You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

dlarrc.f 6.6 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251
  1. *> \brief \b DLARRC computes the number of eigenvalues of the symmetric tridiagonal matrix.
  2. *
  3. * =========== DOCUMENTATION ===========
  4. *
  5. * Online html documentation available at
  6. * http://www.netlib.org/lapack/explore-html/
  7. *
  8. *> \htmlonly
  9. *> Download DLARRC + dependencies
  10. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dlarrc.f">
  11. *> [TGZ]</a>
  12. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dlarrc.f">
  13. *> [ZIP]</a>
  14. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dlarrc.f">
  15. *> [TXT]</a>
  16. *> \endhtmlonly
  17. *
  18. * Definition:
  19. * ===========
  20. *
  21. * SUBROUTINE DLARRC( JOBT, N, VL, VU, D, E, PIVMIN,
  22. * EIGCNT, LCNT, RCNT, INFO )
  23. *
  24. * .. Scalar Arguments ..
  25. * CHARACTER JOBT
  26. * INTEGER EIGCNT, INFO, LCNT, N, RCNT
  27. * DOUBLE PRECISION PIVMIN, VL, VU
  28. * ..
  29. * .. Array Arguments ..
  30. * DOUBLE PRECISION D( * ), E( * )
  31. * ..
  32. *
  33. *
  34. *> \par Purpose:
  35. * =============
  36. *>
  37. *> \verbatim
  38. *>
  39. *> Find the number of eigenvalues of the symmetric tridiagonal matrix T
  40. *> that are in the interval (VL,VU] if JOBT = 'T', and of L D L^T
  41. *> if JOBT = 'L'.
  42. *> \endverbatim
  43. *
  44. * Arguments:
  45. * ==========
  46. *
  47. *> \param[in] JOBT
  48. *> \verbatim
  49. *> JOBT is CHARACTER*1
  50. *> = 'T': Compute Sturm count for matrix T.
  51. *> = 'L': Compute Sturm count for matrix L D L^T.
  52. *> \endverbatim
  53. *>
  54. *> \param[in] N
  55. *> \verbatim
  56. *> N is INTEGER
  57. *> The order of the matrix. N > 0.
  58. *> \endverbatim
  59. *>
  60. *> \param[in] VL
  61. *> \verbatim
  62. *> VL is DOUBLE PRECISION
  63. *> The lower bound for the eigenvalues.
  64. *> \endverbatim
  65. *>
  66. *> \param[in] VU
  67. *> \verbatim
  68. *> VU is DOUBLE PRECISION
  69. *> The upper bound for the eigenvalues.
  70. *> \endverbatim
  71. *>
  72. *> \param[in] D
  73. *> \verbatim
  74. *> D is DOUBLE PRECISION array, dimension (N)
  75. *> JOBT = 'T': The N diagonal elements of the tridiagonal matrix T.
  76. *> JOBT = 'L': The N diagonal elements of the diagonal matrix D.
  77. *> \endverbatim
  78. *>
  79. *> \param[in] E
  80. *> \verbatim
  81. *> E is DOUBLE PRECISION array, dimension (N)
  82. *> JOBT = 'T': The N-1 offdiagonal elements of the matrix T.
  83. *> JOBT = 'L': The N-1 offdiagonal elements of the matrix L.
  84. *> \endverbatim
  85. *>
  86. *> \param[in] PIVMIN
  87. *> \verbatim
  88. *> PIVMIN is DOUBLE PRECISION
  89. *> The minimum pivot in the Sturm sequence for T.
  90. *> \endverbatim
  91. *>
  92. *> \param[out] EIGCNT
  93. *> \verbatim
  94. *> EIGCNT is INTEGER
  95. *> The number of eigenvalues of the symmetric tridiagonal matrix T
  96. *> that are in the interval (VL,VU]
  97. *> \endverbatim
  98. *>
  99. *> \param[out] LCNT
  100. *> \verbatim
  101. *> LCNT is INTEGER
  102. *> \endverbatim
  103. *>
  104. *> \param[out] RCNT
  105. *> \verbatim
  106. *> RCNT is INTEGER
  107. *> The left and right negcounts of the interval.
  108. *> \endverbatim
  109. *>
  110. *> \param[out] INFO
  111. *> \verbatim
  112. *> INFO is INTEGER
  113. *> \endverbatim
  114. *
  115. * Authors:
  116. * ========
  117. *
  118. *> \author Univ. of Tennessee
  119. *> \author Univ. of California Berkeley
  120. *> \author Univ. of Colorado Denver
  121. *> \author NAG Ltd.
  122. *
  123. *> \date June 2016
  124. *
  125. *> \ingroup OTHERauxiliary
  126. *
  127. *> \par Contributors:
  128. * ==================
  129. *>
  130. *> Beresford Parlett, University of California, Berkeley, USA \n
  131. *> Jim Demmel, University of California, Berkeley, USA \n
  132. *> Inderjit Dhillon, University of Texas, Austin, USA \n
  133. *> Osni Marques, LBNL/NERSC, USA \n
  134. *> Christof Voemel, University of California, Berkeley, USA
  135. *
  136. * =====================================================================
  137. SUBROUTINE DLARRC( JOBT, N, VL, VU, D, E, PIVMIN,
  138. $ EIGCNT, LCNT, RCNT, INFO )
  139. *
  140. * -- LAPACK auxiliary routine (version 3.7.1) --
  141. * -- LAPACK is a software package provided by Univ. of Tennessee, --
  142. * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
  143. * June 2016
  144. *
  145. * .. Scalar Arguments ..
  146. CHARACTER JOBT
  147. INTEGER EIGCNT, INFO, LCNT, N, RCNT
  148. DOUBLE PRECISION PIVMIN, VL, VU
  149. * ..
  150. * .. Array Arguments ..
  151. DOUBLE PRECISION D( * ), E( * )
  152. * ..
  153. *
  154. * =====================================================================
  155. *
  156. * .. Parameters ..
  157. DOUBLE PRECISION ZERO
  158. PARAMETER ( ZERO = 0.0D0 )
  159. * ..
  160. * .. Local Scalars ..
  161. INTEGER I
  162. LOGICAL MATT
  163. DOUBLE PRECISION LPIVOT, RPIVOT, SL, SU, TMP, TMP2
  164. * ..
  165. * .. External Functions ..
  166. LOGICAL LSAME
  167. EXTERNAL LSAME
  168. * ..
  169. * .. Executable Statements ..
  170. *
  171. INFO = 0
  172. *
  173. * Quick return if possible
  174. *
  175. IF( N.LE.0 ) THEN
  176. RETURN
  177. END IF
  178. *
  179. LCNT = 0
  180. RCNT = 0
  181. EIGCNT = 0
  182. MATT = LSAME( JOBT, 'T' )
  183. IF (MATT) THEN
  184. * Sturm sequence count on T
  185. LPIVOT = D( 1 ) - VL
  186. RPIVOT = D( 1 ) - VU
  187. IF( LPIVOT.LE.ZERO ) THEN
  188. LCNT = LCNT + 1
  189. ENDIF
  190. IF( RPIVOT.LE.ZERO ) THEN
  191. RCNT = RCNT + 1
  192. ENDIF
  193. DO 10 I = 1, N-1
  194. TMP = E(I)**2
  195. LPIVOT = ( D( I+1 )-VL ) - TMP/LPIVOT
  196. RPIVOT = ( D( I+1 )-VU ) - TMP/RPIVOT
  197. IF( LPIVOT.LE.ZERO ) THEN
  198. LCNT = LCNT + 1
  199. ENDIF
  200. IF( RPIVOT.LE.ZERO ) THEN
  201. RCNT = RCNT + 1
  202. ENDIF
  203. 10 CONTINUE
  204. ELSE
  205. * Sturm sequence count on L D L^T
  206. SL = -VL
  207. SU = -VU
  208. DO 20 I = 1, N - 1
  209. LPIVOT = D( I ) + SL
  210. RPIVOT = D( I ) + SU
  211. IF( LPIVOT.LE.ZERO ) THEN
  212. LCNT = LCNT + 1
  213. ENDIF
  214. IF( RPIVOT.LE.ZERO ) THEN
  215. RCNT = RCNT + 1
  216. ENDIF
  217. TMP = E(I) * D(I) * E(I)
  218. *
  219. TMP2 = TMP / LPIVOT
  220. IF( TMP2.EQ.ZERO ) THEN
  221. SL = TMP - VL
  222. ELSE
  223. SL = SL*TMP2 - VL
  224. END IF
  225. *
  226. TMP2 = TMP / RPIVOT
  227. IF( TMP2.EQ.ZERO ) THEN
  228. SU = TMP - VU
  229. ELSE
  230. SU = SU*TMP2 - VU
  231. END IF
  232. 20 CONTINUE
  233. LPIVOT = D( N ) + SL
  234. RPIVOT = D( N ) + SU
  235. IF( LPIVOT.LE.ZERO ) THEN
  236. LCNT = LCNT + 1
  237. ENDIF
  238. IF( RPIVOT.LE.ZERO ) THEN
  239. RCNT = RCNT + 1
  240. ENDIF
  241. ENDIF
  242. EIGCNT = RCNT - LCNT
  243. RETURN
  244. *
  245. * end of DLARRC
  246. *
  247. END