You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

cheev.f 8.8 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298
  1. *> \brief <b> CHEEV computes the eigenvalues and, optionally, the left and/or right eigenvectors for HE matrices</b>
  2. *
  3. * =========== DOCUMENTATION ===========
  4. *
  5. * Online html documentation available at
  6. * http://www.netlib.org/lapack/explore-html/
  7. *
  8. *> \htmlonly
  9. *> Download CHEEV + dependencies
  10. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/cheev.f">
  11. *> [TGZ]</a>
  12. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/cheev.f">
  13. *> [ZIP]</a>
  14. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/cheev.f">
  15. *> [TXT]</a>
  16. *> \endhtmlonly
  17. *
  18. * Definition:
  19. * ===========
  20. *
  21. * SUBROUTINE CHEEV( JOBZ, UPLO, N, A, LDA, W, WORK, LWORK, RWORK,
  22. * INFO )
  23. *
  24. * .. Scalar Arguments ..
  25. * CHARACTER JOBZ, UPLO
  26. * INTEGER INFO, LDA, LWORK, N
  27. * ..
  28. * .. Array Arguments ..
  29. * REAL RWORK( * ), W( * )
  30. * COMPLEX A( LDA, * ), WORK( * )
  31. * ..
  32. *
  33. *
  34. *> \par Purpose:
  35. * =============
  36. *>
  37. *> \verbatim
  38. *>
  39. *> CHEEV computes all eigenvalues and, optionally, eigenvectors of a
  40. *> complex Hermitian matrix A.
  41. *> \endverbatim
  42. *
  43. * Arguments:
  44. * ==========
  45. *
  46. *> \param[in] JOBZ
  47. *> \verbatim
  48. *> JOBZ is CHARACTER*1
  49. *> = 'N': Compute eigenvalues only;
  50. *> = 'V': Compute eigenvalues and eigenvectors.
  51. *> \endverbatim
  52. *>
  53. *> \param[in] UPLO
  54. *> \verbatim
  55. *> UPLO is CHARACTER*1
  56. *> = 'U': Upper triangle of A is stored;
  57. *> = 'L': Lower triangle of A is stored.
  58. *> \endverbatim
  59. *>
  60. *> \param[in] N
  61. *> \verbatim
  62. *> N is INTEGER
  63. *> The order of the matrix A. N >= 0.
  64. *> \endverbatim
  65. *>
  66. *> \param[in,out] A
  67. *> \verbatim
  68. *> A is COMPLEX array, dimension (LDA, N)
  69. *> On entry, the Hermitian matrix A. If UPLO = 'U', the
  70. *> leading N-by-N upper triangular part of A contains the
  71. *> upper triangular part of the matrix A. If UPLO = 'L',
  72. *> the leading N-by-N lower triangular part of A contains
  73. *> the lower triangular part of the matrix A.
  74. *> On exit, if JOBZ = 'V', then if INFO = 0, A contains the
  75. *> orthonormal eigenvectors of the matrix A.
  76. *> If JOBZ = 'N', then on exit the lower triangle (if UPLO='L')
  77. *> or the upper triangle (if UPLO='U') of A, including the
  78. *> diagonal, is destroyed.
  79. *> \endverbatim
  80. *>
  81. *> \param[in] LDA
  82. *> \verbatim
  83. *> LDA is INTEGER
  84. *> The leading dimension of the array A. LDA >= max(1,N).
  85. *> \endverbatim
  86. *>
  87. *> \param[out] W
  88. *> \verbatim
  89. *> W is REAL array, dimension (N)
  90. *> If INFO = 0, the eigenvalues in ascending order.
  91. *> \endverbatim
  92. *>
  93. *> \param[out] WORK
  94. *> \verbatim
  95. *> WORK is COMPLEX array, dimension (MAX(1,LWORK))
  96. *> On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
  97. *> \endverbatim
  98. *>
  99. *> \param[in] LWORK
  100. *> \verbatim
  101. *> LWORK is INTEGER
  102. *> The length of the array WORK. LWORK >= max(1,2*N-1).
  103. *> For optimal efficiency, LWORK >= (NB+1)*N,
  104. *> where NB is the blocksize for CHETRD returned by ILAENV.
  105. *>
  106. *> If LWORK = -1, then a workspace query is assumed; the routine
  107. *> only calculates the optimal size of the WORK array, returns
  108. *> this value as the first entry of the WORK array, and no error
  109. *> message related to LWORK is issued by XERBLA.
  110. *> \endverbatim
  111. *>
  112. *> \param[out] RWORK
  113. *> \verbatim
  114. *> RWORK is REAL array, dimension (max(1, 3*N-2))
  115. *> \endverbatim
  116. *>
  117. *> \param[out] INFO
  118. *> \verbatim
  119. *> INFO is INTEGER
  120. *> = 0: successful exit
  121. *> < 0: if INFO = -i, the i-th argument had an illegal value
  122. *> > 0: if INFO = i, the algorithm failed to converge; i
  123. *> off-diagonal elements of an intermediate tridiagonal
  124. *> form did not converge to zero.
  125. *> \endverbatim
  126. *
  127. * Authors:
  128. * ========
  129. *
  130. *> \author Univ. of Tennessee
  131. *> \author Univ. of California Berkeley
  132. *> \author Univ. of Colorado Denver
  133. *> \author NAG Ltd.
  134. *
  135. *> \date December 2016
  136. *
  137. *> \ingroup complexHEeigen
  138. *
  139. * =====================================================================
  140. SUBROUTINE CHEEV( JOBZ, UPLO, N, A, LDA, W, WORK, LWORK, RWORK,
  141. $ INFO )
  142. *
  143. * -- LAPACK driver routine (version 3.7.0) --
  144. * -- LAPACK is a software package provided by Univ. of Tennessee, --
  145. * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
  146. * December 2016
  147. *
  148. * .. Scalar Arguments ..
  149. CHARACTER JOBZ, UPLO
  150. INTEGER INFO, LDA, LWORK, N
  151. * ..
  152. * .. Array Arguments ..
  153. REAL RWORK( * ), W( * )
  154. COMPLEX A( LDA, * ), WORK( * )
  155. * ..
  156. *
  157. * =====================================================================
  158. *
  159. * .. Parameters ..
  160. REAL ZERO, ONE
  161. PARAMETER ( ZERO = 0.0E0, ONE = 1.0E0 )
  162. COMPLEX CONE
  163. PARAMETER ( CONE = ( 1.0E0, 0.0E0 ) )
  164. * ..
  165. * .. Local Scalars ..
  166. LOGICAL LOWER, LQUERY, WANTZ
  167. INTEGER IINFO, IMAX, INDE, INDTAU, INDWRK, ISCALE,
  168. $ LLWORK, LWKOPT, NB
  169. REAL ANRM, BIGNUM, EPS, RMAX, RMIN, SAFMIN, SIGMA,
  170. $ SMLNUM
  171. * ..
  172. * .. External Functions ..
  173. LOGICAL LSAME
  174. INTEGER ILAENV
  175. REAL CLANHE, SLAMCH
  176. EXTERNAL ILAENV, LSAME, CLANHE, SLAMCH
  177. * ..
  178. * .. External Subroutines ..
  179. EXTERNAL CHETRD, CLASCL, CSTEQR, CUNGTR, SSCAL, SSTERF,
  180. $ XERBLA
  181. * ..
  182. * .. Intrinsic Functions ..
  183. INTRINSIC MAX, SQRT
  184. * ..
  185. * .. Executable Statements ..
  186. *
  187. * Test the input parameters.
  188. *
  189. WANTZ = LSAME( JOBZ, 'V' )
  190. LOWER = LSAME( UPLO, 'L' )
  191. LQUERY = ( LWORK.EQ.-1 )
  192. *
  193. INFO = 0
  194. IF( .NOT.( WANTZ .OR. LSAME( JOBZ, 'N' ) ) ) THEN
  195. INFO = -1
  196. ELSE IF( .NOT.( LOWER .OR. LSAME( UPLO, 'U' ) ) ) THEN
  197. INFO = -2
  198. ELSE IF( N.LT.0 ) THEN
  199. INFO = -3
  200. ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
  201. INFO = -5
  202. END IF
  203. *
  204. IF( INFO.EQ.0 ) THEN
  205. NB = ILAENV( 1, 'CHETRD', UPLO, N, -1, -1, -1 )
  206. LWKOPT = MAX( 1, ( NB+1 )*N )
  207. WORK( 1 ) = LWKOPT
  208. *
  209. IF( LWORK.LT.MAX( 1, 2*N-1 ) .AND. .NOT.LQUERY )
  210. $ INFO = -8
  211. END IF
  212. *
  213. IF( INFO.NE.0 ) THEN
  214. CALL XERBLA( 'CHEEV ', -INFO )
  215. RETURN
  216. ELSE IF( LQUERY ) THEN
  217. RETURN
  218. END IF
  219. *
  220. * Quick return if possible
  221. *
  222. IF( N.EQ.0 ) THEN
  223. RETURN
  224. END IF
  225. *
  226. IF( N.EQ.1 ) THEN
  227. W( 1 ) = A( 1, 1 )
  228. WORK( 1 ) = 1
  229. IF( WANTZ )
  230. $ A( 1, 1 ) = CONE
  231. RETURN
  232. END IF
  233. *
  234. * Get machine constants.
  235. *
  236. SAFMIN = SLAMCH( 'Safe minimum' )
  237. EPS = SLAMCH( 'Precision' )
  238. SMLNUM = SAFMIN / EPS
  239. BIGNUM = ONE / SMLNUM
  240. RMIN = SQRT( SMLNUM )
  241. RMAX = SQRT( BIGNUM )
  242. *
  243. * Scale matrix to allowable range, if necessary.
  244. *
  245. ANRM = CLANHE( 'M', UPLO, N, A, LDA, RWORK )
  246. ISCALE = 0
  247. IF( ANRM.GT.ZERO .AND. ANRM.LT.RMIN ) THEN
  248. ISCALE = 1
  249. SIGMA = RMIN / ANRM
  250. ELSE IF( ANRM.GT.RMAX ) THEN
  251. ISCALE = 1
  252. SIGMA = RMAX / ANRM
  253. END IF
  254. IF( ISCALE.EQ.1 )
  255. $ CALL CLASCL( UPLO, 0, 0, ONE, SIGMA, N, N, A, LDA, INFO )
  256. *
  257. * Call CHETRD to reduce Hermitian matrix to tridiagonal form.
  258. *
  259. INDE = 1
  260. INDTAU = 1
  261. INDWRK = INDTAU + N
  262. LLWORK = LWORK - INDWRK + 1
  263. CALL CHETRD( UPLO, N, A, LDA, W, RWORK( INDE ), WORK( INDTAU ),
  264. $ WORK( INDWRK ), LLWORK, IINFO )
  265. *
  266. * For eigenvalues only, call SSTERF. For eigenvectors, first call
  267. * CUNGTR to generate the unitary matrix, then call CSTEQR.
  268. *
  269. IF( .NOT.WANTZ ) THEN
  270. CALL SSTERF( N, W, RWORK( INDE ), INFO )
  271. ELSE
  272. CALL CUNGTR( UPLO, N, A, LDA, WORK( INDTAU ), WORK( INDWRK ),
  273. $ LLWORK, IINFO )
  274. INDWRK = INDE + N
  275. CALL CSTEQR( JOBZ, N, W, RWORK( INDE ), A, LDA,
  276. $ RWORK( INDWRK ), INFO )
  277. END IF
  278. *
  279. * If matrix was scaled, then rescale eigenvalues appropriately.
  280. *
  281. IF( ISCALE.EQ.1 ) THEN
  282. IF( INFO.EQ.0 ) THEN
  283. IMAX = N
  284. ELSE
  285. IMAX = INFO - 1
  286. END IF
  287. CALL SSCAL( IMAX, ONE / SIGMA, W, 1 )
  288. END IF
  289. *
  290. * Set WORK(1) to optimal complex workspace size.
  291. *
  292. WORK( 1 ) = LWKOPT
  293. *
  294. RETURN
  295. *
  296. * End of CHEEV
  297. *
  298. END