNUM
  167. * ..
  168. * .. External Functions ..
  169. LOGICAL LSAME
  170. DOUBLE PRECISION DLAMCH, ZLANHP
  171. EXTERNAL LSAME, DLAMCH, ZLANHP
  172. * ..
  173. * .. External Subroutines ..
  174. EXTERNAL DSCAL, DSTERF, XERBLA, ZDSCAL, ZHPTRD, ZSTEQR,
  175. $ ZUPGTR
  176. * ..
  177. * .. Intrinsic Functions ..
  178. INTRINSIC SQRT
  179. * ..
  180. * .. Executable Statements ..
  181. *
  182. * Test the input parameters.
  183. *
  184. WANTZ = LSAME( JOBZ, 'V' )
  185. *
  186. INFO = 0
  187. IF( .NOT.( WANTZ .OR. LSAME( JOBZ, 'N' ) ) ) THEN
  188. INFO = -1
  189. ELSE IF( .NOT.( LSAME( UPLO, 'L' ) .OR. LSAME( UPLO, 'U' ) ) )
  190. $ THEN
  191. INFO = -2
  192. ELSE IF( N.LT.0 ) THEN
  193. INFO = -3
  194. ELSE IF( LDZ.LT.1 .OR. ( WANTZ .AND. LDZ.LT.N ) ) THEN
  195. INFO = -7
  196. END IF
  197. *
  198. IF( INFO.NE.0 ) THEN
  199. CALL XERBLA( 'ZHPEV ', -INFO )
  200. RETURN
  201. END IF
  202. *
  203. * Quick return if possible
  204. *
  205. IF( N.EQ.0 )
  206. $ RETURN
  207. *
  208. IF( N.EQ.1 ) THEN
  209. W( 1 ) = AP( 1 )
  210. RWORK( 1 ) = 1
  211. IF( WANTZ )
  212. $ Z( 1, 1 ) = ONE
  213. RETURN
  214. END IF
  215. *
  216. * Get machine constants.
  217. *
  218. SAFMIN = DLAMCH( 'Safe minimum' )
  219. EPS = DLAMCH( 'Precision' )
  220. SMLNUM = SAFMIN / EPS
  221. BIGNUM = ONE / SMLNUM
  222. RMIN = SQRT( SMLNUM )
  223. RMAX = SQRT( BIGNUM )
  224. *
  225. * Scale matrix to allowable range, if necessary.
  226. *
  227. ANRM = ZLANHP( 'M', UPLO, N, AP, RWORK )
  228. ISCALE = 0
  229. IF( ANRM.GT.ZERO .AND. ANRM.LT.RMIN ) THEN
  230. ISCALE = 1
  231. SIGMA = RMIN / ANRM
  232. ELSE IF( ANRM.GT.RMAX ) THEN
  233. ISCALE = 1
  234. SIGMA = RMAX / ANRM
  235. END IF
  236. IF( ISCALE.EQ.1 ) THEN
  237. CALL ZDSCAL( ( N*( N+1 ) ) / 2, SIGMA, AP, 1 )
  238. END IF
  239. *
  240. * Call ZHPTRD to reduce Hermitian packed matrix to tridiagonal form.
  241. *
  242. INDE = 1
  243. INDTAU = 1
  244. CALL ZHPTRD( UPLO, N, AP, W, RWORK( INDE ), WORK( INDTAU ),
  245. $ IINFO )
  246. *
  247. * For eigenvalues only, call DSTERF. For eigenvectors, first call
  248. * ZUPGTR to generate the orthogonal matrix, then call ZSTEQR.
  249. *
  250. IF( .NOT.WANTZ ) THEN
  251. CALL DSTERF( N, W, RWORK( INDE ), INFO )
  252. ELSE
  253. INDWRK = INDTAU + N
  254. CALL ZUPGTR( UPLO, N, AP, WORK( INDTAU ), Z, LDZ,
  255. $ WORK( INDWRK ), IINFO )
  256. INDRWK = INDE + N
  257. CALL ZSTEQR( JOBZ, N, W, RWORK( INDE ), Z, LDZ,
  258. $ RWORK( INDRWK ), INFO )
  259. END IF
  260. *
  261. * If matrix was scaled, then rescale eigenvalues appropriately.
  262. *
  263. IF( ISCALE.EQ.1 ) THEN
  264. IF( INFO.EQ.0 ) THEN
  265. IMAX = N
  266. ELSE
  267. IMAX = INFO - 1
  268. END IF
  269. CALL DSCAL( IMAX, ONE / SIGMA, W, 1 )
  270. END IF
  271. *
  272. RETURN
  273. *
  274. * End of ZHPEV
  275. *
  276. END