You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

zhegst.f 11 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331
  1. *> \brief \b ZHEGST
  2. *
  3. * =========== DOCUMENTATION ===========
  4. *
  5. * Online html documentation available at
  6. * http://www.netlib.org/lapack/explore-html/
  7. *
  8. *> \htmlonly
  9. *> Download ZHEGST + dependencies
  10. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/zhegst.f">
  11. *> [TGZ]</a>
  12. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/zhegst.f">
  13. *> [ZIP]</a>
  14. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/zhegst.f">
  15. *> [TXT]</a>
  16. *> \endhtmlonly
  17. *
  18. * Definition:
  19. * ===========
  20. *
  21. * SUBROUTINE ZHEGST( ITYPE, UPLO, N, A, LDA, B, LDB, INFO )
  22. *
  23. * .. Scalar Arguments ..
  24. * CHARACTER UPLO
  25. * INTEGER INFO, ITYPE, LDA, LDB, N
  26. * ..
  27. * .. Array Arguments ..
  28. * COMPLEX*16 A( LDA, * ), B( LDB, * )
  29. * ..
  30. *
  31. *
  32. *> \par Purpose:
  33. * =============
  34. *>
  35. *> \verbatim
  36. *>
  37. *> ZHEGST reduces a complex Hermitian-definite generalized
  38. *> eigenproblem to standard form.
  39. *>
  40. *> If ITYPE = 1, the problem is A*x = lambda*B*x,
  41. *> and A is overwritten by inv(U**H)*A*inv(U) or inv(L)*A*inv(L**H)
  42. *>
  43. *> If ITYPE = 2 or 3, the problem is A*B*x = lambda*x or
  44. *> B*A*x = lambda*x, and A is overwritten by U*A*U**H or L**H*A*L.
  45. *>
  46. *> B must have been previously factorized as U**H*U or L*L**H by ZPOTRF.
  47. *> \endverbatim
  48. *
  49. * Arguments:
  50. * ==========
  51. *
  52. *> \param[in] ITYPE
  53. *> \verbatim
  54. *> ITYPE is INTEGER
  55. *> = 1: compute inv(U**H)*A*inv(U) or inv(L)*A*inv(L**H);
  56. *> = 2 or 3: compute U*A*U**H or L**H*A*L.
  57. *> \endverbatim
  58. *>
  59. *> \param[in] UPLO
  60. *> \verbatim
  61. *> UPLO is CHARACTER*1
  62. *> = 'U': Upper triangle of A is stored and B is factored as
  63. *> U**H*U;
  64. *> = 'L': Lower triangle of A is stored and B is factored as
  65. *> L*L**H.
  66. *> \endverbatim
  67. *>
  68. *> \param[in] N
  69. *> \verbatim
  70. *> N is INTEGER
  71. *> The order of the matrices A and B. N >= 0.
  72. *> \endverbatim
  73. *>
  74. *> \param[in,out] A
  75. *> \verbatim
  76. *> A is COMPLEX*16 array, dimension (LDA,N)
  77. *> On entry, the Hermitian matrix A. If UPLO = 'U', the leading
  78. *> N-by-N upper triangular part of A contains the upper
  79. *> triangular part of the matrix A, and the strictly lower
  80. *> triangular part of A is not referenced. If UPLO = 'L', the
  81. *> leading N-by-N lower triangular part of A contains the lower
  82. *> triangular part of the matrix A, and the strictly upper
  83. *> triangular part of A is not referenced.
  84. *>
  85. *> On exit, if INFO = 0, the transformed matrix, stored in the
  86. *> same format as A.
  87. *> \endverbatim
  88. *>
  89. *> \param[in] LDA
  90. *> \verbatim
  91. *> LDA is INTEGER
  92. *> The leading dimension of the array A. LDA >= max(1,N).
  93. *> \endverbatim
  94. *>
  95. *> \param[in,out] B
  96. *> \verbatim
  97. *> B is COMPLEX*16 array, dimension (LDB,N)
  98. *> The triangular factor from the Cholesky factorization of B,
  99. *> as returned by ZPOTRF.
  100. *> \endverbatim
  101. *>
  102. *> \param[in] LDB
  103. *> \verbatim
  104. *> LDB is INTEGER
  105. *> The leading dimension of the array B. LDB >= max(1,N).
  106. *> \endverbatim
  107. *>
  108. *> \param[out] INFO
  109. *> \verbatim
  110. *> INFO is INTEGER
  111. *> = 0: successful exit
  112. *> < 0: if INFO = -i, the i-th argument had an illegal value
  113. *> \endverbatim
  114. *
  115. * Authors:
  116. * ========
  117. *
  118. *> \author Univ. of Tennessee
  119. *> \author Univ. of California Berkeley
  120. *> \author Univ. of Colorado Denver
  121. *> \author NAG Ltd.
  122. *
  123. *> \date December 2016
  124. *
  125. *> \ingroup complex16HEcomputational
  126. *
  127. * =====================================================================
  128. SUBROUTINE ZHEGST( ITYPE, UPLO, N, A, LDA, B, LDB, INFO )
  129. *
  130. * -- LAPACK computational routine (version 3.7.0) --
  131. * -- LAPACK is a software package provided by Univ. of Tennessee, --
  132. * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
  133. * December 2016
  134. *
  135. * .. Scalar Arguments ..
  136. CHARACTER UPLO
  137. INTEGER INFO, ITYPE, LDA, LDB, N
  138. * ..
  139. * .. Array Arguments ..
  140. COMPLEX*16 A( LDA, * ), B( LDB, * )
  141. * ..
  142. *
  143. * =====================================================================
  144. *
  145. * .. Parameters ..
  146. DOUBLE PRECISION ONE
  147. PARAMETER ( ONE = 1.0D+0 )
  148. COMPLEX*16 CONE, HALF
  149. PARAMETER ( CONE = ( 1.0D+0, 0.0D+0 ),
  150. $ HALF = ( 0.5D+0, 0.0D+0 ) )
  151. * ..
  152. * .. Local Scalars ..
  153. LOGICAL UPPER
  154. INTEGER K, KB, NB
  155. * ..
  156. * .. External Subroutines ..
  157. EXTERNAL XERBLA, ZHEGS2, ZHEMM, ZHER2K, ZTRMM, ZTRSM
  158. * ..
  159. * .. Intrinsic Functions ..
  160. INTRINSIC MAX, MIN
  161. * ..
  162. * .. External Functions ..
  163. LOGICAL LSAME
  164. INTEGER ILAENV
  165. EXTERNAL LSAME, ILAENV
  166. * ..
  167. * .. Executable Statements ..
  168. *
  169. * Test the input parameters.
  170. *
  171. INFO = 0
  172. UPPER = LSAME( UPLO, 'U' )
  173. IF( ITYPE.LT.1 .OR. ITYPE.GT.3 ) THEN
  174. INFO = -1
  175. ELSE IF( .NOT.UPPER .AND. .NOT.LSAME( UPLO, 'L' ) ) THEN
  176. INFO = -2
  177. ELSE IF( N.LT.0 ) THEN
  178. INFO = -3
  179. ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
  180. INFO = -5
  181. ELSE IF( LDB.LT.MAX( 1, N ) ) THEN
  182. INFO = -7
  183. END IF
  184. IF( INFO.NE.0 ) THEN
  185. CALL XERBLA( 'ZHEGST', -INFO )
  186. RETURN
  187. END IF
  188. *
  189. * Quick return if possible
  190. *
  191. IF( N.EQ.0 )
  192. $ RETURN
  193. *
  194. * Determine the block size for this environment.
  195. *
  196. NB = ILAENV( 1, 'ZHEGST', UPLO, N, -1, -1, -1 )
  197. *
  198. IF( NB.LE.1 .OR. NB.GE.N ) THEN
  199. *
  200. * Use unblocked code
  201. *
  202. CALL ZHEGS2( ITYPE, UPLO, N, A, LDA, B, LDB, INFO )
  203. ELSE
  204. *
  205. * Use blocked code
  206. *
  207. IF( ITYPE.EQ.1 ) THEN
  208. IF( UPPER ) THEN
  209. *
  210. * Compute inv(U**H)*A*inv(U)
  211. *
  212. DO 10 K = 1, N, NB
  213. KB = MIN( N-K+1, NB )
  214. *
  215. * Update the upper triangle of A(k:n,k:n)
  216. *
  217. CALL ZHEGS2( ITYPE, UPLO, KB, A( K, K ), LDA,
  218. $ B( K, K ), LDB, INFO )
  219. IF( K+KB.LE.N ) THEN
  220. CALL ZTRSM( 'Left', UPLO, 'Conjugate transpose',
  221. $ 'Non-unit', KB, N-K-KB+1, CONE,
  222. $ B( K, K ), LDB, A( K, K+KB ), LDA )
  223. CALL ZHEMM( 'Left', UPLO, KB, N-K-KB+1, -HALF,
  224. $ A( K, K ), LDA, B( K, K+KB ), LDB,
  225. $ CONE, A( K, K+KB ), LDA )
  226. CALL ZHER2K( UPLO, 'Conjugate transpose', N-K-KB+1,
  227. $ KB, -CONE, A( K, K+KB ), LDA,
  228. $ B( K, K+KB ), LDB, ONE,
  229. $ A( K+KB, K+KB ), LDA )
  230. CALL ZHEMM( 'Left', UPLO, KB, N-K-KB+1, -HALF,
  231. $ A( K, K ), LDA, B( K, K+KB ), LDB,
  232. $ CONE, A( K, K+KB ), LDA )
  233. CALL ZTRSM( 'Right', UPLO, 'No transpose',
  234. $ 'Non-unit', KB, N-K-KB+1, CONE,
  235. $ B( K+KB, K+KB ), LDB, A( K, K+KB ),
  236. $ LDA )
  237. END IF
  238. 10 CONTINUE
  239. ELSE
  240. *
  241. * Compute inv(L)*A*inv(L**H)
  242. *
  243. DO 20 K = 1, N, NB
  244. KB = MIN( N-K+1, NB )
  245. *
  246. * Update the lower triangle of A(k:n,k:n)
  247. *
  248. CALL ZHEGS2( ITYPE, UPLO, KB, A( K, K ), LDA,
  249. $ B( K, K ), LDB, INFO )
  250. IF( K+KB.LE.N ) THEN
  251. CALL ZTRSM( 'Right', UPLO, 'Conjugate transpose',
  252. $ 'Non-unit', N-K-KB+1, KB, CONE,
  253. $ B( K, K ), LDB, A( K+KB, K ), LDA )
  254. CALL ZHEMM( 'Right', UPLO, N-K-KB+1, KB, -HALF,
  255. $ A( K, K ), LDA, B( K+KB, K ), LDB,
  256. $ CONE, A( K+KB, K ), LDA )
  257. CALL ZHER2K( UPLO, 'No transpose', N-K-KB+1, KB,
  258. $ -CONE, A( K+KB, K ), LDA,
  259. $ B( K+KB, K ), LDB, ONE,
  260. $ A( K+KB, K+KB ), LDA )
  261. CALL ZHEMM( 'Right', UPLO, N-K-KB+1, KB, -HALF,
  262. $ A( K, K ), LDA, B( K+KB, K ), LDB,
  263. $ CONE, A( K+KB, K ), LDA )
  264. CALL ZTRSM( 'Left', UPLO, 'No transpose',
  265. $ 'Non-unit', N-K-KB+1, KB, CONE,
  266. $ B( K+KB, K+KB ), LDB, A( K+KB, K ),
  267. $ LDA )
  268. END IF
  269. 20 CONTINUE
  270. END IF
  271. ELSE
  272. IF( UPPER ) THEN
  273. *
  274. * Compute U*A*U**H
  275. *
  276. DO 30 K = 1, N, NB
  277. KB = MIN( N-K+1, NB )
  278. *
  279. * Update the upper triangle of A(1:k+kb-1,1:k+kb-1)
  280. *
  281. CALL ZTRMM( 'Left', UPLO, 'No transpose', 'Non-unit',
  282. $ K-1, KB, CONE, B, LDB, A( 1, K ), LDA )
  283. CALL ZHEMM( 'Right', UPLO, K-1, KB, HALF, A( K, K ),
  284. $ LDA, B( 1, K ), LDB, CONE, A( 1, K ),
  285. $ LDA )
  286. CALL ZHER2K( UPLO, 'No transpose', K-1, KB, CONE,
  287. $ A( 1, K ), LDA, B( 1, K ), LDB, ONE, A,
  288. $ LDA )
  289. CALL ZHEMM( 'Right', UPLO, K-1, KB, HALF, A( K, K ),
  290. $ LDA, B( 1, K ), LDB, CONE, A( 1, K ),
  291. $ LDA )
  292. CALL ZTRMM( 'Right', UPLO, 'Conjugate transpose',
  293. $ 'Non-unit', K-1, KB, CONE, B( K, K ), LDB,
  294. $ A( 1, K ), LDA )
  295. CALL ZHEGS2( ITYPE, UPLO, KB, A( K, K ), LDA,
  296. $ B( K, K ), LDB, INFO )
  297. 30 CONTINUE
  298. ELSE
  299. *
  300. * Compute L**H*A*L
  301. *
  302. DO 40 K = 1, N, NB
  303. KB = MIN( N-K+1, NB )
  304. *
  305. * Update the lower triangle of A(1:k+kb-1,1:k+kb-1)
  306. *
  307. CALL ZTRMM( 'Right', UPLO, 'No transpose', 'Non-unit',
  308. $ KB, K-1, CONE, B, LDB, A( K, 1 ), LDA )
  309. CALL ZHEMM( 'Left', UPLO, KB, K-1, HALF, A( K, K ),
  310. $ LDA, B( K, 1 ), LDB, CONE, A( K, 1 ),
  311. $ LDA )
  312. CALL ZHER2K( UPLO, 'Conjugate transpose', K-1, KB,
  313. $ CONE, A( K, 1 ), LDA, B( K, 1 ), LDB,
  314. $ ONE, A, LDA )
  315. CALL ZHEMM( 'Left', UPLO, KB, K-1, HALF, A( K, K ),
  316. $ LDA, B( K, 1 ), LDB, CONE, A( K, 1 ),
  317. $ LDA )
  318. CALL ZTRMM( 'Left', UPLO, 'Conjugate transpose',
  319. $ 'Non-unit', KB, K-1, CONE, B( K, K ), LDB,
  320. $ A( K, 1 ), LDA )
  321. CALL ZHEGS2( ITYPE, UPLO, KB, A( K, K ), LDA,
  322. $ B( K, K ), LDB, INFO )
  323. 40 CONTINUE
  324. END IF
  325. END IF
  326. END IF
  327. RETURN
  328. *
  329. * End of ZHEGST
  330. *
  331. END