You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

zgttrs.f 6.2 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225
  1. *> \brief \b ZGTTRS
  2. *
  3. * =========== DOCUMENTATION ===========
  4. *
  5. * Online html documentation available at
  6. * http://www.netlib.org/lapack/explore-html/
  7. *
  8. *> \htmlonly
  9. *> Download ZGTTRS + dependencies
  10. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/zgttrs.f">
  11. *> [TGZ]</a>
  12. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/zgttrs.f">
  13. *> [ZIP]</a>
  14. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/zgttrs.f">
  15. *> [TXT]</a>
  16. *> \endhtmlonly
  17. *
  18. * Definition:
  19. * ===========
  20. *
  21. * SUBROUTINE ZGTTRS( TRANS, N, NRHS, DL, D, DU, DU2, IPIV, B, LDB,
  22. * INFO )
  23. *
  24. * .. Scalar Arguments ..
  25. * CHARACTER TRANS
  26. * INTEGER INFO, LDB, N, NRHS
  27. * ..
  28. * .. Array Arguments ..
  29. * INTEGER IPIV( * )
  30. * COMPLEX*16 B( LDB, * ), D( * ), DL( * ), DU( * ), DU2( * )
  31. * ..
  32. *
  33. *
  34. *> \par Purpose:
  35. * =============
  36. *>
  37. *> \verbatim
  38. *>
  39. *> ZGTTRS solves one of the systems of equations
  40. *> A * X = B, A**T * X = B, or A**H * X = B,
  41. *> with a tridiagonal matrix A using the LU factorization computed
  42. *> by ZGTTRF.
  43. *> \endverbatim
  44. *
  45. * Arguments:
  46. * ==========
  47. *
  48. *> \param[in] TRANS
  49. *> \verbatim
  50. *> TRANS is CHARACTER*1
  51. *> Specifies the form of the system of equations.
  52. *> = 'N': A * X = B (No transpose)
  53. *> = 'T': A**T * X = B (Transpose)
  54. *> = 'C': A**H * X = B (Conjugate transpose)
  55. *> \endverbatim
  56. *>
  57. *> \param[in] N
  58. *> \verbatim
  59. *> N is INTEGER
  60. *> The order of the matrix A.
  61. *> \endverbatim
  62. *>
  63. *> \param[in] NRHS
  64. *> \verbatim
  65. *> NRHS is INTEGER
  66. *> The number of right hand sides, i.e., the number of columns
  67. *> of the matrix B. NRHS >= 0.
  68. *> \endverbatim
  69. *>
  70. *> \param[in] DL
  71. *> \verbatim
  72. *> DL is COMPLEX*16 array, dimension (N-1)
  73. *> The (n-1) multipliers that define the matrix L from the
  74. *> LU factorization of A.
  75. *> \endverbatim
  76. *>
  77. *> \param[in] D
  78. *> \verbatim
  79. *> D is COMPLEX*16 array, dimension (N)
  80. *> The n diagonal elements of the upper triangular matrix U from
  81. *> the LU factorization of A.
  82. *> \endverbatim
  83. *>
  84. *> \param[in] DU
  85. *> \verbatim
  86. *> DU is COMPLEX*16 array, dimension (N-1)
  87. *> The (n-1) elements of the first super-diagonal of U.
  88. *> \endverbatim
  89. *>
  90. *> \param[in] DU2
  91. *> \verbatim
  92. *> DU2 is COMPLEX*16 array, dimension (N-2)
  93. *> The (n-2) elements of the second super-diagonal of U.
  94. *> \endverbatim
  95. *>
  96. *> \param[in] IPIV
  97. *> \verbatim
  98. *> IPIV is INTEGER array, dimension (N)
  99. *> The pivot indices; for 1 <= i <= n, row i of the matrix was
  100. *> interchanged with row IPIV(i). IPIV(i) will always be either
  101. *> i or i+1; IPIV(i) = i indicates a row interchange was not
  102. *> required.
  103. *> \endverbatim
  104. *>
  105. *> \param[in,out] B
  106. *> \verbatim
  107. *> B is COMPLEX*16 array, dimension (LDB,NRHS)
  108. *> On entry, the matrix of right hand side vectors B.
  109. *> On exit, B is overwritten by the solution vectors X.
  110. *> \endverbatim
  111. *>
  112. *> \param[in] LDB
  113. *> \verbatim
  114. *> LDB is INTEGER
  115. *> The leading dimension of the array B. LDB >= max(1,N).
  116. *> \endverbatim
  117. *>
  118. *> \param[out] INFO
  119. *> \verbatim
  120. *> INFO is INTEGER
  121. *> = 0: successful exit
  122. *> < 0: if INFO = -k, the k-th argument had an illegal value
  123. *> \endverbatim
  124. *
  125. * Authors:
  126. * ========
  127. *
  128. *> \author Univ. of Tennessee
  129. *> \author Univ. of California Berkeley
  130. *> \author Univ. of Colorado Denver
  131. *> \author NAG Ltd.
  132. *
  133. *> \date December 2016
  134. *
  135. *> \ingroup complex16GTcomputational
  136. *
  137. * =====================================================================
  138. SUBROUTINE ZGTTRS( TRANS, N, NRHS, DL, D, DU, DU2, IPIV, B, LDB,
  139. $ INFO )
  140. *
  141. * -- LAPACK computational routine (version 3.7.0) --
  142. * -- LAPACK is a software package provided by Univ. of Tennessee, --
  143. * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
  144. * December 2016
  145. *
  146. * .. Scalar Arguments ..
  147. CHARACTER TRANS
  148. INTEGER INFO, LDB, N, NRHS
  149. * ..
  150. * .. Array Arguments ..
  151. INTEGER IPIV( * )
  152. COMPLEX*16 B( LDB, * ), D( * ), DL( * ), DU( * ), DU2( * )
  153. * ..
  154. *
  155. * =====================================================================
  156. *
  157. * .. Local Scalars ..
  158. LOGICAL NOTRAN
  159. INTEGER ITRANS, J, JB, NB
  160. * ..
  161. * .. External Functions ..
  162. INTEGER ILAENV
  163. EXTERNAL ILAENV
  164. * ..
  165. * .. External Subroutines ..
  166. EXTERNAL XERBLA, ZGTTS2
  167. * ..
  168. * .. Intrinsic Functions ..
  169. INTRINSIC MAX, MIN
  170. * ..
  171. * .. Executable Statements ..
  172. *
  173. INFO = 0
  174. NOTRAN = ( TRANS.EQ.'N' .OR. TRANS.EQ.'n' )
  175. IF( .NOT.NOTRAN .AND. .NOT.( TRANS.EQ.'T' .OR. TRANS.EQ.
  176. $ 't' ) .AND. .NOT.( TRANS.EQ.'C' .OR. TRANS.EQ.'c' ) ) THEN
  177. INFO = -1
  178. ELSE IF( N.LT.0 ) THEN
  179. INFO = -2
  180. ELSE IF( NRHS.LT.0 ) THEN
  181. INFO = -3
  182. ELSE IF( LDB.LT.MAX( N, 1 ) ) THEN
  183. INFO = -10
  184. END IF
  185. IF( INFO.NE.0 ) THEN
  186. CALL XERBLA( 'ZGTTRS', -INFO )
  187. RETURN
  188. END IF
  189. *
  190. * Quick return if possible
  191. *
  192. IF( N.EQ.0 .OR. NRHS.EQ.0 )
  193. $ RETURN
  194. *
  195. * Decode TRANS
  196. *
  197. IF( NOTRAN ) THEN
  198. ITRANS = 0
  199. ELSE IF( TRANS.EQ.'T' .OR. TRANS.EQ.'t' ) THEN
  200. ITRANS = 1
  201. ELSE
  202. ITRANS = 2
  203. END IF
  204. *
  205. * Determine the number of right-hand sides to solve at a time.
  206. *
  207. IF( NRHS.EQ.1 ) THEN
  208. NB = 1
  209. ELSE
  210. NB = MAX( 1, ILAENV( 1, 'ZGTTRS', TRANS, N, NRHS, -1, -1 ) )
  211. END IF
  212. *
  213. IF( NB.GE.NRHS ) THEN
  214. CALL ZGTTS2( ITRANS, N, NRHS, DL, D, DU, DU2, IPIV, B, LDB )
  215. ELSE
  216. DO 10 J = 1, NRHS, NB
  217. JB = MIN( NRHS-J+1, NB )
  218. CALL ZGTTS2( ITRANS, N, JB, DL, D, DU, DU2, IPIV, B( 1, J ),
  219. $ LDB )
  220. 10 CONTINUE
  221. END IF
  222. *
  223. * End of ZGTTRS
  224. *
  225. END