You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

cla_syamv.f 13 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428
  1. *> \brief \b CLA_SYAMV computes a matrix-vector product using a symmetric indefinite matrix to calculate error bounds.
  2. *
  3. * =========== DOCUMENTATION ===========
  4. *
  5. * Online html documentation available at
  6. * http://www.netlib.org/lapack/explore-html/
  7. *
  8. *> \htmlonly
  9. *> Download CLA_SYAMV + dependencies
  10. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/cla_syamv.f">
  11. *> [TGZ]</a>
  12. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/cla_syamv.f">
  13. *> [ZIP]</a>
  14. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/cla_syamv.f">
  15. *> [TXT]</a>
  16. *> \endhtmlonly
  17. *
  18. * Definition:
  19. * ===========
  20. *
  21. * SUBROUTINE CLA_SYAMV( UPLO, N, ALPHA, A, LDA, X, INCX, BETA, Y,
  22. * INCY )
  23. *
  24. * .. Scalar Arguments ..
  25. * REAL ALPHA, BETA
  26. * INTEGER INCX, INCY, LDA, N
  27. * INTEGER UPLO
  28. * ..
  29. * .. Array Arguments ..
  30. * COMPLEX A( LDA, * ), X( * )
  31. * REAL Y( * )
  32. * ..
  33. *
  34. *
  35. *> \par Purpose:
  36. * =============
  37. *>
  38. *> \verbatim
  39. *>
  40. *> CLA_SYAMV performs the matrix-vector operation
  41. *>
  42. *> y := alpha*abs(A)*abs(x) + beta*abs(y),
  43. *>
  44. *> where alpha and beta are scalars, x and y are vectors and A is an
  45. *> n by n symmetric matrix.
  46. *>
  47. *> This function is primarily used in calculating error bounds.
  48. *> To protect against underflow during evaluation, components in
  49. *> the resulting vector are perturbed away from zero by (N+1)
  50. *> times the underflow threshold. To prevent unnecessarily large
  51. *> errors for block-structure embedded in general matrices,
  52. *> "symbolically" zero components are not perturbed. A zero
  53. *> entry is considered "symbolic" if all multiplications involved
  54. *> in computing that entry have at least one zero multiplicand.
  55. *> \endverbatim
  56. *
  57. * Arguments:
  58. * ==========
  59. *
  60. *> \param[in] UPLO
  61. *> \verbatim
  62. *> UPLO is INTEGER
  63. *> On entry, UPLO specifies whether the upper or lower
  64. *> triangular part of the array A is to be referenced as
  65. *> follows:
  66. *>
  67. *> UPLO = BLAS_UPPER Only the upper triangular part of A
  68. *> is to be referenced.
  69. *>
  70. *> UPLO = BLAS_LOWER Only the lower triangular part of A
  71. *> is to be referenced.
  72. *>
  73. *> Unchanged on exit.
  74. *> \endverbatim
  75. *>
  76. *> \param[in] N
  77. *> \verbatim
  78. *> N is INTEGER
  79. *> On entry, N specifies the number of columns of the matrix A.
  80. *> N must be at least zero.
  81. *> Unchanged on exit.
  82. *> \endverbatim
  83. *>
  84. *> \param[in] ALPHA
  85. *> \verbatim
  86. *> ALPHA is REAL .
  87. *> On entry, ALPHA specifies the scalar alpha.
  88. *> Unchanged on exit.
  89. *> \endverbatim
  90. *>
  91. *> \param[in] A
  92. *> \verbatim
  93. *> A is COMPLEX array, dimension ( LDA, n ).
  94. *> Before entry, the leading m by n part of the array A must
  95. *> contain the matrix of coefficients.
  96. *> Unchanged on exit.
  97. *> \endverbatim
  98. *>
  99. *> \param[in] LDA
  100. *> \verbatim
  101. *> LDA is INTEGER
  102. *> On entry, LDA specifies the first dimension of A as declared
  103. *> in the calling (sub) program. LDA must be at least
  104. *> max( 1, n ).
  105. *> Unchanged on exit.
  106. *> \endverbatim
  107. *>
  108. *> \param[in] X
  109. *> \verbatim
  110. *> X is COMPLEX array, dimension
  111. *> ( 1 + ( n - 1 )*abs( INCX ) )
  112. *> Before entry, the incremented array X must contain the
  113. *> vector x.
  114. *> Unchanged on exit.
  115. *> \endverbatim
  116. *>
  117. *> \param[in] INCX
  118. *> \verbatim
  119. *> INCX is INTEGER
  120. *> On entry, INCX specifies the increment for the elements of
  121. *> X. INCX must not be zero.
  122. *> Unchanged on exit.
  123. *> \endverbatim
  124. *>
  125. *> \param[in] BETA
  126. *> \verbatim
  127. *> BETA is REAL .
  128. *> On entry, BETA specifies the scalar beta. When BETA is
  129. *> supplied as zero then Y need not be set on input.
  130. *> Unchanged on exit.
  131. *> \endverbatim
  132. *>
  133. *> \param[in,out] Y
  134. *> \verbatim
  135. *> Y is REAL array, dimension
  136. *> ( 1 + ( n - 1 )*abs( INCY ) )
  137. *> Before entry with BETA non-zero, the incremented array Y
  138. *> must contain the vector y. On exit, Y is overwritten by the
  139. *> updated vector y.
  140. *> \endverbatim
  141. *>
  142. *> \param[in] INCY
  143. *> \verbatim
  144. *> INCY is INTEGER
  145. *> On entry, INCY specifies the increment for the elements of
  146. *> Y. INCY must not be zero.
  147. *> Unchanged on exit.
  148. *> \endverbatim
  149. *
  150. * Authors:
  151. * ========
  152. *
  153. *> \author Univ. of Tennessee
  154. *> \author Univ. of California Berkeley
  155. *> \author Univ. of Colorado Denver
  156. *> \author NAG Ltd.
  157. *
  158. *> \date June 2017
  159. *
  160. *> \ingroup complexSYcomputational
  161. *
  162. *> \par Further Details:
  163. * =====================
  164. *>
  165. *> \verbatim
  166. *>
  167. *> Level 2 Blas routine.
  168. *>
  169. *> -- Written on 22-October-1986.
  170. *> Jack Dongarra, Argonne National Lab.
  171. *> Jeremy Du Croz, Nag Central Office.
  172. *> Sven Hammarling, Nag Central Office.
  173. *> Richard Hanson, Sandia National Labs.
  174. *> -- Modified for the absolute-value product, April 2006
  175. *> Jason Riedy, UC Berkeley
  176. *> \endverbatim
  177. *>
  178. * =====================================================================
  179. SUBROUTINE CLA_SYAMV( UPLO, N, ALPHA, A, LDA, X, INCX, BETA, Y,
  180. $ INCY )
  181. *
  182. * -- LAPACK computational routine (version 3.7.1) --
  183. * -- LAPACK is a software package provided by Univ. of Tennessee, --
  184. * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
  185. * June 2017
  186. *
  187. * .. Scalar Arguments ..
  188. REAL ALPHA, BETA
  189. INTEGER INCX, INCY, LDA, N
  190. INTEGER UPLO
  191. * ..
  192. * .. Array Arguments ..
  193. COMPLEX A( LDA, * ), X( * )
  194. REAL Y( * )
  195. * ..
  196. *
  197. * =====================================================================
  198. *
  199. * .. Parameters ..
  200. REAL ONE, ZERO
  201. PARAMETER ( ONE = 1.0E+0, ZERO = 0.0E+0 )
  202. * ..
  203. * .. Local Scalars ..
  204. LOGICAL SYMB_ZERO
  205. REAL TEMP, SAFE1
  206. INTEGER I, INFO, IY, J, JX, KX, KY
  207. COMPLEX ZDUM
  208. * ..
  209. * .. External Subroutines ..
  210. EXTERNAL XERBLA, SLAMCH
  211. REAL SLAMCH
  212. * ..
  213. * .. External Functions ..
  214. EXTERNAL ILAUPLO
  215. INTEGER ILAUPLO
  216. * ..
  217. * .. Intrinsic Functions ..
  218. INTRINSIC MAX, ABS, SIGN, REAL, AIMAG
  219. * ..
  220. * .. Statement Functions ..
  221. REAL CABS1
  222. * ..
  223. * .. Statement Function Definitions ..
  224. CABS1( ZDUM ) = ABS( REAL ( ZDUM ) ) + ABS( AIMAG ( ZDUM ) )
  225. * ..
  226. * .. Executable Statements ..
  227. *
  228. * Test the input parameters.
  229. *
  230. INFO = 0
  231. IF ( UPLO.NE.ILAUPLO( 'U' ) .AND.
  232. $ UPLO.NE.ILAUPLO( 'L' ) )THEN
  233. INFO = 1
  234. ELSE IF( N.LT.0 )THEN
  235. INFO = 2
  236. ELSE IF( LDA.LT.MAX( 1, N ) )THEN
  237. INFO = 5
  238. ELSE IF( INCX.EQ.0 )THEN
  239. INFO = 7
  240. ELSE IF( INCY.EQ.0 )THEN
  241. INFO = 10
  242. END IF
  243. IF( INFO.NE.0 )THEN
  244. CALL XERBLA( 'CLA_SYAMV', INFO )
  245. RETURN
  246. END IF
  247. *
  248. * Quick return if possible.
  249. *
  250. IF( ( N.EQ.0 ).OR.( ( ALPHA.EQ.ZERO ).AND.( BETA.EQ.ONE ) ) )
  251. $ RETURN
  252. *
  253. * Set up the start points in X and Y.
  254. *
  255. IF( INCX.GT.0 )THEN
  256. KX = 1
  257. ELSE
  258. KX = 1 - ( N - 1 )*INCX
  259. END IF
  260. IF( INCY.GT.0 )THEN
  261. KY = 1
  262. ELSE
  263. KY = 1 - ( N - 1 )*INCY
  264. END IF
  265. *
  266. * Set SAFE1 essentially to be the underflow threshold times the
  267. * number of additions in each row.
  268. *
  269. SAFE1 = SLAMCH( 'Safe minimum' )
  270. SAFE1 = (N+1)*SAFE1
  271. *
  272. * Form y := alpha*abs(A)*abs(x) + beta*abs(y).
  273. *
  274. * The O(N^2) SYMB_ZERO tests could be replaced by O(N) queries to
  275. * the inexact flag. Still doesn't help change the iteration order
  276. * to per-column.
  277. *
  278. IY = KY
  279. IF ( INCX.EQ.1 ) THEN
  280. IF ( UPLO .EQ. ILAUPLO( 'U' ) ) THEN
  281. DO I = 1, N
  282. IF ( BETA .EQ. ZERO ) THEN
  283. SYMB_ZERO = .TRUE.
  284. Y( IY ) = 0.0
  285. ELSE IF ( Y( IY ) .EQ. ZERO ) THEN
  286. SYMB_ZERO = .TRUE.
  287. ELSE
  288. SYMB_ZERO = .FALSE.
  289. Y( IY ) = BETA * ABS( Y( IY ) )
  290. END IF
  291. IF ( ALPHA .NE. ZERO ) THEN
  292. DO J = 1, I
  293. TEMP = CABS1( A( J, I ) )
  294. SYMB_ZERO = SYMB_ZERO .AND.
  295. $ ( X( J ) .EQ. ZERO .OR. TEMP .EQ. ZERO )
  296. Y( IY ) = Y( IY ) + ALPHA*CABS1( X( J ) )*TEMP
  297. END DO
  298. DO J = I+1, N
  299. TEMP = CABS1( A( I, J ) )
  300. SYMB_ZERO = SYMB_ZERO .AND.
  301. $ ( X( J ) .EQ. ZERO .OR. TEMP .EQ. ZERO )
  302. Y( IY ) = Y( IY ) + ALPHA*CABS1( X( J ) )*TEMP
  303. END DO
  304. END IF
  305. IF ( .NOT.SYMB_ZERO )
  306. $ Y( IY ) = Y( IY ) + SIGN( SAFE1, Y( IY ) )
  307. IY = IY + INCY
  308. END DO
  309. ELSE
  310. DO I = 1, N
  311. IF ( BETA .EQ. ZERO ) THEN
  312. SYMB_ZERO = .TRUE.
  313. Y( IY ) = 0.0
  314. ELSE IF ( Y( IY ) .EQ. ZERO ) THEN
  315. SYMB_ZERO = .TRUE.
  316. ELSE
  317. SYMB_ZERO = .FALSE.
  318. Y( IY ) = BETA * ABS( Y( IY ) )
  319. END IF
  320. IF ( ALPHA .NE. ZERO ) THEN
  321. DO J = 1, I
  322. TEMP = CABS1( A( I, J ) )
  323. SYMB_ZERO = SYMB_ZERO .AND.
  324. $ ( X( J ) .EQ. ZERO .OR. TEMP .EQ. ZERO )
  325. Y( IY ) = Y( IY ) + ALPHA*CABS1( X( J ) )*TEMP
  326. END DO
  327. DO J = I+1, N
  328. TEMP = CABS1( A( J, I ) )
  329. SYMB_ZERO = SYMB_ZERO .AND.
  330. $ ( X( J ) .EQ. ZERO .OR. TEMP .EQ. ZERO )
  331. Y( IY ) = Y( IY ) + ALPHA*CABS1( X( J ) )*TEMP
  332. END DO
  333. END IF
  334. IF ( .NOT.SYMB_ZERO )
  335. $ Y( IY ) = Y( IY ) + SIGN( SAFE1, Y( IY ) )
  336. IY = IY + INCY
  337. END DO
  338. END IF
  339. ELSE
  340. IF ( UPLO .EQ. ILAUPLO( 'U' ) ) THEN
  341. DO I = 1, N
  342. IF ( BETA .EQ. ZERO ) THEN
  343. SYMB_ZERO = .TRUE.
  344. Y( IY ) = 0.0
  345. ELSE IF ( Y( IY ) .EQ. ZERO ) THEN
  346. SYMB_ZERO = .TRUE.
  347. ELSE
  348. SYMB_ZERO = .FALSE.
  349. Y( IY ) = BETA * ABS( Y( IY ) )
  350. END IF
  351. JX = KX
  352. IF ( ALPHA .NE. ZERO ) THEN
  353. DO J = 1, I
  354. TEMP = CABS1( A( J, I ) )
  355. SYMB_ZERO = SYMB_ZERO .AND.
  356. $ ( X( J ) .EQ. ZERO .OR. TEMP .EQ. ZERO )
  357. Y( IY ) = Y( IY ) + ALPHA*CABS1( X( JX ) )*TEMP
  358. JX = JX + INCX
  359. END DO
  360. DO J = I+1, N
  361. TEMP = CABS1( A( I, J ) )
  362. SYMB_ZERO = SYMB_ZERO .AND.
  363. $ ( X( J ) .EQ. ZERO .OR. TEMP .EQ. ZERO )
  364. Y( IY ) = Y( IY ) + ALPHA*CABS1( X( JX ) )*TEMP
  365. JX = JX + INCX
  366. END DO
  367. END IF
  368. IF ( .NOT.SYMB_ZERO )
  369. $ Y( IY ) = Y( IY ) + SIGN( SAFE1, Y( IY ) )
  370. IY = IY + INCY
  371. END DO
  372. ELSE
  373. DO I = 1, N
  374. IF ( BETA .EQ. ZERO ) THEN
  375. SYMB_ZERO = .TRUE.
  376. Y( IY ) = 0.0
  377. ELSE IF ( Y( IY ) .EQ. ZERO ) THEN
  378. SYMB_ZERO = .TRUE.
  379. ELSE
  380. SYMB_ZERO = .FALSE.
  381. Y( IY ) = BETA * ABS( Y( IY ) )
  382. END IF
  383. JX = KX
  384. IF ( ALPHA .NE. ZERO ) THEN
  385. DO J = 1, I
  386. TEMP = CABS1( A( I, J ) )
  387. SYMB_ZERO = SYMB_ZERO .AND.
  388. $ ( X( J ) .EQ. ZERO .OR. TEMP .EQ. ZERO )
  389. Y( IY ) = Y( IY ) + ALPHA*CABS1( X( JX ) )*TEMP
  390. JX = JX + INCX
  391. END DO
  392. DO J = I+1, N
  393. TEMP = CABS1( A( J, I ) )
  394. SYMB_ZERO = SYMB_ZERO .AND.
  395. $ ( X( J ) .EQ. ZERO .OR. TEMP .EQ. ZERO )
  396. Y( IY ) = Y( IY ) + ALPHA*CABS1( X( JX ) )*TEMP
  397. JX = JX + INCX
  398. END DO
  399. END IF
  400. IF ( .NOT.SYMB_ZERO )
  401. $ Y( IY ) = Y( IY ) + SIGN( SAFE1, Y( IY ) )
  402. IY = IY + INCY
  403. END DO
  404. END IF
  405. END IF
  406. *
  407. RETURN
  408. *
  409. * End of CLA_SYAMV
  410. *
  411. END