You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

cungl2.f 5.5 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207
  1. *> \brief \b CUNGL2 generates all or part of the unitary matrix Q from an LQ factorization determined by cgelqf (unblocked algorithm).
  2. *
  3. * =========== DOCUMENTATION ===========
  4. *
  5. * Online html documentation available at
  6. * http://www.netlib.org/lapack/explore-html/
  7. *
  8. *> \htmlonly
  9. *> Download CUNGL2 + dependencies
  10. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/cungl2.f">
  11. *> [TGZ]</a>
  12. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/cungl2.f">
  13. *> [ZIP]</a>
  14. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/cungl2.f">
  15. *> [TXT]</a>
  16. *> \endhtmlonly
  17. *
  18. * Definition:
  19. * ===========
  20. *
  21. * SUBROUTINE CUNGL2( M, N, K, A, LDA, TAU, WORK, INFO )
  22. *
  23. * .. Scalar Arguments ..
  24. * INTEGER INFO, K, LDA, M, N
  25. * ..
  26. * .. Array Arguments ..
  27. * COMPLEX A( LDA, * ), TAU( * ), WORK( * )
  28. * ..
  29. *
  30. *
  31. *> \par Purpose:
  32. * =============
  33. *>
  34. *> \verbatim
  35. *>
  36. *> CUNGL2 generates an m-by-n complex matrix Q with orthonormal rows,
  37. *> which is defined as the first m rows of a product of k elementary
  38. *> reflectors of order n
  39. *>
  40. *> Q = H(k)**H . . . H(2)**H H(1)**H
  41. *>
  42. *> as returned by CGELQF.
  43. *> \endverbatim
  44. *
  45. * Arguments:
  46. * ==========
  47. *
  48. *> \param[in] M
  49. *> \verbatim
  50. *> M is INTEGER
  51. *> The number of rows of the matrix Q. M >= 0.
  52. *> \endverbatim
  53. *>
  54. *> \param[in] N
  55. *> \verbatim
  56. *> N is INTEGER
  57. *> The number of columns of the matrix Q. N >= M.
  58. *> \endverbatim
  59. *>
  60. *> \param[in] K
  61. *> \verbatim
  62. *> K is INTEGER
  63. *> The number of elementary reflectors whose product defines the
  64. *> matrix Q. M >= K >= 0.
  65. *> \endverbatim
  66. *>
  67. *> \param[in,out] A
  68. *> \verbatim
  69. *> A is COMPLEX array, dimension (LDA,N)
  70. *> On entry, the i-th row must contain the vector which defines
  71. *> the elementary reflector H(i), for i = 1,2,...,k, as returned
  72. *> by CGELQF in the first k rows of its array argument A.
  73. *> On exit, the m by n matrix Q.
  74. *> \endverbatim
  75. *>
  76. *> \param[in] LDA
  77. *> \verbatim
  78. *> LDA is INTEGER
  79. *> The first dimension of the array A. LDA >= max(1,M).
  80. *> \endverbatim
  81. *>
  82. *> \param[in] TAU
  83. *> \verbatim
  84. *> TAU is COMPLEX array, dimension (K)
  85. *> TAU(i) must contain the scalar factor of the elementary
  86. *> reflector H(i), as returned by CGELQF.
  87. *> \endverbatim
  88. *>
  89. *> \param[out] WORK
  90. *> \verbatim
  91. *> WORK is COMPLEX array, dimension (M)
  92. *> \endverbatim
  93. *>
  94. *> \param[out] INFO
  95. *> \verbatim
  96. *> INFO is INTEGER
  97. *> = 0: successful exit
  98. *> < 0: if INFO = -i, the i-th argument has an illegal value
  99. *> \endverbatim
  100. *
  101. * Authors:
  102. * ========
  103. *
  104. *> \author Univ. of Tennessee
  105. *> \author Univ. of California Berkeley
  106. *> \author Univ. of Colorado Denver
  107. *> \author NAG Ltd.
  108. *
  109. *> \date December 2016
  110. *
  111. *> \ingroup complexOTHERcomputational
  112. *
  113. * =====================================================================
  114. SUBROUTINE CUNGL2( M, N, K, A, LDA, TAU, WORK, INFO )
  115. *
  116. * -- LAPACK computational routine (version 3.7.0) --
  117. * -- LAPACK is a software package provided by Univ. of Tennessee, --
  118. * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
  119. * December 2016
  120. *
  121. * .. Scalar Arguments ..
  122. INTEGER INFO, K, LDA, M, N
  123. * ..
  124. * .. Array Arguments ..
  125. COMPLEX A( LDA, * ), TAU( * ), WORK( * )
  126. * ..
  127. *
  128. * =====================================================================
  129. *
  130. * .. Parameters ..
  131. COMPLEX ONE, ZERO
  132. PARAMETER ( ONE = ( 1.0E+0, 0.0E+0 ),
  133. $ ZERO = ( 0.0E+0, 0.0E+0 ) )
  134. * ..
  135. * .. Local Scalars ..
  136. INTEGER I, J, L
  137. * ..
  138. * .. External Subroutines ..
  139. EXTERNAL CLACGV, CLARF, CSCAL, XERBLA
  140. * ..
  141. * .. Intrinsic Functions ..
  142. INTRINSIC CONJG, MAX
  143. * ..
  144. * .. Executable Statements ..
  145. *
  146. * Test the input arguments
  147. *
  148. INFO = 0
  149. IF( M.LT.0 ) THEN
  150. INFO = -1
  151. ELSE IF( N.LT.M ) THEN
  152. INFO = -2
  153. ELSE IF( K.LT.0 .OR. K.GT.M ) THEN
  154. INFO = -3
  155. ELSE IF( LDA.LT.MAX( 1, M ) ) THEN
  156. INFO = -5
  157. END IF
  158. IF( INFO.NE.0 ) THEN
  159. CALL XERBLA( 'CUNGL2', -INFO )
  160. RETURN
  161. END IF
  162. *
  163. * Quick return if possible
  164. *
  165. IF( M.LE.0 )
  166. $ RETURN
  167. *
  168. IF( K.LT.M ) THEN
  169. *
  170. * Initialise rows k+1:m to rows of the unit matrix
  171. *
  172. DO 20 J = 1, N
  173. DO 10 L = K + 1, M
  174. A( L, J ) = ZERO
  175. 10 CONTINUE
  176. IF( J.GT.K .AND. J.LE.M )
  177. $ A( J, J ) = ONE
  178. 20 CONTINUE
  179. END IF
  180. *
  181. DO 40 I = K, 1, -1
  182. *
  183. * Apply H(i)**H to A(i:m,i:n) from the right
  184. *
  185. IF( I.LT.N ) THEN
  186. CALL CLACGV( N-I, A( I, I+1 ), LDA )
  187. IF( I.LT.M ) THEN
  188. A( I, I ) = ONE
  189. CALL CLARF( 'Right', M-I, N-I+1, A( I, I ), LDA,
  190. $ CONJG( TAU( I ) ), A( I+1, I ), LDA, WORK )
  191. END IF
  192. CALL CSCAL( N-I, -TAU( I ), A( I, I+1 ), LDA )
  193. CALL CLACGV( N-I, A( I, I+1 ), LDA )
  194. END IF
  195. A( I, I ) = ONE - CONJG( TAU( I ) )
  196. *
  197. * Set A(i,1:i-1,i) to zero
  198. *
  199. DO 30 L = 1, I - 1
  200. A( I, L ) = ZERO
  201. 30 CONTINUE
  202. 40 CONTINUE
  203. RETURN
  204. *
  205. * End of CUNGL2
  206. *
  207. END