You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

dlaqr0.f 27 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740
  1. *> \brief \b DLAQR0 computes the eigenvalues of a Hessenberg matrix, and optionally the matrices from the Schur decomposition.
  2. *
  3. * =========== DOCUMENTATION ===========
  4. *
  5. * Online html documentation available at
  6. * http://www.netlib.org/lapack/explore-html/
  7. *
  8. *> \htmlonly
  9. *> Download DLAQR0 + dependencies
  10. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dlaqr0.f">
  11. *> [TGZ]</a>
  12. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dlaqr0.f">
  13. *> [ZIP]</a>
  14. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dlaqr0.f">
  15. *> [TXT]</a>
  16. *> \endhtmlonly
  17. *
  18. * Definition:
  19. * ===========
  20. *
  21. * SUBROUTINE DLAQR0( WANTT, WANTZ, N, ILO, IHI, H, LDH, WR, WI,
  22. * ILOZ, IHIZ, Z, LDZ, WORK, LWORK, INFO )
  23. *
  24. * .. Scalar Arguments ..
  25. * INTEGER IHI, IHIZ, ILO, ILOZ, INFO, LDH, LDZ, LWORK, N
  26. * LOGICAL WANTT, WANTZ
  27. * ..
  28. * .. Array Arguments ..
  29. * DOUBLE PRECISION H( LDH, * ), WI( * ), WORK( * ), WR( * ),
  30. * $ Z( LDZ, * )
  31. * ..
  32. *
  33. *
  34. *> \par Purpose:
  35. * =============
  36. *>
  37. *> \verbatim
  38. *>
  39. *> DLAQR0 computes the eigenvalues of a Hessenberg matrix H
  40. *> and, optionally, the matrices T and Z from the Schur decomposition
  41. *> H = Z T Z**T, where T is an upper quasi-triangular matrix (the
  42. *> Schur form), and Z is the orthogonal matrix of Schur vectors.
  43. *>
  44. *> Optionally Z may be postmultiplied into an input orthogonal
  45. *> matrix Q so that this routine can give the Schur factorization
  46. *> of a matrix A which has been reduced to the Hessenberg form H
  47. *> by the orthogonal matrix Q: A = Q*H*Q**T = (QZ)*T*(QZ)**T.
  48. *> \endverbatim
  49. *
  50. * Arguments:
  51. * ==========
  52. *
  53. *> \param[in] WANTT
  54. *> \verbatim
  55. *> WANTT is LOGICAL
  56. *> = .TRUE. : the full Schur form T is required;
  57. *> = .FALSE.: only eigenvalues are required.
  58. *> \endverbatim
  59. *>
  60. *> \param[in] WANTZ
  61. *> \verbatim
  62. *> WANTZ is LOGICAL
  63. *> = .TRUE. : the matrix of Schur vectors Z is required;
  64. *> = .FALSE.: Schur vectors are not required.
  65. *> \endverbatim
  66. *>
  67. *> \param[in] N
  68. *> \verbatim
  69. *> N is INTEGER
  70. *> The order of the matrix H. N .GE. 0.
  71. *> \endverbatim
  72. *>
  73. *> \param[in] ILO
  74. *> \verbatim
  75. *> ILO is INTEGER
  76. *> \endverbatim
  77. *>
  78. *> \param[in] IHI
  79. *> \verbatim
  80. *> IHI is INTEGER
  81. *> It is assumed that H is already upper triangular in rows
  82. *> and columns 1:ILO-1 and IHI+1:N and, if ILO.GT.1,
  83. *> H(ILO,ILO-1) is zero. ILO and IHI are normally set by a
  84. *> previous call to DGEBAL, and then passed to DGEHRD when the
  85. *> matrix output by DGEBAL is reduced to Hessenberg form.
  86. *> Otherwise, ILO and IHI should be set to 1 and N,
  87. *> respectively. If N.GT.0, then 1.LE.ILO.LE.IHI.LE.N.
  88. *> If N = 0, then ILO = 1 and IHI = 0.
  89. *> \endverbatim
  90. *>
  91. *> \param[in,out] H
  92. *> \verbatim
  93. *> H is DOUBLE PRECISION array, dimension (LDH,N)
  94. *> On entry, the upper Hessenberg matrix H.
  95. *> On exit, if INFO = 0 and WANTT is .TRUE., then H contains
  96. *> the upper quasi-triangular matrix T from the Schur
  97. *> decomposition (the Schur form); 2-by-2 diagonal blocks
  98. *> (corresponding to complex conjugate pairs of eigenvalues)
  99. *> are returned in standard form, with H(i,i) = H(i+1,i+1)
  100. *> and H(i+1,i)*H(i,i+1).LT.0. If INFO = 0 and WANTT is
  101. *> .FALSE., then the contents of H are unspecified on exit.
  102. *> (The output value of H when INFO.GT.0 is given under the
  103. *> description of INFO below.)
  104. *>
  105. *> This subroutine may explicitly set H(i,j) = 0 for i.GT.j and
  106. *> j = 1, 2, ... ILO-1 or j = IHI+1, IHI+2, ... N.
  107. *> \endverbatim
  108. *>
  109. *> \param[in] LDH
  110. *> \verbatim
  111. *> LDH is INTEGER
  112. *> The leading dimension of the array H. LDH .GE. max(1,N).
  113. *> \endverbatim
  114. *>
  115. *> \param[out] WR
  116. *> \verbatim
  117. *> WR is DOUBLE PRECISION array, dimension (IHI)
  118. *> \endverbatim
  119. *>
  120. *> \param[out] WI
  121. *> \verbatim
  122. *> WI is DOUBLE PRECISION array, dimension (IHI)
  123. *> The real and imaginary parts, respectively, of the computed
  124. *> eigenvalues of H(ILO:IHI,ILO:IHI) are stored in WR(ILO:IHI)
  125. *> and WI(ILO:IHI). If two eigenvalues are computed as a
  126. *> complex conjugate pair, they are stored in consecutive
  127. *> elements of WR and WI, say the i-th and (i+1)th, with
  128. *> WI(i) .GT. 0 and WI(i+1) .LT. 0. If WANTT is .TRUE., then
  129. *> the eigenvalues are stored in the same order as on the
  130. *> diagonal of the Schur form returned in H, with
  131. *> WR(i) = H(i,i) and, if H(i:i+1,i:i+1) is a 2-by-2 diagonal
  132. *> block, WI(i) = sqrt(-H(i+1,i)*H(i,i+1)) and
  133. *> WI(i+1) = -WI(i).
  134. *> \endverbatim
  135. *>
  136. *> \param[in] ILOZ
  137. *> \verbatim
  138. *> ILOZ is INTEGER
  139. *> \endverbatim
  140. *>
  141. *> \param[in] IHIZ
  142. *> \verbatim
  143. *> IHIZ is INTEGER
  144. *> Specify the rows of Z to which transformations must be
  145. *> applied if WANTZ is .TRUE..
  146. *> 1 .LE. ILOZ .LE. ILO; IHI .LE. IHIZ .LE. N.
  147. *> \endverbatim
  148. *>
  149. *> \param[in,out] Z
  150. *> \verbatim
  151. *> Z is DOUBLE PRECISION array, dimension (LDZ,IHI)
  152. *> If WANTZ is .FALSE., then Z is not referenced.
  153. *> If WANTZ is .TRUE., then Z(ILO:IHI,ILOZ:IHIZ) is
  154. *> replaced by Z(ILO:IHI,ILOZ:IHIZ)*U where U is the
  155. *> orthogonal Schur factor of H(ILO:IHI,ILO:IHI).
  156. *> (The output value of Z when INFO.GT.0 is given under
  157. *> the description of INFO below.)
  158. *> \endverbatim
  159. *>
  160. *> \param[in] LDZ
  161. *> \verbatim
  162. *> LDZ is INTEGER
  163. *> The leading dimension of the array Z. if WANTZ is .TRUE.
  164. *> then LDZ.GE.MAX(1,IHIZ). Otherwize, LDZ.GE.1.
  165. *> \endverbatim
  166. *>
  167. *> \param[out] WORK
  168. *> \verbatim
  169. *> WORK is DOUBLE PRECISION array, dimension LWORK
  170. *> On exit, if LWORK = -1, WORK(1) returns an estimate of
  171. *> the optimal value for LWORK.
  172. *> \endverbatim
  173. *>
  174. *> \param[in] LWORK
  175. *> \verbatim
  176. *> LWORK is INTEGER
  177. *> The dimension of the array WORK. LWORK .GE. max(1,N)
  178. *> is sufficient, but LWORK typically as large as 6*N may
  179. *> be required for optimal performance. A workspace query
  180. *> to determine the optimal workspace size is recommended.
  181. *>
  182. *> If LWORK = -1, then DLAQR0 does a workspace query.
  183. *> In this case, DLAQR0 checks the input parameters and
  184. *> estimates the optimal workspace size for the given
  185. *> values of N, ILO and IHI. The estimate is returned
  186. *> in WORK(1). No error message related to LWORK is
  187. *> issued by XERBLA. Neither H nor Z are accessed.
  188. *> \endverbatim
  189. *>
  190. *> \param[out] INFO
  191. *> \verbatim
  192. *> INFO is INTEGER
  193. *> = 0: successful exit
  194. *> .GT. 0: if INFO = i, DLAQR0 failed to compute all of
  195. *> the eigenvalues. Elements 1:ilo-1 and i+1:n of WR
  196. *> and WI contain those eigenvalues which have been
  197. *> successfully computed. (Failures are rare.)
  198. *>
  199. *> If INFO .GT. 0 and WANT is .FALSE., then on exit,
  200. *> the remaining unconverged eigenvalues are the eigen-
  201. *> values of the upper Hessenberg matrix rows and
  202. *> columns ILO through INFO of the final, output
  203. *> value of H.
  204. *>
  205. *> If INFO .GT. 0 and WANTT is .TRUE., then on exit
  206. *>
  207. *> (*) (initial value of H)*U = U*(final value of H)
  208. *>
  209. *> where U is an orthogonal matrix. The final
  210. *> value of H is upper Hessenberg and quasi-triangular
  211. *> in rows and columns INFO+1 through IHI.
  212. *>
  213. *> If INFO .GT. 0 and WANTZ is .TRUE., then on exit
  214. *>
  215. *> (final value of Z(ILO:IHI,ILOZ:IHIZ)
  216. *> = (initial value of Z(ILO:IHI,ILOZ:IHIZ)*U
  217. *>
  218. *> where U is the orthogonal matrix in (*) (regard-
  219. *> less of the value of WANTT.)
  220. *>
  221. *> If INFO .GT. 0 and WANTZ is .FALSE., then Z is not
  222. *> accessed.
  223. *> \endverbatim
  224. *
  225. *> \par Contributors:
  226. * ==================
  227. *>
  228. *> Karen Braman and Ralph Byers, Department of Mathematics,
  229. *> University of Kansas, USA
  230. *
  231. *> \par References:
  232. * ================
  233. *>
  234. *> K. Braman, R. Byers and R. Mathias, The Multi-Shift QR
  235. *> Algorithm Part I: Maintaining Well Focused Shifts, and Level 3
  236. *> Performance, SIAM Journal of Matrix Analysis, volume 23, pages
  237. *> 929--947, 2002.
  238. *> \n
  239. *> K. Braman, R. Byers and R. Mathias, The Multi-Shift QR
  240. *> Algorithm Part II: Aggressive Early Deflation, SIAM Journal
  241. *> of Matrix Analysis, volume 23, pages 948--973, 2002.
  242. *
  243. * Authors:
  244. * ========
  245. *
  246. *> \author Univ. of Tennessee
  247. *> \author Univ. of California Berkeley
  248. *> \author Univ. of Colorado Denver
  249. *> \author NAG Ltd.
  250. *
  251. *> \date December 2016
  252. *
  253. *> \ingroup doubleOTHERauxiliary
  254. *
  255. * =====================================================================
  256. SUBROUTINE DLAQR0( WANTT, WANTZ, N, ILO, IHI, H, LDH, WR, WI,
  257. $ ILOZ, IHIZ, Z, LDZ, WORK, LWORK, INFO )
  258. *
  259. * -- LAPACK auxiliary routine (version 3.7.0) --
  260. * -- LAPACK is a software package provided by Univ. of Tennessee, --
  261. * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
  262. * December 2016
  263. *
  264. * .. Scalar Arguments ..
  265. INTEGER IHI, IHIZ, ILO, ILOZ, INFO, LDH, LDZ, LWORK, N
  266. LOGICAL WANTT, WANTZ
  267. * ..
  268. * .. Array Arguments ..
  269. DOUBLE PRECISION H( LDH, * ), WI( * ), WORK( * ), WR( * ),
  270. $ Z( LDZ, * )
  271. * ..
  272. *
  273. * ================================================================
  274. *
  275. * .. Parameters ..
  276. *
  277. * ==== Matrices of order NTINY or smaller must be processed by
  278. * . DLAHQR because of insufficient subdiagonal scratch space.
  279. * . (This is a hard limit.) ====
  280. INTEGER NTINY
  281. PARAMETER ( NTINY = 11 )
  282. *
  283. * ==== Exceptional deflation windows: try to cure rare
  284. * . slow convergence by varying the size of the
  285. * . deflation window after KEXNW iterations. ====
  286. INTEGER KEXNW
  287. PARAMETER ( KEXNW = 5 )
  288. *
  289. * ==== Exceptional shifts: try to cure rare slow convergence
  290. * . with ad-hoc exceptional shifts every KEXSH iterations.
  291. * . ====
  292. INTEGER KEXSH
  293. PARAMETER ( KEXSH = 6 )
  294. *
  295. * ==== The constants WILK1 and WILK2 are used to form the
  296. * . exceptional shifts. ====
  297. DOUBLE PRECISION WILK1, WILK2
  298. PARAMETER ( WILK1 = 0.75d0, WILK2 = -0.4375d0 )
  299. DOUBLE PRECISION ZERO, ONE
  300. PARAMETER ( ZERO = 0.0d0, ONE = 1.0d0 )
  301. * ..
  302. * .. Local Scalars ..
  303. DOUBLE PRECISION AA, BB, CC, CS, DD, SN, SS, SWAP
  304. INTEGER I, INF, IT, ITMAX, K, KACC22, KBOT, KDU, KS,
  305. $ KT, KTOP, KU, KV, KWH, KWTOP, KWV, LD, LS,
  306. $ LWKOPT, NDEC, NDFL, NH, NHO, NIBBLE, NMIN, NS,
  307. $ NSMAX, NSR, NVE, NW, NWMAX, NWR, NWUPBD
  308. LOGICAL SORTED
  309. CHARACTER JBCMPZ*2
  310. * ..
  311. * .. External Functions ..
  312. INTEGER ILAENV
  313. EXTERNAL ILAENV
  314. * ..
  315. * .. Local Arrays ..
  316. DOUBLE PRECISION ZDUM( 1, 1 )
  317. * ..
  318. * .. External Subroutines ..
  319. EXTERNAL DLACPY, DLAHQR, DLANV2, DLAQR3, DLAQR4, DLAQR5
  320. * ..
  321. * .. Intrinsic Functions ..
  322. INTRINSIC ABS, DBLE, INT, MAX, MIN, MOD
  323. * ..
  324. * .. Executable Statements ..
  325. INFO = 0
  326. *
  327. * ==== Quick return for N = 0: nothing to do. ====
  328. *
  329. IF( N.EQ.0 ) THEN
  330. WORK( 1 ) = ONE
  331. RETURN
  332. END IF
  333. *
  334. IF( N.LE.NTINY ) THEN
  335. *
  336. * ==== Tiny matrices must use DLAHQR. ====
  337. *
  338. LWKOPT = 1
  339. IF( LWORK.NE.-1 )
  340. $ CALL DLAHQR( WANTT, WANTZ, N, ILO, IHI, H, LDH, WR, WI,
  341. $ ILOZ, IHIZ, Z, LDZ, INFO )
  342. ELSE
  343. *
  344. * ==== Use small bulge multi-shift QR with aggressive early
  345. * . deflation on larger-than-tiny matrices. ====
  346. *
  347. * ==== Hope for the best. ====
  348. *
  349. INFO = 0
  350. *
  351. * ==== Set up job flags for ILAENV. ====
  352. *
  353. IF( WANTT ) THEN
  354. JBCMPZ( 1: 1 ) = 'S'
  355. ELSE
  356. JBCMPZ( 1: 1 ) = 'E'
  357. END IF
  358. IF( WANTZ ) THEN
  359. JBCMPZ( 2: 2 ) = 'V'
  360. ELSE
  361. JBCMPZ( 2: 2 ) = 'N'
  362. END IF
  363. *
  364. * ==== NWR = recommended deflation window size. At this
  365. * . point, N .GT. NTINY = 11, so there is enough
  366. * . subdiagonal workspace for NWR.GE.2 as required.
  367. * . (In fact, there is enough subdiagonal space for
  368. * . NWR.GE.3.) ====
  369. *
  370. NWR = ILAENV( 13, 'DLAQR0', JBCMPZ, N, ILO, IHI, LWORK )
  371. NWR = MAX( 2, NWR )
  372. NWR = MIN( IHI-ILO+1, ( N-1 ) / 3, NWR )
  373. *
  374. * ==== NSR = recommended number of simultaneous shifts.
  375. * . At this point N .GT. NTINY = 11, so there is at
  376. * . enough subdiagonal workspace for NSR to be even
  377. * . and greater than or equal to two as required. ====
  378. *
  379. NSR = ILAENV( 15, 'DLAQR0', JBCMPZ, N, ILO, IHI, LWORK )
  380. NSR = MIN( NSR, ( N+6 ) / 9, IHI-ILO )
  381. NSR = MAX( 2, NSR-MOD( NSR, 2 ) )
  382. *
  383. * ==== Estimate optimal workspace ====
  384. *
  385. * ==== Workspace query call to DLAQR3 ====
  386. *
  387. CALL DLAQR3( WANTT, WANTZ, N, ILO, IHI, NWR+1, H, LDH, ILOZ,
  388. $ IHIZ, Z, LDZ, LS, LD, WR, WI, H, LDH, N, H, LDH,
  389. $ N, H, LDH, WORK, -1 )
  390. *
  391. * ==== Optimal workspace = MAX(DLAQR5, DLAQR3) ====
  392. *
  393. LWKOPT = MAX( 3*NSR / 2, INT( WORK( 1 ) ) )
  394. *
  395. * ==== Quick return in case of workspace query. ====
  396. *
  397. IF( LWORK.EQ.-1 ) THEN
  398. WORK( 1 ) = DBLE( LWKOPT )
  399. RETURN
  400. END IF
  401. *
  402. * ==== DLAHQR/DLAQR0 crossover point ====
  403. *
  404. NMIN = ILAENV( 12, 'DLAQR0', JBCMPZ, N, ILO, IHI, LWORK )
  405. NMIN = MAX( NTINY, NMIN )
  406. *
  407. * ==== Nibble crossover point ====
  408. *
  409. NIBBLE = ILAENV( 14, 'DLAQR0', JBCMPZ, N, ILO, IHI, LWORK )
  410. NIBBLE = MAX( 0, NIBBLE )
  411. *
  412. * ==== Accumulate reflections during ttswp? Use block
  413. * . 2-by-2 structure during matrix-matrix multiply? ====
  414. *
  415. KACC22 = ILAENV( 16, 'DLAQR0', JBCMPZ, N, ILO, IHI, LWORK )
  416. KACC22 = MAX( 0, KACC22 )
  417. KACC22 = MIN( 2, KACC22 )
  418. *
  419. * ==== NWMAX = the largest possible deflation window for
  420. * . which there is sufficient workspace. ====
  421. *
  422. NWMAX = MIN( ( N-1 ) / 3, LWORK / 2 )
  423. NW = NWMAX
  424. *
  425. * ==== NSMAX = the Largest number of simultaneous shifts
  426. * . for which there is sufficient workspace. ====
  427. *
  428. NSMAX = MIN( ( N+6 ) / 9, 2*LWORK / 3 )
  429. NSMAX = NSMAX - MOD( NSMAX, 2 )
  430. *
  431. * ==== NDFL: an iteration count restarted at deflation. ====
  432. *
  433. NDFL = 1
  434. *
  435. * ==== ITMAX = iteration limit ====
  436. *
  437. ITMAX = MAX( 30, 2*KEXSH )*MAX( 10, ( IHI-ILO+1 ) )
  438. *
  439. * ==== Last row and column in the active block ====
  440. *
  441. KBOT = IHI
  442. *
  443. * ==== Main Loop ====
  444. *
  445. DO 80 IT = 1, ITMAX
  446. *
  447. * ==== Done when KBOT falls below ILO ====
  448. *
  449. IF( KBOT.LT.ILO )
  450. $ GO TO 90
  451. *
  452. * ==== Locate active block ====
  453. *
  454. DO 10 K = KBOT, ILO + 1, -1
  455. IF( H( K, K-1 ).EQ.ZERO )
  456. $ GO TO 20
  457. 10 CONTINUE
  458. K = ILO
  459. 20 CONTINUE
  460. KTOP = K
  461. *
  462. * ==== Select deflation window size:
  463. * . Typical Case:
  464. * . If possible and advisable, nibble the entire
  465. * . active block. If not, use size MIN(NWR,NWMAX)
  466. * . or MIN(NWR+1,NWMAX) depending upon which has
  467. * . the smaller corresponding subdiagonal entry
  468. * . (a heuristic).
  469. * .
  470. * . Exceptional Case:
  471. * . If there have been no deflations in KEXNW or
  472. * . more iterations, then vary the deflation window
  473. * . size. At first, because, larger windows are,
  474. * . in general, more powerful than smaller ones,
  475. * . rapidly increase the window to the maximum possible.
  476. * . Then, gradually reduce the window size. ====
  477. *
  478. NH = KBOT - KTOP + 1
  479. NWUPBD = MIN( NH, NWMAX )
  480. IF( NDFL.LT.KEXNW ) THEN
  481. NW = MIN( NWUPBD, NWR )
  482. ELSE
  483. NW = MIN( NWUPBD, 2*NW )
  484. END IF
  485. IF( NW.LT.NWMAX ) THEN
  486. IF( NW.GE.NH-1 ) THEN
  487. NW = NH
  488. ELSE
  489. KWTOP = KBOT - NW + 1
  490. IF( ABS( H( KWTOP, KWTOP-1 ) ).GT.
  491. $ ABS( H( KWTOP-1, KWTOP-2 ) ) )NW = NW + 1
  492. END IF
  493. END IF
  494. IF( NDFL.LT.KEXNW ) THEN
  495. NDEC = -1
  496. ELSE IF( NDEC.GE.0 .OR. NW.GE.NWUPBD ) THEN
  497. NDEC = NDEC + 1
  498. IF( NW-NDEC.LT.2 )
  499. $ NDEC = 0
  500. NW = NW - NDEC
  501. END IF
  502. *
  503. * ==== Aggressive early deflation:
  504. * . split workspace under the subdiagonal into
  505. * . - an nw-by-nw work array V in the lower
  506. * . left-hand-corner,
  507. * . - an NW-by-at-least-NW-but-more-is-better
  508. * . (NW-by-NHO) horizontal work array along
  509. * . the bottom edge,
  510. * . - an at-least-NW-but-more-is-better (NHV-by-NW)
  511. * . vertical work array along the left-hand-edge.
  512. * . ====
  513. *
  514. KV = N - NW + 1
  515. KT = NW + 1
  516. NHO = ( N-NW-1 ) - KT + 1
  517. KWV = NW + 2
  518. NVE = ( N-NW ) - KWV + 1
  519. *
  520. * ==== Aggressive early deflation ====
  521. *
  522. CALL DLAQR3( WANTT, WANTZ, N, KTOP, KBOT, NW, H, LDH, ILOZ,
  523. $ IHIZ, Z, LDZ, LS, LD, WR, WI, H( KV, 1 ), LDH,
  524. $ NHO, H( KV, KT ), LDH, NVE, H( KWV, 1 ), LDH,
  525. $ WORK, LWORK )
  526. *
  527. * ==== Adjust KBOT accounting for new deflations. ====
  528. *
  529. KBOT = KBOT - LD
  530. *
  531. * ==== KS points to the shifts. ====
  532. *
  533. KS = KBOT - LS + 1
  534. *
  535. * ==== Skip an expensive QR sweep if there is a (partly
  536. * . heuristic) reason to expect that many eigenvalues
  537. * . will deflate without it. Here, the QR sweep is
  538. * . skipped if many eigenvalues have just been deflated
  539. * . or if the remaining active block is small.
  540. *
  541. IF( ( LD.EQ.0 ) .OR. ( ( 100*LD.LE.NW*NIBBLE ) .AND. ( KBOT-
  542. $ KTOP+1.GT.MIN( NMIN, NWMAX ) ) ) ) THEN
  543. *
  544. * ==== NS = nominal number of simultaneous shifts.
  545. * . This may be lowered (slightly) if DLAQR3
  546. * . did not provide that many shifts. ====
  547. *
  548. NS = MIN( NSMAX, NSR, MAX( 2, KBOT-KTOP ) )
  549. NS = NS - MOD( NS, 2 )
  550. *
  551. * ==== If there have been no deflations
  552. * . in a multiple of KEXSH iterations,
  553. * . then try exceptional shifts.
  554. * . Otherwise use shifts provided by
  555. * . DLAQR3 above or from the eigenvalues
  556. * . of a trailing principal submatrix. ====
  557. *
  558. IF( MOD( NDFL, KEXSH ).EQ.0 ) THEN
  559. KS = KBOT - NS + 1
  560. DO 30 I = KBOT, MAX( KS+1, KTOP+2 ), -2
  561. SS = ABS( H( I, I-1 ) ) + ABS( H( I-1, I-2 ) )
  562. AA = WILK1*SS + H( I, I )
  563. BB = SS
  564. CC = WILK2*SS
  565. DD = AA
  566. CALL DLANV2( AA, BB, CC, DD, WR( I-1 ), WI( I-1 ),
  567. $ WR( I ), WI( I ), CS, SN )
  568. 30 CONTINUE
  569. IF( KS.EQ.KTOP ) THEN
  570. WR( KS+1 ) = H( KS+1, KS+1 )
  571. WI( KS+1 ) = ZERO
  572. WR( KS ) = WR( KS+1 )
  573. WI( KS ) = WI( KS+1 )
  574. END IF
  575. ELSE
  576. *
  577. * ==== Got NS/2 or fewer shifts? Use DLAQR4 or
  578. * . DLAHQR on a trailing principal submatrix to
  579. * . get more. (Since NS.LE.NSMAX.LE.(N+6)/9,
  580. * . there is enough space below the subdiagonal
  581. * . to fit an NS-by-NS scratch array.) ====
  582. *
  583. IF( KBOT-KS+1.LE.NS / 2 ) THEN
  584. KS = KBOT - NS + 1
  585. KT = N - NS + 1
  586. CALL DLACPY( 'A', NS, NS, H( KS, KS ), LDH,
  587. $ H( KT, 1 ), LDH )
  588. IF( NS.GT.NMIN ) THEN
  589. CALL DLAQR4( .false., .false., NS, 1, NS,
  590. $ H( KT, 1 ), LDH, WR( KS ),
  591. $ WI( KS ), 1, 1, ZDUM, 1, WORK,
  592. $ LWORK, INF )
  593. ELSE
  594. CALL DLAHQR( .false., .false., NS, 1, NS,
  595. $ H( KT, 1 ), LDH, WR( KS ),
  596. $ WI( KS ), 1, 1, ZDUM, 1, INF )
  597. END IF
  598. KS = KS + INF
  599. *
  600. * ==== In case of a rare QR failure use
  601. * . eigenvalues of the trailing 2-by-2
  602. * . principal submatrix. ====
  603. *
  604. IF( KS.GE.KBOT ) THEN
  605. AA = H( KBOT-1, KBOT-1 )
  606. CC = H( KBOT, KBOT-1 )
  607. BB = H( KBOT-1, KBOT )
  608. DD = H( KBOT, KBOT )
  609. CALL DLANV2( AA, BB, CC, DD, WR( KBOT-1 ),
  610. $ WI( KBOT-1 ), WR( KBOT ),
  611. $ WI( KBOT ), CS, SN )
  612. KS = KBOT - 1
  613. END IF
  614. END IF
  615. *
  616. IF( KBOT-KS+1.GT.NS ) THEN
  617. *
  618. * ==== Sort the shifts (Helps a little)
  619. * . Bubble sort keeps complex conjugate
  620. * . pairs together. ====
  621. *
  622. SORTED = .false.
  623. DO 50 K = KBOT, KS + 1, -1
  624. IF( SORTED )
  625. $ GO TO 60
  626. SORTED = .true.
  627. DO 40 I = KS, K - 1
  628. IF( ABS( WR( I ) )+ABS( WI( I ) ).LT.
  629. $ ABS( WR( I+1 ) )+ABS( WI( I+1 ) ) ) THEN
  630. SORTED = .false.
  631. *
  632. SWAP = WR( I )
  633. WR( I ) = WR( I+1 )
  634. WR( I+1 ) = SWAP
  635. *
  636. SWAP = WI( I )
  637. WI( I ) = WI( I+1 )
  638. WI( I+1 ) = SWAP
  639. END IF
  640. 40 CONTINUE
  641. 50 CONTINUE
  642. 60 CONTINUE
  643. END IF
  644. *
  645. * ==== Shuffle shifts into pairs of real shifts
  646. * . and pairs of complex conjugate shifts
  647. * . assuming complex conjugate shifts are
  648. * . already adjacent to one another. (Yes,
  649. * . they are.) ====
  650. *
  651. DO 70 I = KBOT, KS + 2, -2
  652. IF( WI( I ).NE.-WI( I-1 ) ) THEN
  653. *
  654. SWAP = WR( I )
  655. WR( I ) = WR( I-1 )
  656. WR( I-1 ) = WR( I-2 )
  657. WR( I-2 ) = SWAP
  658. *
  659. SWAP = WI( I )
  660. WI( I ) = WI( I-1 )
  661. WI( I-1 ) = WI( I-2 )
  662. WI( I-2 ) = SWAP
  663. END IF
  664. 70 CONTINUE
  665. END IF
  666. *
  667. * ==== If there are only two shifts and both are
  668. * . real, then use only one. ====
  669. *
  670. IF( KBOT-KS+1.EQ.2 ) THEN
  671. IF( WI( KBOT ).EQ.ZERO ) THEN
  672. IF( ABS( WR( KBOT )-H( KBOT, KBOT ) ).LT.
  673. $ ABS( WR( KBOT-1 )-H( KBOT, KBOT ) ) ) THEN
  674. WR( KBOT-1 ) = WR( KBOT )
  675. ELSE
  676. WR( KBOT ) = WR( KBOT-1 )
  677. END IF
  678. END IF
  679. END IF
  680. *
  681. * ==== Use up to NS of the the smallest magnatiude
  682. * . shifts. If there aren't NS shifts available,
  683. * . then use them all, possibly dropping one to
  684. * . make the number of shifts even. ====
  685. *
  686. NS = MIN( NS, KBOT-KS+1 )
  687. NS = NS - MOD( NS, 2 )
  688. KS = KBOT - NS + 1
  689. *
  690. * ==== Small-bulge multi-shift QR sweep:
  691. * . split workspace under the subdiagonal into
  692. * . - a KDU-by-KDU work array U in the lower
  693. * . left-hand-corner,
  694. * . - a KDU-by-at-least-KDU-but-more-is-better
  695. * . (KDU-by-NHo) horizontal work array WH along
  696. * . the bottom edge,
  697. * . - and an at-least-KDU-but-more-is-better-by-KDU
  698. * . (NVE-by-KDU) vertical work WV arrow along
  699. * . the left-hand-edge. ====
  700. *
  701. KDU = 3*NS - 3
  702. KU = N - KDU + 1
  703. KWH = KDU + 1
  704. NHO = ( N-KDU+1-4 ) - ( KDU+1 ) + 1
  705. KWV = KDU + 4
  706. NVE = N - KDU - KWV + 1
  707. *
  708. * ==== Small-bulge multi-shift QR sweep ====
  709. *
  710. CALL DLAQR5( WANTT, WANTZ, KACC22, N, KTOP, KBOT, NS,
  711. $ WR( KS ), WI( KS ), H, LDH, ILOZ, IHIZ, Z,
  712. $ LDZ, WORK, 3, H( KU, 1 ), LDH, NVE,
  713. $ H( KWV, 1 ), LDH, NHO, H( KU, KWH ), LDH )
  714. END IF
  715. *
  716. * ==== Note progress (or the lack of it). ====
  717. *
  718. IF( LD.GT.0 ) THEN
  719. NDFL = 1
  720. ELSE
  721. NDFL = NDFL + 1
  722. END IF
  723. *
  724. * ==== End of main loop ====
  725. 80 CONTINUE
  726. *
  727. * ==== Iteration limit exceeded. Set INFO to show where
  728. * . the problem occurred and exit. ====
  729. *
  730. INFO = KBOT
  731. 90 CONTINUE
  732. END IF
  733. *
  734. * ==== Return the optimal value of LWORK. ====
  735. *
  736. WORK( 1 ) = DBLE( LWKOPT )
  737. *
  738. * ==== End of DLAQR0 ====
  739. *
  740. END