You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

cgemlqt.f 7.4 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272
  1. * Definition:
  2. * ===========
  3. *
  4. * SUBROUTINE CGEMLQT( SIDE, TRANS, M, N, K, MB, V, LDV, T, LDT,
  5. * C, LDC, WORK, INFO )
  6. *
  7. * .. Scalar Arguments ..
  8. * CHARACTER SIDE, TRANS
  9. * INTEGER INFO, K, LDV, LDC, M, N, MB, LDT
  10. * ..
  11. * .. Array Arguments ..
  12. * COMPLEX V( LDV, * ), C( LDC, * ), T( LDT, * ), WORK( * )
  13. * ..
  14. *
  15. *
  16. *> \par Purpose:
  17. * =============
  18. *>
  19. *> \verbatim
  20. *>
  21. *> CGEMLQT overwrites the general real M-by-N matrix C with
  22. *>
  23. *> SIDE = 'L' SIDE = 'R'
  24. *> TRANS = 'N': Q C C Q
  25. *> TRANS = 'C': Q**H C C Q**H
  26. *>
  27. *> where Q is a complex orthogonal matrix defined as the product of K
  28. *> elementary reflectors:
  29. *>
  30. *> Q = H(1) H(2) . . . H(K) = I - V T V**H
  31. *>
  32. *> generated using the compact WY representation as returned by CGELQT.
  33. *>
  34. *> Q is of order M if SIDE = 'L' and of order N if SIDE = 'R'.
  35. *> \endverbatim
  36. *
  37. * Arguments:
  38. * ==========
  39. *
  40. *> \param[in] SIDE
  41. *> \verbatim
  42. *> SIDE is CHARACTER*1
  43. *> = 'L': apply Q or Q**H from the Left;
  44. *> = 'R': apply Q or Q**H from the Right.
  45. *> \endverbatim
  46. *>
  47. *> \param[in] TRANS
  48. *> \verbatim
  49. *> TRANS is CHARACTER*1
  50. *> = 'N': No transpose, apply Q;
  51. *> = 'C': Transpose, apply Q**H.
  52. *> \endverbatim
  53. *>
  54. *> \param[in] M
  55. *> \verbatim
  56. *> M is INTEGER
  57. *> The number of rows of the matrix C. M >= 0.
  58. *> \endverbatim
  59. *>
  60. *> \param[in] N
  61. *> \verbatim
  62. *> N is INTEGER
  63. *> The number of columns of the matrix C. N >= 0.
  64. *> \endverbatim
  65. *>
  66. *> \param[in] K
  67. *> \verbatim
  68. *> K is INTEGER
  69. *> The number of elementary reflectors whose product defines
  70. *> the matrix Q.
  71. *> If SIDE = 'L', M >= K >= 0;
  72. *> if SIDE = 'R', N >= K >= 0.
  73. *> \endverbatim
  74. *>
  75. *> \param[in] MB
  76. *> \verbatim
  77. *> MB is INTEGER
  78. *> The block size used for the storage of T. K >= MB >= 1.
  79. *> This must be the same value of MB used to generate T
  80. *> in DGELQT.
  81. *> \endverbatim
  82. *>
  83. *> \param[in] V
  84. *> \verbatim
  85. *> V is COMPLEX array, dimension
  86. *> (LDV,M) if SIDE = 'L',
  87. *> (LDV,N) if SIDE = 'R'
  88. *> The i-th row must contain the vector which defines the
  89. *> elementary reflector H(i), for i = 1,2,...,k, as returned by
  90. *> DGELQT in the first K rows of its array argument A.
  91. *> \endverbatim
  92. *>
  93. *> \param[in] LDV
  94. *> \verbatim
  95. *> LDV is INTEGER
  96. *> The leading dimension of the array V. LDV >= max(1,K).
  97. *> \endverbatim
  98. *>
  99. *> \param[in] T
  100. *> \verbatim
  101. *> T is COMPLEX array, dimension (LDT,K)
  102. *> The upper triangular factors of the block reflectors
  103. *> as returned by DGELQT, stored as a MB-by-K matrix.
  104. *> \endverbatim
  105. *>
  106. *> \param[in] LDT
  107. *> \verbatim
  108. *> LDT is INTEGER
  109. *> The leading dimension of the array T. LDT >= MB.
  110. *> \endverbatim
  111. *>
  112. *> \param[in,out] C
  113. *> \verbatim
  114. *> C is COMPLEX array, dimension (LDC,N)
  115. *> On entry, the M-by-N matrix C.
  116. *> On exit, C is overwritten by Q C, Q**H C, C Q**H or C Q.
  117. *> \endverbatim
  118. *>
  119. *> \param[in] LDC
  120. *> \verbatim
  121. *> LDC is INTEGER
  122. *> The leading dimension of the array C. LDC >= max(1,M).
  123. *> \endverbatim
  124. *>
  125. *> \param[out] WORK
  126. *> \verbatim
  127. *> WORK is COMPLEX array. The dimension of
  128. *> WORK is N*MB if SIDE = 'L', or M*MB if SIDE = 'R'.
  129. *> \endverbatim
  130. *>
  131. *> \param[out] INFO
  132. *> \verbatim
  133. *> INFO is INTEGER
  134. *> = 0: successful exit
  135. *> < 0: if INFO = -i, the i-th argument had an illegal value
  136. *> \endverbatim
  137. *
  138. * Authors:
  139. * ========
  140. *
  141. *> \author Univ. of Tennessee
  142. *> \author Univ. of California Berkeley
  143. *> \author Univ. of Colorado Denver
  144. *> \author NAG Ltd.
  145. *
  146. *> \date November 2017
  147. *
  148. *> \ingroup doubleGEcomputational
  149. *
  150. * =====================================================================
  151. SUBROUTINE CGEMLQT( SIDE, TRANS, M, N, K, MB, V, LDV, T, LDT,
  152. $ C, LDC, WORK, INFO )
  153. *
  154. * -- LAPACK computational routine (version 3.8.0) --
  155. * -- LAPACK is a software package provided by Univ. of Tennessee, --
  156. * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
  157. * November 2017
  158. *
  159. * .. Scalar Arguments ..
  160. CHARACTER SIDE, TRANS
  161. INTEGER INFO, K, LDV, LDC, M, N, MB, LDT
  162. * ..
  163. * .. Array Arguments ..
  164. COMPLEX V( LDV, * ), C( LDC, * ), T( LDT, * ), WORK( * )
  165. * ..
  166. *
  167. * =====================================================================
  168. *
  169. * ..
  170. * .. Local Scalars ..
  171. LOGICAL LEFT, RIGHT, TRAN, NOTRAN
  172. INTEGER I, IB, LDWORK, KF
  173. * ..
  174. * .. External Functions ..
  175. LOGICAL LSAME
  176. EXTERNAL LSAME
  177. * ..
  178. * .. External Subroutines ..
  179. EXTERNAL XERBLA, CLARFB
  180. * ..
  181. * .. Intrinsic Functions ..
  182. INTRINSIC MAX, MIN
  183. * ..
  184. * .. Executable Statements ..
  185. *
  186. * .. Test the input arguments ..
  187. *
  188. INFO = 0
  189. LEFT = LSAME( SIDE, 'L' )
  190. RIGHT = LSAME( SIDE, 'R' )
  191. TRAN = LSAME( TRANS, 'C' )
  192. NOTRAN = LSAME( TRANS, 'N' )
  193. *
  194. IF( LEFT ) THEN
  195. LDWORK = MAX( 1, N )
  196. ELSE IF ( RIGHT ) THEN
  197. LDWORK = MAX( 1, M )
  198. END IF
  199. IF( .NOT.LEFT .AND. .NOT.RIGHT ) THEN
  200. INFO = -1
  201. ELSE IF( .NOT.TRAN .AND. .NOT.NOTRAN ) THEN
  202. INFO = -2
  203. ELSE IF( M.LT.0 ) THEN
  204. INFO = -3
  205. ELSE IF( N.LT.0 ) THEN
  206. INFO = -4
  207. ELSE IF( K.LT.0) THEN
  208. INFO = -5
  209. ELSE IF( MB.LT.1 .OR. (MB.GT.K .AND. K.GT.0)) THEN
  210. INFO = -6
  211. ELSE IF( LDV.LT.MAX( 1, K ) ) THEN
  212. INFO = -8
  213. ELSE IF( LDT.LT.MB ) THEN
  214. INFO = -10
  215. ELSE IF( LDC.LT.MAX( 1, M ) ) THEN
  216. INFO = -12
  217. END IF
  218. *
  219. IF( INFO.NE.0 ) THEN
  220. CALL XERBLA( 'CGEMLQT', -INFO )
  221. RETURN
  222. END IF
  223. *
  224. * .. Quick return if possible ..
  225. *
  226. IF( M.EQ.0 .OR. N.EQ.0 .OR. K.EQ.0 ) RETURN
  227. *
  228. IF( LEFT .AND. NOTRAN ) THEN
  229. *
  230. DO I = 1, K, MB
  231. IB = MIN( MB, K-I+1 )
  232. CALL CLARFB( 'L', 'C', 'F', 'R', M-I+1, N, IB,
  233. $ V( I, I ), LDV, T( 1, I ), LDT,
  234. $ C( I, 1 ), LDC, WORK, LDWORK )
  235. END DO
  236. *
  237. ELSE IF( RIGHT .AND. TRAN ) THEN
  238. *
  239. DO I = 1, K, MB
  240. IB = MIN( MB, K-I+1 )
  241. CALL CLARFB( 'R', 'N', 'F', 'R', M, N-I+1, IB,
  242. $ V( I, I ), LDV, T( 1, I ), LDT,
  243. $ C( 1, I ), LDC, WORK, LDWORK )
  244. END DO
  245. *
  246. ELSE IF( LEFT .AND. TRAN ) THEN
  247. *
  248. KF = ((K-1)/MB)*MB+1
  249. DO I = KF, 1, -MB
  250. IB = MIN( MB, K-I+1 )
  251. CALL CLARFB( 'L', 'N', 'F', 'R', M-I+1, N, IB,
  252. $ V( I, I ), LDV, T( 1, I ), LDT,
  253. $ C( I, 1 ), LDC, WORK, LDWORK )
  254. END DO
  255. *
  256. ELSE IF( RIGHT .AND. NOTRAN ) THEN
  257. *
  258. KF = ((K-1)/MB)*MB+1
  259. DO I = KF, 1, -MB
  260. IB = MIN( MB, K-I+1 )
  261. CALL CLARFB( 'R', 'C', 'F', 'R', M, N-I+1, IB,
  262. $ V( I, I ), LDV, T( 1, I ), LDT,
  263. $ C( 1, I ), LDC, WORK, LDWORK )
  264. END DO
  265. *
  266. END IF
  267. *
  268. RETURN
  269. *
  270. * End of CGEMLQT
  271. *
  272. END