You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

dtpttf.f 14 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502
  1. *> \brief \b DTPTTF copies a triangular matrix from the standard packed format (TP) to the rectangular full packed format (TF).
  2. *
  3. * =========== DOCUMENTATION ===========
  4. *
  5. * Online html documentation available at
  6. * http://www.netlib.org/lapack/explore-html/
  7. *
  8. *> \htmlonly
  9. *> Download DTPTTF + dependencies
  10. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dtpttf.f">
  11. *> [TGZ]</a>
  12. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dtpttf.f">
  13. *> [ZIP]</a>
  14. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dtpttf.f">
  15. *> [TXT]</a>
  16. *> \endhtmlonly
  17. *
  18. * Definition:
  19. * ===========
  20. *
  21. * SUBROUTINE DTPTTF( TRANSR, UPLO, N, AP, ARF, INFO )
  22. *
  23. * .. Scalar Arguments ..
  24. * CHARACTER TRANSR, UPLO
  25. * INTEGER INFO, N
  26. * ..
  27. * .. Array Arguments ..
  28. * DOUBLE PRECISION AP( 0: * ), ARF( 0: * )
  29. *
  30. *
  31. *> \par Purpose:
  32. * =============
  33. *>
  34. *> \verbatim
  35. *>
  36. *> DTPTTF copies a triangular matrix A from standard packed format (TP)
  37. *> to rectangular full packed format (TF).
  38. *> \endverbatim
  39. *
  40. * Arguments:
  41. * ==========
  42. *
  43. *> \param[in] TRANSR
  44. *> \verbatim
  45. *> TRANSR is CHARACTER*1
  46. *> = 'N': ARF in Normal format is wanted;
  47. *> = 'T': ARF in Conjugate-transpose format is wanted.
  48. *> \endverbatim
  49. *>
  50. *> \param[in] UPLO
  51. *> \verbatim
  52. *> UPLO is CHARACTER*1
  53. *> = 'U': A is upper triangular;
  54. *> = 'L': A is lower triangular.
  55. *> \endverbatim
  56. *>
  57. *> \param[in] N
  58. *> \verbatim
  59. *> N is INTEGER
  60. *> The order of the matrix A. N >= 0.
  61. *> \endverbatim
  62. *>
  63. *> \param[in] AP
  64. *> \verbatim
  65. *> AP is DOUBLE PRECISION array, dimension ( N*(N+1)/2 ),
  66. *> On entry, the upper or lower triangular matrix A, packed
  67. *> columnwise in a linear array. The j-th column of A is stored
  68. *> in the array AP as follows:
  69. *> if UPLO = 'U', AP(i + (j-1)*j/2) = A(i,j) for 1<=i<=j;
  70. *> if UPLO = 'L', AP(i + (j-1)*(2n-j)/2) = A(i,j) for j<=i<=n.
  71. *> \endverbatim
  72. *>
  73. *> \param[out] ARF
  74. *> \verbatim
  75. *> ARF is DOUBLE PRECISION array, dimension ( N*(N+1)/2 ),
  76. *> On exit, the upper or lower triangular matrix A stored in
  77. *> RFP format. For a further discussion see Notes below.
  78. *> \endverbatim
  79. *>
  80. *> \param[out] INFO
  81. *> \verbatim
  82. *> INFO is INTEGER
  83. *> = 0: successful exit
  84. *> < 0: if INFO = -i, the i-th argument had an illegal value
  85. *> \endverbatim
  86. *
  87. * Authors:
  88. * ========
  89. *
  90. *> \author Univ. of Tennessee
  91. *> \author Univ. of California Berkeley
  92. *> \author Univ. of Colorado Denver
  93. *> \author NAG Ltd.
  94. *
  95. *> \date December 2016
  96. *
  97. *> \ingroup doubleOTHERcomputational
  98. *
  99. *> \par Further Details:
  100. * =====================
  101. *>
  102. *> \verbatim
  103. *>
  104. *> We first consider Rectangular Full Packed (RFP) Format when N is
  105. *> even. We give an example where N = 6.
  106. *>
  107. *> AP is Upper AP is Lower
  108. *>
  109. *> 00 01 02 03 04 05 00
  110. *> 11 12 13 14 15 10 11
  111. *> 22 23 24 25 20 21 22
  112. *> 33 34 35 30 31 32 33
  113. *> 44 45 40 41 42 43 44
  114. *> 55 50 51 52 53 54 55
  115. *>
  116. *>
  117. *> Let TRANSR = 'N'. RFP holds AP as follows:
  118. *> For UPLO = 'U' the upper trapezoid A(0:5,0:2) consists of the last
  119. *> three columns of AP upper. The lower triangle A(4:6,0:2) consists of
  120. *> the transpose of the first three columns of AP upper.
  121. *> For UPLO = 'L' the lower trapezoid A(1:6,0:2) consists of the first
  122. *> three columns of AP lower. The upper triangle A(0:2,0:2) consists of
  123. *> the transpose of the last three columns of AP lower.
  124. *> This covers the case N even and TRANSR = 'N'.
  125. *>
  126. *> RFP A RFP A
  127. *>
  128. *> 03 04 05 33 43 53
  129. *> 13 14 15 00 44 54
  130. *> 23 24 25 10 11 55
  131. *> 33 34 35 20 21 22
  132. *> 00 44 45 30 31 32
  133. *> 01 11 55 40 41 42
  134. *> 02 12 22 50 51 52
  135. *>
  136. *> Now let TRANSR = 'T'. RFP A in both UPLO cases is just the
  137. *> transpose of RFP A above. One therefore gets:
  138. *>
  139. *>
  140. *> RFP A RFP A
  141. *>
  142. *> 03 13 23 33 00 01 02 33 00 10 20 30 40 50
  143. *> 04 14 24 34 44 11 12 43 44 11 21 31 41 51
  144. *> 05 15 25 35 45 55 22 53 54 55 22 32 42 52
  145. *>
  146. *>
  147. *> We then consider Rectangular Full Packed (RFP) Format when N is
  148. *> odd. We give an example where N = 5.
  149. *>
  150. *> AP is Upper AP is Lower
  151. *>
  152. *> 00 01 02 03 04 00
  153. *> 11 12 13 14 10 11
  154. *> 22 23 24 20 21 22
  155. *> 33 34 30 31 32 33
  156. *> 44 40 41 42 43 44
  157. *>
  158. *>
  159. *> Let TRANSR = 'N'. RFP holds AP as follows:
  160. *> For UPLO = 'U' the upper trapezoid A(0:4,0:2) consists of the last
  161. *> three columns of AP upper. The lower triangle A(3:4,0:1) consists of
  162. *> the transpose of the first two columns of AP upper.
  163. *> For UPLO = 'L' the lower trapezoid A(0:4,0:2) consists of the first
  164. *> three columns of AP lower. The upper triangle A(0:1,1:2) consists of
  165. *> the transpose of the last two columns of AP lower.
  166. *> This covers the case N odd and TRANSR = 'N'.
  167. *>
  168. *> RFP A RFP A
  169. *>
  170. *> 02 03 04 00 33 43
  171. *> 12 13 14 10 11 44
  172. *> 22 23 24 20 21 22
  173. *> 00 33 34 30 31 32
  174. *> 01 11 44 40 41 42
  175. *>
  176. *> Now let TRANSR = 'T'. RFP A in both UPLO cases is just the
  177. *> transpose of RFP A above. One therefore gets:
  178. *>
  179. *> RFP A RFP A
  180. *>
  181. *> 02 12 22 00 01 00 10 20 30 40 50
  182. *> 03 13 23 33 11 33 11 21 31 41 51
  183. *> 04 14 24 34 44 43 44 22 32 42 52
  184. *> \endverbatim
  185. *>
  186. * =====================================================================
  187. SUBROUTINE DTPTTF( TRANSR, UPLO, N, AP, ARF, INFO )
  188. *
  189. * -- LAPACK computational routine (version 3.7.0) --
  190. * -- LAPACK is a software package provided by Univ. of Tennessee, --
  191. * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
  192. * December 2016
  193. *
  194. * .. Scalar Arguments ..
  195. CHARACTER TRANSR, UPLO
  196. INTEGER INFO, N
  197. * ..
  198. * .. Array Arguments ..
  199. DOUBLE PRECISION AP( 0: * ), ARF( 0: * )
  200. *
  201. * =====================================================================
  202. *
  203. * .. Parameters ..
  204. * ..
  205. * .. Local Scalars ..
  206. LOGICAL LOWER, NISODD, NORMALTRANSR
  207. INTEGER N1, N2, K, NT
  208. INTEGER I, J, IJ
  209. INTEGER IJP, JP, LDA, JS
  210. * ..
  211. * .. External Functions ..
  212. LOGICAL LSAME
  213. EXTERNAL LSAME
  214. * ..
  215. * .. External Subroutines ..
  216. EXTERNAL XERBLA
  217. * ..
  218. * .. Intrinsic Functions ..
  219. INTRINSIC MOD
  220. * ..
  221. * .. Executable Statements ..
  222. *
  223. * Test the input parameters.
  224. *
  225. INFO = 0
  226. NORMALTRANSR = LSAME( TRANSR, 'N' )
  227. LOWER = LSAME( UPLO, 'L' )
  228. IF( .NOT.NORMALTRANSR .AND. .NOT.LSAME( TRANSR, 'T' ) ) THEN
  229. INFO = -1
  230. ELSE IF( .NOT.LOWER .AND. .NOT.LSAME( UPLO, 'U' ) ) THEN
  231. INFO = -2
  232. ELSE IF( N.LT.0 ) THEN
  233. INFO = -3
  234. END IF
  235. IF( INFO.NE.0 ) THEN
  236. CALL XERBLA( 'DTPTTF', -INFO )
  237. RETURN
  238. END IF
  239. *
  240. * Quick return if possible
  241. *
  242. IF( N.EQ.0 )
  243. $ RETURN
  244. *
  245. IF( N.EQ.1 ) THEN
  246. IF( NORMALTRANSR ) THEN
  247. ARF( 0 ) = AP( 0 )
  248. ELSE
  249. ARF( 0 ) = AP( 0 )
  250. END IF
  251. RETURN
  252. END IF
  253. *
  254. * Size of array ARF(0:NT-1)
  255. *
  256. NT = N*( N+1 ) / 2
  257. *
  258. * Set N1 and N2 depending on LOWER
  259. *
  260. IF( LOWER ) THEN
  261. N2 = N / 2
  262. N1 = N - N2
  263. ELSE
  264. N1 = N / 2
  265. N2 = N - N1
  266. END IF
  267. *
  268. * If N is odd, set NISODD = .TRUE.
  269. * If N is even, set K = N/2 and NISODD = .FALSE.
  270. *
  271. * set lda of ARF^C; ARF^C is (0:(N+1)/2-1,0:N-noe)
  272. * where noe = 0 if n is even, noe = 1 if n is odd
  273. *
  274. IF( MOD( N, 2 ).EQ.0 ) THEN
  275. K = N / 2
  276. NISODD = .FALSE.
  277. LDA = N + 1
  278. ELSE
  279. NISODD = .TRUE.
  280. LDA = N
  281. END IF
  282. *
  283. * ARF^C has lda rows and n+1-noe cols
  284. *
  285. IF( .NOT.NORMALTRANSR )
  286. $ LDA = ( N+1 ) / 2
  287. *
  288. * start execution: there are eight cases
  289. *
  290. IF( NISODD ) THEN
  291. *
  292. * N is odd
  293. *
  294. IF( NORMALTRANSR ) THEN
  295. *
  296. * N is odd and TRANSR = 'N'
  297. *
  298. IF( LOWER ) THEN
  299. *
  300. * N is odd, TRANSR = 'N', and UPLO = 'L'
  301. *
  302. IJP = 0
  303. JP = 0
  304. DO J = 0, N2
  305. DO I = J, N - 1
  306. IJ = I + JP
  307. ARF( IJ ) = AP( IJP )
  308. IJP = IJP + 1
  309. END DO
  310. JP = JP + LDA
  311. END DO
  312. DO I = 0, N2 - 1
  313. DO J = 1 + I, N2
  314. IJ = I + J*LDA
  315. ARF( IJ ) = AP( IJP )
  316. IJP = IJP + 1
  317. END DO
  318. END DO
  319. *
  320. ELSE
  321. *
  322. * N is odd, TRANSR = 'N', and UPLO = 'U'
  323. *
  324. IJP = 0
  325. DO J = 0, N1 - 1
  326. IJ = N2 + J
  327. DO I = 0, J
  328. ARF( IJ ) = AP( IJP )
  329. IJP = IJP + 1
  330. IJ = IJ + LDA
  331. END DO
  332. END DO
  333. JS = 0
  334. DO J = N1, N - 1
  335. IJ = JS
  336. DO IJ = JS, JS + J
  337. ARF( IJ ) = AP( IJP )
  338. IJP = IJP + 1
  339. END DO
  340. JS = JS + LDA
  341. END DO
  342. *
  343. END IF
  344. *
  345. ELSE
  346. *
  347. * N is odd and TRANSR = 'T'
  348. *
  349. IF( LOWER ) THEN
  350. *
  351. * N is odd, TRANSR = 'T', and UPLO = 'L'
  352. *
  353. IJP = 0
  354. DO I = 0, N2
  355. DO IJ = I*( LDA+1 ), N*LDA - 1, LDA
  356. ARF( IJ ) = AP( IJP )
  357. IJP = IJP + 1
  358. END DO
  359. END DO
  360. JS = 1
  361. DO J = 0, N2 - 1
  362. DO IJ = JS, JS + N2 - J - 1
  363. ARF( IJ ) = AP( IJP )
  364. IJP = IJP + 1
  365. END DO
  366. JS = JS + LDA + 1
  367. END DO
  368. *
  369. ELSE
  370. *
  371. * N is odd, TRANSR = 'T', and UPLO = 'U'
  372. *
  373. IJP = 0
  374. JS = N2*LDA
  375. DO J = 0, N1 - 1
  376. DO IJ = JS, JS + J
  377. ARF( IJ ) = AP( IJP )
  378. IJP = IJP + 1
  379. END DO
  380. JS = JS + LDA
  381. END DO
  382. DO I = 0, N1
  383. DO IJ = I, I + ( N1+I )*LDA, LDA
  384. ARF( IJ ) = AP( IJP )
  385. IJP = IJP + 1
  386. END DO
  387. END DO
  388. *
  389. END IF
  390. *
  391. END IF
  392. *
  393. ELSE
  394. *
  395. * N is even
  396. *
  397. IF( NORMALTRANSR ) THEN
  398. *
  399. * N is even and TRANSR = 'N'
  400. *
  401. IF( LOWER ) THEN
  402. *
  403. * N is even, TRANSR = 'N', and UPLO = 'L'
  404. *
  405. IJP = 0
  406. JP = 0
  407. DO J = 0, K - 1
  408. DO I = J, N - 1
  409. IJ = 1 + I + JP
  410. ARF( IJ ) = AP( IJP )
  411. IJP = IJP + 1
  412. END DO
  413. JP = JP + LDA
  414. END DO
  415. DO I = 0, K - 1
  416. DO J = I, K - 1
  417. IJ = I + J*LDA
  418. ARF( IJ ) = AP( IJP )
  419. IJP = IJP + 1
  420. END DO
  421. END DO
  422. *
  423. ELSE
  424. *
  425. * N is even, TRANSR = 'N', and UPLO = 'U'
  426. *
  427. IJP = 0
  428. DO J = 0, K - 1
  429. IJ = K + 1 + J
  430. DO I = 0, J
  431. ARF( IJ ) = AP( IJP )
  432. IJP = IJP + 1
  433. IJ = IJ + LDA
  434. END DO
  435. END DO
  436. JS = 0
  437. DO J = K, N - 1
  438. IJ = JS
  439. DO IJ = JS, JS + J
  440. ARF( IJ ) = AP( IJP )
  441. IJP = IJP + 1
  442. END DO
  443. JS = JS + LDA
  444. END DO
  445. *
  446. END IF
  447. *
  448. ELSE
  449. *
  450. * N is even and TRANSR = 'T'
  451. *
  452. IF( LOWER ) THEN
  453. *
  454. * N is even, TRANSR = 'T', and UPLO = 'L'
  455. *
  456. IJP = 0
  457. DO I = 0, K - 1
  458. DO IJ = I + ( I+1 )*LDA, ( N+1 )*LDA - 1, LDA
  459. ARF( IJ ) = AP( IJP )
  460. IJP = IJP + 1
  461. END DO
  462. END DO
  463. JS = 0
  464. DO J = 0, K - 1
  465. DO IJ = JS, JS + K - J - 1
  466. ARF( IJ ) = AP( IJP )
  467. IJP = IJP + 1
  468. END DO
  469. JS = JS + LDA + 1
  470. END DO
  471. *
  472. ELSE
  473. *
  474. * N is even, TRANSR = 'T', and UPLO = 'U'
  475. *
  476. IJP = 0
  477. JS = ( K+1 )*LDA
  478. DO J = 0, K - 1
  479. DO IJ = JS, JS + J
  480. ARF( IJ ) = AP( IJP )
  481. IJP = IJP + 1
  482. END DO
  483. JS = JS + LDA
  484. END DO
  485. DO I = 0, K - 1
  486. DO IJ = I, I + ( K+I )*LDA, LDA
  487. ARF( IJ ) = AP( IJP )
  488. IJP = IJP + 1
  489. END DO
  490. END DO
  491. *
  492. END IF
  493. *
  494. END IF
  495. *
  496. END IF
  497. *
  498. RETURN
  499. *
  500. * End of DTPTTF
  501. *
  502. END