You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

dlantp.f 11 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355
  1. *> \brief \b DLANTP returns the value of the 1-norm, or the Frobenius norm, or the infinity norm, or the element of largest absolute value of a triangular matrix supplied in packed form.
  2. *
  3. * =========== DOCUMENTATION ===========
  4. *
  5. * Online html documentation available at
  6. * http://www.netlib.org/lapack/explore-html/
  7. *
  8. *> \htmlonly
  9. *> Download DLANTP + dependencies
  10. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dlantp.f">
  11. *> [TGZ]</a>
  12. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dlantp.f">
  13. *> [ZIP]</a>
  14. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dlantp.f">
  15. *> [TXT]</a>
  16. *> \endhtmlonly
  17. *
  18. * Definition:
  19. * ===========
  20. *
  21. * DOUBLE PRECISION FUNCTION DLANTP( NORM, UPLO, DIAG, N, AP, WORK )
  22. *
  23. * .. Scalar Arguments ..
  24. * CHARACTER DIAG, NORM, UPLO
  25. * INTEGER N
  26. * ..
  27. * .. Array Arguments ..
  28. * DOUBLE PRECISION AP( * ), WORK( * )
  29. * ..
  30. *
  31. *
  32. *> \par Purpose:
  33. * =============
  34. *>
  35. *> \verbatim
  36. *>
  37. *> DLANTP returns the value of the one norm, or the Frobenius norm, or
  38. *> the infinity norm, or the element of largest absolute value of a
  39. *> triangular matrix A, supplied in packed form.
  40. *> \endverbatim
  41. *>
  42. *> \return DLANTP
  43. *> \verbatim
  44. *>
  45. *> DLANTP = ( max(abs(A(i,j))), NORM = 'M' or 'm'
  46. *> (
  47. *> ( norm1(A), NORM = '1', 'O' or 'o'
  48. *> (
  49. *> ( normI(A), NORM = 'I' or 'i'
  50. *> (
  51. *> ( normF(A), NORM = 'F', 'f', 'E' or 'e'
  52. *>
  53. *> where norm1 denotes the one norm of a matrix (maximum column sum),
  54. *> normI denotes the infinity norm of a matrix (maximum row sum) and
  55. *> normF denotes the Frobenius norm of a matrix (square root of sum of
  56. *> squares). Note that max(abs(A(i,j))) is not a consistent matrix norm.
  57. *> \endverbatim
  58. *
  59. * Arguments:
  60. * ==========
  61. *
  62. *> \param[in] NORM
  63. *> \verbatim
  64. *> NORM is CHARACTER*1
  65. *> Specifies the value to be returned in DLANTP as described
  66. *> above.
  67. *> \endverbatim
  68. *>
  69. *> \param[in] UPLO
  70. *> \verbatim
  71. *> UPLO is CHARACTER*1
  72. *> Specifies whether the matrix A is upper or lower triangular.
  73. *> = 'U': Upper triangular
  74. *> = 'L': Lower triangular
  75. *> \endverbatim
  76. *>
  77. *> \param[in] DIAG
  78. *> \verbatim
  79. *> DIAG is CHARACTER*1
  80. *> Specifies whether or not the matrix A is unit triangular.
  81. *> = 'N': Non-unit triangular
  82. *> = 'U': Unit triangular
  83. *> \endverbatim
  84. *>
  85. *> \param[in] N
  86. *> \verbatim
  87. *> N is INTEGER
  88. *> The order of the matrix A. N >= 0. When N = 0, DLANTP is
  89. *> set to zero.
  90. *> \endverbatim
  91. *>
  92. *> \param[in] AP
  93. *> \verbatim
  94. *> AP is DOUBLE PRECISION array, dimension (N*(N+1)/2)
  95. *> The upper or lower triangular matrix A, packed columnwise in
  96. *> a linear array. The j-th column of A is stored in the array
  97. *> AP as follows:
  98. *> if UPLO = 'U', AP(i + (j-1)*j/2) = A(i,j) for 1<=i<=j;
  99. *> if UPLO = 'L', AP(i + (j-1)*(2n-j)/2) = A(i,j) for j<=i<=n.
  100. *> Note that when DIAG = 'U', the elements of the array AP
  101. *> corresponding to the diagonal elements of the matrix A are
  102. *> not referenced, but are assumed to be one.
  103. *> \endverbatim
  104. *>
  105. *> \param[out] WORK
  106. *> \verbatim
  107. *> WORK is DOUBLE PRECISION array, dimension (MAX(1,LWORK)),
  108. *> where LWORK >= N when NORM = 'I'; otherwise, WORK is not
  109. *> referenced.
  110. *> \endverbatim
  111. *
  112. * Authors:
  113. * ========
  114. *
  115. *> \author Univ. of Tennessee
  116. *> \author Univ. of California Berkeley
  117. *> \author Univ. of Colorado Denver
  118. *> \author NAG Ltd.
  119. *
  120. *> \date December 2016
  121. *
  122. *> \ingroup doubleOTHERauxiliary
  123. *
  124. * =====================================================================
  125. DOUBLE PRECISION FUNCTION DLANTP( NORM, UPLO, DIAG, N, AP, WORK )
  126. *
  127. * -- LAPACK auxiliary routine (version 3.7.0) --
  128. * -- LAPACK is a software package provided by Univ. of Tennessee, --
  129. * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
  130. * December 2016
  131. *
  132. * .. Scalar Arguments ..
  133. CHARACTER DIAG, NORM, UPLO
  134. INTEGER N
  135. * ..
  136. * .. Array Arguments ..
  137. DOUBLE PRECISION AP( * ), WORK( * )
  138. * ..
  139. *
  140. * =====================================================================
  141. *
  142. * .. Parameters ..
  143. DOUBLE PRECISION ONE, ZERO
  144. PARAMETER ( ONE = 1.0D+0, ZERO = 0.0D+0 )
  145. * ..
  146. * .. Local Scalars ..
  147. LOGICAL UDIAG
  148. INTEGER I, J, K
  149. DOUBLE PRECISION SCALE, SUM, VALUE
  150. * ..
  151. * .. External Subroutines ..
  152. EXTERNAL DLASSQ
  153. * ..
  154. * .. External Functions ..
  155. LOGICAL LSAME, DISNAN
  156. EXTERNAL LSAME, DISNAN
  157. * ..
  158. * .. Intrinsic Functions ..
  159. INTRINSIC ABS, SQRT
  160. * ..
  161. * .. Executable Statements ..
  162. *
  163. IF( N.EQ.0 ) THEN
  164. VALUE = ZERO
  165. ELSE IF( LSAME( NORM, 'M' ) ) THEN
  166. *
  167. * Find max(abs(A(i,j))).
  168. *
  169. K = 1
  170. IF( LSAME( DIAG, 'U' ) ) THEN
  171. VALUE = ONE
  172. IF( LSAME( UPLO, 'U' ) ) THEN
  173. DO 20 J = 1, N
  174. DO 10 I = K, K + J - 2
  175. SUM = ABS( AP( I ) )
  176. IF( VALUE .LT. SUM .OR. DISNAN( SUM ) ) VALUE = SUM
  177. 10 CONTINUE
  178. K = K + J
  179. 20 CONTINUE
  180. ELSE
  181. DO 40 J = 1, N
  182. DO 30 I = K + 1, K + N - J
  183. SUM = ABS( AP( I ) )
  184. IF( VALUE .LT. SUM .OR. DISNAN( SUM ) ) VALUE = SUM
  185. 30 CONTINUE
  186. K = K + N - J + 1
  187. 40 CONTINUE
  188. END IF
  189. ELSE
  190. VALUE = ZERO
  191. IF( LSAME( UPLO, 'U' ) ) THEN
  192. DO 60 J = 1, N
  193. DO 50 I = K, K + J - 1
  194. SUM = ABS( AP( I ) )
  195. IF( VALUE .LT. SUM .OR. DISNAN( SUM ) ) VALUE = SUM
  196. 50 CONTINUE
  197. K = K + J
  198. 60 CONTINUE
  199. ELSE
  200. DO 80 J = 1, N
  201. DO 70 I = K, K + N - J
  202. SUM = ABS( AP( I ) )
  203. IF( VALUE .LT. SUM .OR. DISNAN( SUM ) ) VALUE = SUM
  204. 70 CONTINUE
  205. K = K + N - J + 1
  206. 80 CONTINUE
  207. END IF
  208. END IF
  209. ELSE IF( ( LSAME( NORM, 'O' ) ) .OR. ( NORM.EQ.'1' ) ) THEN
  210. *
  211. * Find norm1(A).
  212. *
  213. VALUE = ZERO
  214. K = 1
  215. UDIAG = LSAME( DIAG, 'U' )
  216. IF( LSAME( UPLO, 'U' ) ) THEN
  217. DO 110 J = 1, N
  218. IF( UDIAG ) THEN
  219. SUM = ONE
  220. DO 90 I = K, K + J - 2
  221. SUM = SUM + ABS( AP( I ) )
  222. 90 CONTINUE
  223. ELSE
  224. SUM = ZERO
  225. DO 100 I = K, K + J - 1
  226. SUM = SUM + ABS( AP( I ) )
  227. 100 CONTINUE
  228. END IF
  229. K = K + J
  230. IF( VALUE .LT. SUM .OR. DISNAN( SUM ) ) VALUE = SUM
  231. 110 CONTINUE
  232. ELSE
  233. DO 140 J = 1, N
  234. IF( UDIAG ) THEN
  235. SUM = ONE
  236. DO 120 I = K + 1, K + N - J
  237. SUM = SUM + ABS( AP( I ) )
  238. 120 CONTINUE
  239. ELSE
  240. SUM = ZERO
  241. DO 130 I = K, K + N - J
  242. SUM = SUM + ABS( AP( I ) )
  243. 130 CONTINUE
  244. END IF
  245. K = K + N - J + 1
  246. IF( VALUE .LT. SUM .OR. DISNAN( SUM ) ) VALUE = SUM
  247. 140 CONTINUE
  248. END IF
  249. ELSE IF( LSAME( NORM, 'I' ) ) THEN
  250. *
  251. * Find normI(A).
  252. *
  253. K = 1
  254. IF( LSAME( UPLO, 'U' ) ) THEN
  255. IF( LSAME( DIAG, 'U' ) ) THEN
  256. DO 150 I = 1, N
  257. WORK( I ) = ONE
  258. 150 CONTINUE
  259. DO 170 J = 1, N
  260. DO 160 I = 1, J - 1
  261. WORK( I ) = WORK( I ) + ABS( AP( K ) )
  262. K = K + 1
  263. 160 CONTINUE
  264. K = K + 1
  265. 170 CONTINUE
  266. ELSE
  267. DO 180 I = 1, N
  268. WORK( I ) = ZERO
  269. 180 CONTINUE
  270. DO 200 J = 1, N
  271. DO 190 I = 1, J
  272. WORK( I ) = WORK( I ) + ABS( AP( K ) )
  273. K = K + 1
  274. 190 CONTINUE
  275. 200 CONTINUE
  276. END IF
  277. ELSE
  278. IF( LSAME( DIAG, 'U' ) ) THEN
  279. DO 210 I = 1, N
  280. WORK( I ) = ONE
  281. 210 CONTINUE
  282. DO 230 J = 1, N
  283. K = K + 1
  284. DO 220 I = J + 1, N
  285. WORK( I ) = WORK( I ) + ABS( AP( K ) )
  286. K = K + 1
  287. 220 CONTINUE
  288. 230 CONTINUE
  289. ELSE
  290. DO 240 I = 1, N
  291. WORK( I ) = ZERO
  292. 240 CONTINUE
  293. DO 260 J = 1, N
  294. DO 250 I = J, N
  295. WORK( I ) = WORK( I ) + ABS( AP( K ) )
  296. K = K + 1
  297. 250 CONTINUE
  298. 260 CONTINUE
  299. END IF
  300. END IF
  301. VALUE = ZERO
  302. DO 270 I = 1, N
  303. SUM = WORK( I )
  304. IF( VALUE .LT. SUM .OR. DISNAN( SUM ) ) VALUE = SUM
  305. 270 CONTINUE
  306. ELSE IF( ( LSAME( NORM, 'F' ) ) .OR. ( LSAME( NORM, 'E' ) ) ) THEN
  307. *
  308. * Find normF(A).
  309. *
  310. IF( LSAME( UPLO, 'U' ) ) THEN
  311. IF( LSAME( DIAG, 'U' ) ) THEN
  312. SCALE = ONE
  313. SUM = N
  314. K = 2
  315. DO 280 J = 2, N
  316. CALL DLASSQ( J-1, AP( K ), 1, SCALE, SUM )
  317. K = K + J
  318. 280 CONTINUE
  319. ELSE
  320. SCALE = ZERO
  321. SUM = ONE
  322. K = 1
  323. DO 290 J = 1, N
  324. CALL DLASSQ( J, AP( K ), 1, SCALE, SUM )
  325. K = K + J
  326. 290 CONTINUE
  327. END IF
  328. ELSE
  329. IF( LSAME( DIAG, 'U' ) ) THEN
  330. SCALE = ONE
  331. SUM = N
  332. K = 2
  333. DO 300 J = 1, N - 1
  334. CALL DLASSQ( N-J, AP( K ), 1, SCALE, SUM )
  335. K = K + N - J + 1
  336. 300 CONTINUE
  337. ELSE
  338. SCALE = ZERO
  339. SUM = ONE
  340. K = 1
  341. DO 310 J = 1, N
  342. CALL DLASSQ( N-J+1, AP( K ), 1, SCALE, SUM )
  343. K = K + N - J + 1
  344. 310 CONTINUE
  345. END IF
  346. END IF
  347. VALUE = SCALE*SQRT( SUM )
  348. END IF
  349. *
  350. DLANTP = VALUE
  351. RETURN
  352. *
  353. * End of DLANTP
  354. *
  355. END