|
1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075 |
- *> \brief \b DTGSY2 solves the generalized Sylvester equation (unblocked algorithm).
- *
- * =========== DOCUMENTATION ===========
- *
- * Online html documentation available at
- * http://www.netlib.org/lapack/explore-html/
- *
- *> \htmlonly
- *> Download DTGSY2 + dependencies
- *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dtgsy2.f">
- *> [TGZ]</a>
- *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dtgsy2.f">
- *> [ZIP]</a>
- *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dtgsy2.f">
- *> [TXT]</a>
- *> \endhtmlonly
- *
- * Definition:
- * ===========
- *
- * SUBROUTINE DTGSY2( TRANS, IJOB, M, N, A, LDA, B, LDB, C, LDC, D,
- * LDD, E, LDE, F, LDF, SCALE, RDSUM, RDSCAL,
- * IWORK, PQ, INFO )
- *
- * .. Scalar Arguments ..
- * CHARACTER TRANS
- * INTEGER IJOB, INFO, LDA, LDB, LDC, LDD, LDE, LDF, M, N,
- * $ PQ
- * DOUBLE PRECISION RDSCAL, RDSUM, SCALE
- * ..
- * .. Array Arguments ..
- * INTEGER IWORK( * )
- * DOUBLE PRECISION A( LDA, * ), B( LDB, * ), C( LDC, * ),
- * $ D( LDD, * ), E( LDE, * ), F( LDF, * )
- * ..
- *
- *
- *> \par Purpose:
- * =============
- *>
- *> \verbatim
- *>
- *> DTGSY2 solves the generalized Sylvester equation:
- *>
- *> A * R - L * B = scale * C (1)
- *> D * R - L * E = scale * F,
- *>
- *> using Level 1 and 2 BLAS. where R and L are unknown M-by-N matrices,
- *> (A, D), (B, E) and (C, F) are given matrix pairs of size M-by-M,
- *> N-by-N and M-by-N, respectively, with real entries. (A, D) and (B, E)
- *> must be in generalized Schur canonical form, i.e. A, B are upper
- *> quasi triangular and D, E are upper triangular. The solution (R, L)
- *> overwrites (C, F). 0 <= SCALE <= 1 is an output scaling factor
- *> chosen to avoid overflow.
- *>
- *> In matrix notation solving equation (1) corresponds to solve
- *> Z*x = scale*b, where Z is defined as
- *>
- *> Z = [ kron(In, A) -kron(B**T, Im) ] (2)
- *> [ kron(In, D) -kron(E**T, Im) ],
- *>
- *> Ik is the identity matrix of size k and X**T is the transpose of X.
- *> kron(X, Y) is the Kronecker product between the matrices X and Y.
- *> In the process of solving (1), we solve a number of such systems
- *> where Dim(In), Dim(In) = 1 or 2.
- *>
- *> If TRANS = 'T', solve the transposed system Z**T*y = scale*b for y,
- *> which is equivalent to solve for R and L in
- *>
- *> A**T * R + D**T * L = scale * C (3)
- *> R * B**T + L * E**T = scale * -F
- *>
- *> This case is used to compute an estimate of Dif[(A, D), (B, E)] =
- *> sigma_min(Z) using reverse communicaton with DLACON.
- *>
- *> DTGSY2 also (IJOB >= 1) contributes to the computation in DTGSYL
- *> of an upper bound on the separation between to matrix pairs. Then
- *> the input (A, D), (B, E) are sub-pencils of the matrix pair in
- *> DTGSYL. See DTGSYL for details.
- *> \endverbatim
- *
- * Arguments:
- * ==========
- *
- *> \param[in] TRANS
- *> \verbatim
- *> TRANS is CHARACTER*1
- *> = 'N', solve the generalized Sylvester equation (1).
- *> = 'T': solve the 'transposed' system (3).
- *> \endverbatim
- *>
- *> \param[in] IJOB
- *> \verbatim
- *> IJOB is INTEGER
- *> Specifies what kind of functionality to be performed.
- *> = 0: solve (1) only.
- *> = 1: A contribution from this subsystem to a Frobenius
- *> norm-based estimate of the separation between two matrix
- *> pairs is computed. (look ahead strategy is used).
- *> = 2: A contribution from this subsystem to a Frobenius
- *> norm-based estimate of the separation between two matrix
- *> pairs is computed. (DGECON on sub-systems is used.)
- *> Not referenced if TRANS = 'T'.
- *> \endverbatim
- *>
- *> \param[in] M
- *> \verbatim
- *> M is INTEGER
- *> On entry, M specifies the order of A and D, and the row
- *> dimension of C, F, R and L.
- *> \endverbatim
- *>
- *> \param[in] N
- *> \verbatim
- *> N is INTEGER
- *> On entry, N specifies the order of B and E, and the column
- *> dimension of C, F, R and L.
- *> \endverbatim
- *>
- *> \param[in] A
- *> \verbatim
- *> A is DOUBLE PRECISION array, dimension (LDA, M)
- *> On entry, A contains an upper quasi triangular matrix.
- *> \endverbatim
- *>
- *> \param[in] LDA
- *> \verbatim
- *> LDA is INTEGER
- *> The leading dimension of the matrix A. LDA >= max(1, M).
- *> \endverbatim
- *>
- *> \param[in] B
- *> \verbatim
- *> B is DOUBLE PRECISION array, dimension (LDB, N)
- *> On entry, B contains an upper quasi triangular matrix.
- *> \endverbatim
- *>
- *> \param[in] LDB
- *> \verbatim
- *> LDB is INTEGER
- *> The leading dimension of the matrix B. LDB >= max(1, N).
- *> \endverbatim
- *>
- *> \param[in,out] C
- *> \verbatim
- *> C is DOUBLE PRECISION array, dimension (LDC, N)
- *> On entry, C contains the right-hand-side of the first matrix
- *> equation in (1).
- *> On exit, if IJOB = 0, C has been overwritten by the
- *> solution R.
- *> \endverbatim
- *>
- *> \param[in] LDC
- *> \verbatim
- *> LDC is INTEGER
- *> The leading dimension of the matrix C. LDC >= max(1, M).
- *> \endverbatim
- *>
- *> \param[in] D
- *> \verbatim
- *> D is DOUBLE PRECISION array, dimension (LDD, M)
- *> On entry, D contains an upper triangular matrix.
- *> \endverbatim
- *>
- *> \param[in] LDD
- *> \verbatim
- *> LDD is INTEGER
- *> The leading dimension of the matrix D. LDD >= max(1, M).
- *> \endverbatim
- *>
- *> \param[in] E
- *> \verbatim
- *> E is DOUBLE PRECISION array, dimension (LDE, N)
- *> On entry, E contains an upper triangular matrix.
- *> \endverbatim
- *>
- *> \param[in] LDE
- *> \verbatim
- *> LDE is INTEGER
- *> The leading dimension of the matrix E. LDE >= max(1, N).
- *> \endverbatim
- *>
- *> \param[in,out] F
- *> \verbatim
- *> F is DOUBLE PRECISION array, dimension (LDF, N)
- *> On entry, F contains the right-hand-side of the second matrix
- *> equation in (1).
- *> On exit, if IJOB = 0, F has been overwritten by the
- *> solution L.
- *> \endverbatim
- *>
- *> \param[in] LDF
- *> \verbatim
- *> LDF is INTEGER
- *> The leading dimension of the matrix F. LDF >= max(1, M).
- *> \endverbatim
- *>
- *> \param[out] SCALE
- *> \verbatim
- *> SCALE is DOUBLE PRECISION
- *> On exit, 0 <= SCALE <= 1. If 0 < SCALE < 1, the solutions
- *> R and L (C and F on entry) will hold the solutions to a
- *> slightly perturbed system but the input matrices A, B, D and
- *> E have not been changed. If SCALE = 0, R and L will hold the
- *> solutions to the homogeneous system with C = F = 0. Normally,
- *> SCALE = 1.
- *> \endverbatim
- *>
- *> \param[in,out] RDSUM
- *> \verbatim
- *> RDSUM is DOUBLE PRECISION
- *> On entry, the sum of squares of computed contributions to
- *> the Dif-estimate under computation by DTGSYL, where the
- *> scaling factor RDSCAL (see below) has been factored out.
- *> On exit, the corresponding sum of squares updated with the
- *> contributions from the current sub-system.
- *> If TRANS = 'T' RDSUM is not touched.
- *> NOTE: RDSUM only makes sense when DTGSY2 is called by DTGSYL.
- *> \endverbatim
- *>
- *> \param[in,out] RDSCAL
- *> \verbatim
- *> RDSCAL is DOUBLE PRECISION
- *> On entry, scaling factor used to prevent overflow in RDSUM.
- *> On exit, RDSCAL is updated w.r.t. the current contributions
- *> in RDSUM.
- *> If TRANS = 'T', RDSCAL is not touched.
- *> NOTE: RDSCAL only makes sense when DTGSY2 is called by
- *> DTGSYL.
- *> \endverbatim
- *>
- *> \param[out] IWORK
- *> \verbatim
- *> IWORK is INTEGER array, dimension (M+N+2)
- *> \endverbatim
- *>
- *> \param[out] PQ
- *> \verbatim
- *> PQ is INTEGER
- *> On exit, the number of subsystems (of size 2-by-2, 4-by-4 and
- *> 8-by-8) solved by this routine.
- *> \endverbatim
- *>
- *> \param[out] INFO
- *> \verbatim
- *> INFO is INTEGER
- *> On exit, if INFO is set to
- *> =0: Successful exit
- *> <0: If INFO = -i, the i-th argument had an illegal value.
- *> >0: The matrix pairs (A, D) and (B, E) have common or very
- *> close eigenvalues.
- *> \endverbatim
- *
- * Authors:
- * ========
- *
- *> \author Univ. of Tennessee
- *> \author Univ. of California Berkeley
- *> \author Univ. of Colorado Denver
- *> \author NAG Ltd.
- *
- *> \date December 2016
- *
- *> \ingroup doubleSYauxiliary
- *
- *> \par Contributors:
- * ==================
- *>
- *> Bo Kagstrom and Peter Poromaa, Department of Computing Science,
- *> Umea University, S-901 87 Umea, Sweden.
- *
- * =====================================================================
- SUBROUTINE DTGSY2( TRANS, IJOB, M, N, A, LDA, B, LDB, C, LDC, D,
- $ LDD, E, LDE, F, LDF, SCALE, RDSUM, RDSCAL,
- $ IWORK, PQ, INFO )
- *
- * -- LAPACK auxiliary routine (version 3.7.0) --
- * -- LAPACK is a software package provided by Univ. of Tennessee, --
- * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
- * December 2016
- *
- * .. Scalar Arguments ..
- CHARACTER TRANS
- INTEGER IJOB, INFO, LDA, LDB, LDC, LDD, LDE, LDF, M, N,
- $ PQ
- DOUBLE PRECISION RDSCAL, RDSUM, SCALE
- * ..
- * .. Array Arguments ..
- INTEGER IWORK( * )
- DOUBLE PRECISION A( LDA, * ), B( LDB, * ), C( LDC, * ),
- $ D( LDD, * ), E( LDE, * ), F( LDF, * )
- * ..
- *
- * =====================================================================
- * Replaced various illegal calls to DCOPY by calls to DLASET.
- * Sven Hammarling, 27/5/02.
- *
- * .. Parameters ..
- INTEGER LDZ
- PARAMETER ( LDZ = 8 )
- DOUBLE PRECISION ZERO, ONE
- PARAMETER ( ZERO = 0.0D+0, ONE = 1.0D+0 )
- * ..
- * .. Local Scalars ..
- LOGICAL NOTRAN
- INTEGER I, IE, IERR, II, IS, ISP1, J, JE, JJ, JS, JSP1,
- $ K, MB, NB, P, Q, ZDIM
- DOUBLE PRECISION ALPHA, SCALOC
- * ..
- * .. Local Arrays ..
- INTEGER IPIV( LDZ ), JPIV( LDZ )
- DOUBLE PRECISION RHS( LDZ ), Z( LDZ, LDZ )
- * ..
- * .. External Functions ..
- LOGICAL LSAME
- EXTERNAL LSAME
- * ..
- * .. External Subroutines ..
- EXTERNAL DAXPY, DCOPY, DGEMM, DGEMV, DGER, DGESC2,
- $ DGETC2, DLASET, DLATDF, DSCAL, XERBLA
- * ..
- * .. Intrinsic Functions ..
- INTRINSIC MAX
- * ..
- * .. Executable Statements ..
- *
- * Decode and test input parameters
- *
- INFO = 0
- IERR = 0
- NOTRAN = LSAME( TRANS, 'N' )
- IF( .NOT.NOTRAN .AND. .NOT.LSAME( TRANS, 'T' ) ) THEN
- INFO = -1
- ELSE IF( NOTRAN ) THEN
- IF( ( IJOB.LT.0 ) .OR. ( IJOB.GT.2 ) ) THEN
- INFO = -2
- END IF
- END IF
- IF( INFO.EQ.0 ) THEN
- IF( M.LE.0 ) THEN
- INFO = -3
- ELSE IF( N.LE.0 ) THEN
- INFO = -4
- ELSE IF( LDA.LT.MAX( 1, M ) ) THEN
- INFO = -6
- ELSE IF( LDB.LT.MAX( 1, N ) ) THEN
- INFO = -8
- ELSE IF( LDC.LT.MAX( 1, M ) ) THEN
- INFO = -10
- ELSE IF( LDD.LT.MAX( 1, M ) ) THEN
- INFO = -12
- ELSE IF( LDE.LT.MAX( 1, N ) ) THEN
- INFO = -14
- ELSE IF( LDF.LT.MAX( 1, M ) ) THEN
- INFO = -16
- END IF
- END IF
- IF( INFO.NE.0 ) THEN
- CALL XERBLA( 'DTGSY2', -INFO )
- RETURN
- END IF
- *
- * Determine block structure of A
- *
- PQ = 0
- P = 0
- I = 1
- 10 CONTINUE
- IF( I.GT.M )
- $ GO TO 20
- P = P + 1
- IWORK( P ) = I
- IF( I.EQ.M )
- $ GO TO 20
- IF( A( I+1, I ).NE.ZERO ) THEN
- I = I + 2
- ELSE
- I = I + 1
- END IF
- GO TO 10
- 20 CONTINUE
- IWORK( P+1 ) = M + 1
- *
- * Determine block structure of B
- *
- Q = P + 1
- J = 1
- 30 CONTINUE
- IF( J.GT.N )
- $ GO TO 40
- Q = Q + 1
- IWORK( Q ) = J
- IF( J.EQ.N )
- $ GO TO 40
- IF( B( J+1, J ).NE.ZERO ) THEN
- J = J + 2
- ELSE
- J = J + 1
- END IF
- GO TO 30
- 40 CONTINUE
- IWORK( Q+1 ) = N + 1
- PQ = P*( Q-P-1 )
- *
- IF( NOTRAN ) THEN
- *
- * Solve (I, J) - subsystem
- * A(I, I) * R(I, J) - L(I, J) * B(J, J) = C(I, J)
- * D(I, I) * R(I, J) - L(I, J) * E(J, J) = F(I, J)
- * for I = P, P - 1, ..., 1; J = 1, 2, ..., Q
- *
- SCALE = ONE
- SCALOC = ONE
- DO 120 J = P + 2, Q
- JS = IWORK( J )
- JSP1 = JS + 1
- JE = IWORK( J+1 ) - 1
- NB = JE - JS + 1
- DO 110 I = P, 1, -1
- *
- IS = IWORK( I )
- ISP1 = IS + 1
- IE = IWORK( I+1 ) - 1
- MB = IE - IS + 1
- ZDIM = MB*NB*2
- *
- IF( ( MB.EQ.1 ) .AND. ( NB.EQ.1 ) ) THEN
- *
- * Build a 2-by-2 system Z * x = RHS
- *
- Z( 1, 1 ) = A( IS, IS )
- Z( 2, 1 ) = D( IS, IS )
- Z( 1, 2 ) = -B( JS, JS )
- Z( 2, 2 ) = -E( JS, JS )
- *
- * Set up right hand side(s)
- *
- RHS( 1 ) = C( IS, JS )
- RHS( 2 ) = F( IS, JS )
- *
- * Solve Z * x = RHS
- *
- CALL DGETC2( ZDIM, Z, LDZ, IPIV, JPIV, IERR )
- IF( IERR.GT.0 )
- $ INFO = IERR
- *
- IF( IJOB.EQ.0 ) THEN
- CALL DGESC2( ZDIM, Z, LDZ, RHS, IPIV, JPIV,
- $ SCALOC )
- IF( SCALOC.NE.ONE ) THEN
- DO 50 K = 1, N
- CALL DSCAL( M, SCALOC, C( 1, K ), 1 )
- CALL DSCAL( M, SCALOC, F( 1, K ), 1 )
- 50 CONTINUE
- SCALE = SCALE*SCALOC
- END IF
- ELSE
- CALL DLATDF( IJOB, ZDIM, Z, LDZ, RHS, RDSUM,
- $ RDSCAL, IPIV, JPIV )
- END IF
- *
- * Unpack solution vector(s)
- *
- C( IS, JS ) = RHS( 1 )
- F( IS, JS ) = RHS( 2 )
- *
- * Substitute R(I, J) and L(I, J) into remaining
- * equation.
- *
- IF( I.GT.1 ) THEN
- ALPHA = -RHS( 1 )
- CALL DAXPY( IS-1, ALPHA, A( 1, IS ), 1, C( 1, JS ),
- $ 1 )
- CALL DAXPY( IS-1, ALPHA, D( 1, IS ), 1, F( 1, JS ),
- $ 1 )
- END IF
- IF( J.LT.Q ) THEN
- CALL DAXPY( N-JE, RHS( 2 ), B( JS, JE+1 ), LDB,
- $ C( IS, JE+1 ), LDC )
- CALL DAXPY( N-JE, RHS( 2 ), E( JS, JE+1 ), LDE,
- $ F( IS, JE+1 ), LDF )
- END IF
- *
- ELSE IF( ( MB.EQ.1 ) .AND. ( NB.EQ.2 ) ) THEN
- *
- * Build a 4-by-4 system Z * x = RHS
- *
- Z( 1, 1 ) = A( IS, IS )
- Z( 2, 1 ) = ZERO
- Z( 3, 1 ) = D( IS, IS )
- Z( 4, 1 ) = ZERO
- *
- Z( 1, 2 ) = ZERO
- Z( 2, 2 ) = A( IS, IS )
- Z( 3, 2 ) = ZERO
- Z( 4, 2 ) = D( IS, IS )
- *
- Z( 1, 3 ) = -B( JS, JS )
- Z( 2, 3 ) = -B( JS, JSP1 )
- Z( 3, 3 ) = -E( JS, JS )
- Z( 4, 3 ) = -E( JS, JSP1 )
- *
- Z( 1, 4 ) = -B( JSP1, JS )
- Z( 2, 4 ) = -B( JSP1, JSP1 )
- Z( 3, 4 ) = ZERO
- Z( 4, 4 ) = -E( JSP1, JSP1 )
- *
- * Set up right hand side(s)
- *
- RHS( 1 ) = C( IS, JS )
- RHS( 2 ) = C( IS, JSP1 )
- RHS( 3 ) = F( IS, JS )
- RHS( 4 ) = F( IS, JSP1 )
- *
- * Solve Z * x = RHS
- *
- CALL DGETC2( ZDIM, Z, LDZ, IPIV, JPIV, IERR )
- IF( IERR.GT.0 )
- $ INFO = IERR
- *
- IF( IJOB.EQ.0 ) THEN
- CALL DGESC2( ZDIM, Z, LDZ, RHS, IPIV, JPIV,
- $ SCALOC )
- IF( SCALOC.NE.ONE ) THEN
- DO 60 K = 1, N
- CALL DSCAL( M, SCALOC, C( 1, K ), 1 )
- CALL DSCAL( M, SCALOC, F( 1, K ), 1 )
- 60 CONTINUE
- SCALE = SCALE*SCALOC
- END IF
- ELSE
- CALL DLATDF( IJOB, ZDIM, Z, LDZ, RHS, RDSUM,
- $ RDSCAL, IPIV, JPIV )
- END IF
- *
- * Unpack solution vector(s)
- *
- C( IS, JS ) = RHS( 1 )
- C( IS, JSP1 ) = RHS( 2 )
- F( IS, JS ) = RHS( 3 )
- F( IS, JSP1 ) = RHS( 4 )
- *
- * Substitute R(I, J) and L(I, J) into remaining
- * equation.
- *
- IF( I.GT.1 ) THEN
- CALL DGER( IS-1, NB, -ONE, A( 1, IS ), 1, RHS( 1 ),
- $ 1, C( 1, JS ), LDC )
- CALL DGER( IS-1, NB, -ONE, D( 1, IS ), 1, RHS( 1 ),
- $ 1, F( 1, JS ), LDF )
- END IF
- IF( J.LT.Q ) THEN
- CALL DAXPY( N-JE, RHS( 3 ), B( JS, JE+1 ), LDB,
- $ C( IS, JE+1 ), LDC )
- CALL DAXPY( N-JE, RHS( 3 ), E( JS, JE+1 ), LDE,
- $ F( IS, JE+1 ), LDF )
- CALL DAXPY( N-JE, RHS( 4 ), B( JSP1, JE+1 ), LDB,
- $ C( IS, JE+1 ), LDC )
- CALL DAXPY( N-JE, RHS( 4 ), E( JSP1, JE+1 ), LDE,
- $ F( IS, JE+1 ), LDF )
- END IF
- *
- ELSE IF( ( MB.EQ.2 ) .AND. ( NB.EQ.1 ) ) THEN
- *
- * Build a 4-by-4 system Z * x = RHS
- *
- Z( 1, 1 ) = A( IS, IS )
- Z( 2, 1 ) = A( ISP1, IS )
- Z( 3, 1 ) = D( IS, IS )
- Z( 4, 1 ) = ZERO
- *
- Z( 1, 2 ) = A( IS, ISP1 )
- Z( 2, 2 ) = A( ISP1, ISP1 )
- Z( 3, 2 ) = D( IS, ISP1 )
- Z( 4, 2 ) = D( ISP1, ISP1 )
- *
- Z( 1, 3 ) = -B( JS, JS )
- Z( 2, 3 ) = ZERO
- Z( 3, 3 ) = -E( JS, JS )
- Z( 4, 3 ) = ZERO
- *
- Z( 1, 4 ) = ZERO
- Z( 2, 4 ) = -B( JS, JS )
- Z( 3, 4 ) = ZERO
- Z( 4, 4 ) = -E( JS, JS )
- *
- * Set up right hand side(s)
- *
- RHS( 1 ) = C( IS, JS )
- RHS( 2 ) = C( ISP1, JS )
- RHS( 3 ) = F( IS, JS )
- RHS( 4 ) = F( ISP1, JS )
- *
- * Solve Z * x = RHS
- *
- CALL DGETC2( ZDIM, Z, LDZ, IPIV, JPIV, IERR )
- IF( IERR.GT.0 )
- $ INFO = IERR
- IF( IJOB.EQ.0 ) THEN
- CALL DGESC2( ZDIM, Z, LDZ, RHS, IPIV, JPIV,
- $ SCALOC )
- IF( SCALOC.NE.ONE ) THEN
- DO 70 K = 1, N
- CALL DSCAL( M, SCALOC, C( 1, K ), 1 )
- CALL DSCAL( M, SCALOC, F( 1, K ), 1 )
- 70 CONTINUE
- SCALE = SCALE*SCALOC
- END IF
- ELSE
- CALL DLATDF( IJOB, ZDIM, Z, LDZ, RHS, RDSUM,
- $ RDSCAL, IPIV, JPIV )
- END IF
- *
- * Unpack solution vector(s)
- *
- C( IS, JS ) = RHS( 1 )
- C( ISP1, JS ) = RHS( 2 )
- F( IS, JS ) = RHS( 3 )
- F( ISP1, JS ) = RHS( 4 )
- *
- * Substitute R(I, J) and L(I, J) into remaining
- * equation.
- *
- IF( I.GT.1 ) THEN
- CALL DGEMV( 'N', IS-1, MB, -ONE, A( 1, IS ), LDA,
- $ RHS( 1 ), 1, ONE, C( 1, JS ), 1 )
- CALL DGEMV( 'N', IS-1, MB, -ONE, D( 1, IS ), LDD,
- $ RHS( 1 ), 1, ONE, F( 1, JS ), 1 )
- END IF
- IF( J.LT.Q ) THEN
- CALL DGER( MB, N-JE, ONE, RHS( 3 ), 1,
- $ B( JS, JE+1 ), LDB, C( IS, JE+1 ), LDC )
- CALL DGER( MB, N-JE, ONE, RHS( 3 ), 1,
- $ E( JS, JE+1 ), LDE, F( IS, JE+1 ), LDF )
- END IF
- *
- ELSE IF( ( MB.EQ.2 ) .AND. ( NB.EQ.2 ) ) THEN
- *
- * Build an 8-by-8 system Z * x = RHS
- *
- CALL DLASET( 'F', LDZ, LDZ, ZERO, ZERO, Z, LDZ )
- *
- Z( 1, 1 ) = A( IS, IS )
- Z( 2, 1 ) = A( ISP1, IS )
- Z( 5, 1 ) = D( IS, IS )
- *
- Z( 1, 2 ) = A( IS, ISP1 )
- Z( 2, 2 ) = A( ISP1, ISP1 )
- Z( 5, 2 ) = D( IS, ISP1 )
- Z( 6, 2 ) = D( ISP1, ISP1 )
- *
- Z( 3, 3 ) = A( IS, IS )
- Z( 4, 3 ) = A( ISP1, IS )
- Z( 7, 3 ) = D( IS, IS )
- *
- Z( 3, 4 ) = A( IS, ISP1 )
- Z( 4, 4 ) = A( ISP1, ISP1 )
- Z( 7, 4 ) = D( IS, ISP1 )
- Z( 8, 4 ) = D( ISP1, ISP1 )
- *
- Z( 1, 5 ) = -B( JS, JS )
- Z( 3, 5 ) = -B( JS, JSP1 )
- Z( 5, 5 ) = -E( JS, JS )
- Z( 7, 5 ) = -E( JS, JSP1 )
- *
- Z( 2, 6 ) = -B( JS, JS )
- Z( 4, 6 ) = -B( JS, JSP1 )
- Z( 6, 6 ) = -E( JS, JS )
- Z( 8, 6 ) = -E( JS, JSP1 )
- *
- Z( 1, 7 ) = -B( JSP1, JS )
- Z( 3, 7 ) = -B( JSP1, JSP1 )
- Z( 7, 7 ) = -E( JSP1, JSP1 )
- *
- Z( 2, 8 ) = -B( JSP1, JS )
- Z( 4, 8 ) = -B( JSP1, JSP1 )
- Z( 8, 8 ) = -E( JSP1, JSP1 )
- *
- * Set up right hand side(s)
- *
- K = 1
- II = MB*NB + 1
- DO 80 JJ = 0, NB - 1
- CALL DCOPY( MB, C( IS, JS+JJ ), 1, RHS( K ), 1 )
- CALL DCOPY( MB, F( IS, JS+JJ ), 1, RHS( II ), 1 )
- K = K + MB
- II = II + MB
- 80 CONTINUE
- *
- * Solve Z * x = RHS
- *
- CALL DGETC2( ZDIM, Z, LDZ, IPIV, JPIV, IERR )
- IF( IERR.GT.0 )
- $ INFO = IERR
- IF( IJOB.EQ.0 ) THEN
- CALL DGESC2( ZDIM, Z, LDZ, RHS, IPIV, JPIV,
- $ SCALOC )
- IF( SCALOC.NE.ONE ) THEN
- DO 90 K = 1, N
- CALL DSCAL( M, SCALOC, C( 1, K ), 1 )
- CALL DSCAL( M, SCALOC, F( 1, K ), 1 )
- 90 CONTINUE
- SCALE = SCALE*SCALOC
- END IF
- ELSE
- CALL DLATDF( IJOB, ZDIM, Z, LDZ, RHS, RDSUM,
- $ RDSCAL, IPIV, JPIV )
- END IF
- *
- * Unpack solution vector(s)
- *
- K = 1
- II = MB*NB + 1
- DO 100 JJ = 0, NB - 1
- CALL DCOPY( MB, RHS( K ), 1, C( IS, JS+JJ ), 1 )
- CALL DCOPY( MB, RHS( II ), 1, F( IS, JS+JJ ), 1 )
- K = K + MB
- II = II + MB
- 100 CONTINUE
- *
- * Substitute R(I, J) and L(I, J) into remaining
- * equation.
- *
- IF( I.GT.1 ) THEN
- CALL DGEMM( 'N', 'N', IS-1, NB, MB, -ONE,
- $ A( 1, IS ), LDA, RHS( 1 ), MB, ONE,
- $ C( 1, JS ), LDC )
- CALL DGEMM( 'N', 'N', IS-1, NB, MB, -ONE,
- $ D( 1, IS ), LDD, RHS( 1 ), MB, ONE,
- $ F( 1, JS ), LDF )
- END IF
- IF( J.LT.Q ) THEN
- K = MB*NB + 1
- CALL DGEMM( 'N', 'N', MB, N-JE, NB, ONE, RHS( K ),
- $ MB, B( JS, JE+1 ), LDB, ONE,
- $ C( IS, JE+1 ), LDC )
- CALL DGEMM( 'N', 'N', MB, N-JE, NB, ONE, RHS( K ),
- $ MB, E( JS, JE+1 ), LDE, ONE,
- $ F( IS, JE+1 ), LDF )
- END IF
- *
- END IF
- *
- 110 CONTINUE
- 120 CONTINUE
- ELSE
- *
- * Solve (I, J) - subsystem
- * A(I, I)**T * R(I, J) + D(I, I)**T * L(J, J) = C(I, J)
- * R(I, I) * B(J, J) + L(I, J) * E(J, J) = -F(I, J)
- * for I = 1, 2, ..., P, J = Q, Q - 1, ..., 1
- *
- SCALE = ONE
- SCALOC = ONE
- DO 200 I = 1, P
- *
- IS = IWORK( I )
- ISP1 = IS + 1
- IE = IWORK ( I+1 ) - 1
- MB = IE - IS + 1
- DO 190 J = Q, P + 2, -1
- *
- JS = IWORK( J )
- JSP1 = JS + 1
- JE = IWORK( J+1 ) - 1
- NB = JE - JS + 1
- ZDIM = MB*NB*2
- IF( ( MB.EQ.1 ) .AND. ( NB.EQ.1 ) ) THEN
- *
- * Build a 2-by-2 system Z**T * x = RHS
- *
- Z( 1, 1 ) = A( IS, IS )
- Z( 2, 1 ) = -B( JS, JS )
- Z( 1, 2 ) = D( IS, IS )
- Z( 2, 2 ) = -E( JS, JS )
- *
- * Set up right hand side(s)
- *
- RHS( 1 ) = C( IS, JS )
- RHS( 2 ) = F( IS, JS )
- *
- * Solve Z**T * x = RHS
- *
- CALL DGETC2( ZDIM, Z, LDZ, IPIV, JPIV, IERR )
- IF( IERR.GT.0 )
- $ INFO = IERR
- *
- CALL DGESC2( ZDIM, Z, LDZ, RHS, IPIV, JPIV, SCALOC )
- IF( SCALOC.NE.ONE ) THEN
- DO 130 K = 1, N
- CALL DSCAL( M, SCALOC, C( 1, K ), 1 )
- CALL DSCAL( M, SCALOC, F( 1, K ), 1 )
- 130 CONTINUE
- SCALE = SCALE*SCALOC
- END IF
- *
- * Unpack solution vector(s)
- *
- C( IS, JS ) = RHS( 1 )
- F( IS, JS ) = RHS( 2 )
- *
- * Substitute R(I, J) and L(I, J) into remaining
- * equation.
- *
- IF( J.GT.P+2 ) THEN
- ALPHA = RHS( 1 )
- CALL DAXPY( JS-1, ALPHA, B( 1, JS ), 1, F( IS, 1 ),
- $ LDF )
- ALPHA = RHS( 2 )
- CALL DAXPY( JS-1, ALPHA, E( 1, JS ), 1, F( IS, 1 ),
- $ LDF )
- END IF
- IF( I.LT.P ) THEN
- ALPHA = -RHS( 1 )
- CALL DAXPY( M-IE, ALPHA, A( IS, IE+1 ), LDA,
- $ C( IE+1, JS ), 1 )
- ALPHA = -RHS( 2 )
- CALL DAXPY( M-IE, ALPHA, D( IS, IE+1 ), LDD,
- $ C( IE+1, JS ), 1 )
- END IF
- *
- ELSE IF( ( MB.EQ.1 ) .AND. ( NB.EQ.2 ) ) THEN
- *
- * Build a 4-by-4 system Z**T * x = RHS
- *
- Z( 1, 1 ) = A( IS, IS )
- Z( 2, 1 ) = ZERO
- Z( 3, 1 ) = -B( JS, JS )
- Z( 4, 1 ) = -B( JSP1, JS )
- *
- Z( 1, 2 ) = ZERO
- Z( 2, 2 ) = A( IS, IS )
- Z( 3, 2 ) = -B( JS, JSP1 )
- Z( 4, 2 ) = -B( JSP1, JSP1 )
- *
- Z( 1, 3 ) = D( IS, IS )
- Z( 2, 3 ) = ZERO
- Z( 3, 3 ) = -E( JS, JS )
- Z( 4, 3 ) = ZERO
- *
- Z( 1, 4 ) = ZERO
- Z( 2, 4 ) = D( IS, IS )
- Z( 3, 4 ) = -E( JS, JSP1 )
- Z( 4, 4 ) = -E( JSP1, JSP1 )
- *
- * Set up right hand side(s)
- *
- RHS( 1 ) = C( IS, JS )
- RHS( 2 ) = C( IS, JSP1 )
- RHS( 3 ) = F( IS, JS )
- RHS( 4 ) = F( IS, JSP1 )
- *
- * Solve Z**T * x = RHS
- *
- CALL DGETC2( ZDIM, Z, LDZ, IPIV, JPIV, IERR )
- IF( IERR.GT.0 )
- $ INFO = IERR
- CALL DGESC2( ZDIM, Z, LDZ, RHS, IPIV, JPIV, SCALOC )
- IF( SCALOC.NE.ONE ) THEN
- DO 140 K = 1, N
- CALL DSCAL( M, SCALOC, C( 1, K ), 1 )
- CALL DSCAL( M, SCALOC, F( 1, K ), 1 )
- 140 CONTINUE
- SCALE = SCALE*SCALOC
- END IF
- *
- * Unpack solution vector(s)
- *
- C( IS, JS ) = RHS( 1 )
- C( IS, JSP1 ) = RHS( 2 )
- F( IS, JS ) = RHS( 3 )
- F( IS, JSP1 ) = RHS( 4 )
- *
- * Substitute R(I, J) and L(I, J) into remaining
- * equation.
- *
- IF( J.GT.P+2 ) THEN
- CALL DAXPY( JS-1, RHS( 1 ), B( 1, JS ), 1,
- $ F( IS, 1 ), LDF )
- CALL DAXPY( JS-1, RHS( 2 ), B( 1, JSP1 ), 1,
- $ F( IS, 1 ), LDF )
- CALL DAXPY( JS-1, RHS( 3 ), E( 1, JS ), 1,
- $ F( IS, 1 ), LDF )
- CALL DAXPY( JS-1, RHS( 4 ), E( 1, JSP1 ), 1,
- $ F( IS, 1 ), LDF )
- END IF
- IF( I.LT.P ) THEN
- CALL DGER( M-IE, NB, -ONE, A( IS, IE+1 ), LDA,
- $ RHS( 1 ), 1, C( IE+1, JS ), LDC )
- CALL DGER( M-IE, NB, -ONE, D( IS, IE+1 ), LDD,
- $ RHS( 3 ), 1, C( IE+1, JS ), LDC )
- END IF
- *
- ELSE IF( ( MB.EQ.2 ) .AND. ( NB.EQ.1 ) ) THEN
- *
- * Build a 4-by-4 system Z**T * x = RHS
- *
- Z( 1, 1 ) = A( IS, IS )
- Z( 2, 1 ) = A( IS, ISP1 )
- Z( 3, 1 ) = -B( JS, JS )
- Z( 4, 1 ) = ZERO
- *
- Z( 1, 2 ) = A( ISP1, IS )
- Z( 2, 2 ) = A( ISP1, ISP1 )
- Z( 3, 2 ) = ZERO
- Z( 4, 2 ) = -B( JS, JS )
- *
- Z( 1, 3 ) = D( IS, IS )
- Z( 2, 3 ) = D( IS, ISP1 )
- Z( 3, 3 ) = -E( JS, JS )
- Z( 4, 3 ) = ZERO
- *
- Z( 1, 4 ) = ZERO
- Z( 2, 4 ) = D( ISP1, ISP1 )
- Z( 3, 4 ) = ZERO
- Z( 4, 4 ) = -E( JS, JS )
- *
- * Set up right hand side(s)
- *
- RHS( 1 ) = C( IS, JS )
- RHS( 2 ) = C( ISP1, JS )
- RHS( 3 ) = F( IS, JS )
- RHS( 4 ) = F( ISP1, JS )
- *
- * Solve Z**T * x = RHS
- *
- CALL DGETC2( ZDIM, Z, LDZ, IPIV, JPIV, IERR )
- IF( IERR.GT.0 )
- $ INFO = IERR
- *
- CALL DGESC2( ZDIM, Z, LDZ, RHS, IPIV, JPIV, SCALOC )
- IF( SCALOC.NE.ONE ) THEN
- DO 150 K = 1, N
- CALL DSCAL( M, SCALOC, C( 1, K ), 1 )
- CALL DSCAL( M, SCALOC, F( 1, K ), 1 )
- 150 CONTINUE
- SCALE = SCALE*SCALOC
- END IF
- *
- * Unpack solution vector(s)
- *
- C( IS, JS ) = RHS( 1 )
- C( ISP1, JS ) = RHS( 2 )
- F( IS, JS ) = RHS( 3 )
- F( ISP1, JS ) = RHS( 4 )
- *
- * Substitute R(I, J) and L(I, J) into remaining
- * equation.
- *
- IF( J.GT.P+2 ) THEN
- CALL DGER( MB, JS-1, ONE, RHS( 1 ), 1, B( 1, JS ),
- $ 1, F( IS, 1 ), LDF )
- CALL DGER( MB, JS-1, ONE, RHS( 3 ), 1, E( 1, JS ),
- $ 1, F( IS, 1 ), LDF )
- END IF
- IF( I.LT.P ) THEN
- CALL DGEMV( 'T', MB, M-IE, -ONE, A( IS, IE+1 ),
- $ LDA, RHS( 1 ), 1, ONE, C( IE+1, JS ),
- $ 1 )
- CALL DGEMV( 'T', MB, M-IE, -ONE, D( IS, IE+1 ),
- $ LDD, RHS( 3 ), 1, ONE, C( IE+1, JS ),
- $ 1 )
- END IF
- *
- ELSE IF( ( MB.EQ.2 ) .AND. ( NB.EQ.2 ) ) THEN
- *
- * Build an 8-by-8 system Z**T * x = RHS
- *
- CALL DLASET( 'F', LDZ, LDZ, ZERO, ZERO, Z, LDZ )
- *
- Z( 1, 1 ) = A( IS, IS )
- Z( 2, 1 ) = A( IS, ISP1 )
- Z( 5, 1 ) = -B( JS, JS )
- Z( 7, 1 ) = -B( JSP1, JS )
- *
- Z( 1, 2 ) = A( ISP1, IS )
- Z( 2, 2 ) = A( ISP1, ISP1 )
- Z( 6, 2 ) = -B( JS, JS )
- Z( 8, 2 ) = -B( JSP1, JS )
- *
- Z( 3, 3 ) = A( IS, IS )
- Z( 4, 3 ) = A( IS, ISP1 )
- Z( 5, 3 ) = -B( JS, JSP1 )
- Z( 7, 3 ) = -B( JSP1, JSP1 )
- *
- Z( 3, 4 ) = A( ISP1, IS )
- Z( 4, 4 ) = A( ISP1, ISP1 )
- Z( 6, 4 ) = -B( JS, JSP1 )
- Z( 8, 4 ) = -B( JSP1, JSP1 )
- *
- Z( 1, 5 ) = D( IS, IS )
- Z( 2, 5 ) = D( IS, ISP1 )
- Z( 5, 5 ) = -E( JS, JS )
- *
- Z( 2, 6 ) = D( ISP1, ISP1 )
- Z( 6, 6 ) = -E( JS, JS )
- *
- Z( 3, 7 ) = D( IS, IS )
- Z( 4, 7 ) = D( IS, ISP1 )
- Z( 5, 7 ) = -E( JS, JSP1 )
- Z( 7, 7 ) = -E( JSP1, JSP1 )
- *
- Z( 4, 8 ) = D( ISP1, ISP1 )
- Z( 6, 8 ) = -E( JS, JSP1 )
- Z( 8, 8 ) = -E( JSP1, JSP1 )
- *
- * Set up right hand side(s)
- *
- K = 1
- II = MB*NB + 1
- DO 160 JJ = 0, NB - 1
- CALL DCOPY( MB, C( IS, JS+JJ ), 1, RHS( K ), 1 )
- CALL DCOPY( MB, F( IS, JS+JJ ), 1, RHS( II ), 1 )
- K = K + MB
- II = II + MB
- 160 CONTINUE
- *
- *
- * Solve Z**T * x = RHS
- *
- CALL DGETC2( ZDIM, Z, LDZ, IPIV, JPIV, IERR )
- IF( IERR.GT.0 )
- $ INFO = IERR
- *
- CALL DGESC2( ZDIM, Z, LDZ, RHS, IPIV, JPIV, SCALOC )
- IF( SCALOC.NE.ONE ) THEN
- DO 170 K = 1, N
- CALL DSCAL( M, SCALOC, C( 1, K ), 1 )
- CALL DSCAL( M, SCALOC, F( 1, K ), 1 )
- 170 CONTINUE
- SCALE = SCALE*SCALOC
- END IF
- *
- * Unpack solution vector(s)
- *
- K = 1
- II = MB*NB + 1
- DO 180 JJ = 0, NB - 1
- CALL DCOPY( MB, RHS( K ), 1, C( IS, JS+JJ ), 1 )
- CALL DCOPY( MB, RHS( II ), 1, F( IS, JS+JJ ), 1 )
- K = K + MB
- II = II + MB
- 180 CONTINUE
- *
- * Substitute R(I, J) and L(I, J) into remaining
- * equation.
- *
- IF( J.GT.P+2 ) THEN
- CALL DGEMM( 'N', 'T', MB, JS-1, NB, ONE,
- $ C( IS, JS ), LDC, B( 1, JS ), LDB, ONE,
- $ F( IS, 1 ), LDF )
- CALL DGEMM( 'N', 'T', MB, JS-1, NB, ONE,
- $ F( IS, JS ), LDF, E( 1, JS ), LDE, ONE,
- $ F( IS, 1 ), LDF )
- END IF
- IF( I.LT.P ) THEN
- CALL DGEMM( 'T', 'N', M-IE, NB, MB, -ONE,
- $ A( IS, IE+1 ), LDA, C( IS, JS ), LDC,
- $ ONE, C( IE+1, JS ), LDC )
- CALL DGEMM( 'T', 'N', M-IE, NB, MB, -ONE,
- $ D( IS, IE+1 ), LDD, F( IS, JS ), LDF,
- $ ONE, C( IE+1, JS ), LDC )
- END IF
- *
- END IF
- *
- 190 CONTINUE
- 200 CONTINUE
- *
- END IF
- RETURN
- *
- * End of DTGSY2
- *
- END
|