You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

cgemlq.f 7.9 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283
  1. *
  2. * Definition:
  3. * ===========
  4. *
  5. * SUBROUTINE CGEMLQ( SIDE, TRANS, M, N, K, A, LDA, T,
  6. * $ TSIZE, C, LDC, WORK, LWORK, INFO )
  7. *
  8. *
  9. * .. Scalar Arguments ..
  10. * CHARACTER SIDE, TRANS
  11. * INTEGER INFO, LDA, M, N, K, LDT, TSIZE, LWORK, LDC
  12. * ..
  13. * .. Array Arguments ..
  14. * COMPLEX A( LDA, * ), T( * ), C(LDC, * ), WORK( * )
  15. * ..
  16. *
  17. *> \par Purpose:
  18. * =============
  19. *>
  20. *> \verbatim
  21. *>
  22. *> CGEMLQ overwrites the general real M-by-N matrix C with
  23. *>
  24. *> SIDE = 'L' SIDE = 'R'
  25. *> TRANS = 'N': Q * C C * Q
  26. *> TRANS = 'C': Q**H * C C * Q**H
  27. *> where Q is a complex unitary matrix defined as the product
  28. *> of blocked elementary reflectors computed by short wide
  29. *> LQ factorization (CGELQ)
  30. *>
  31. *> \endverbatim
  32. *
  33. * Arguments:
  34. * ==========
  35. *
  36. *> \param[in] SIDE
  37. *> \verbatim
  38. *> SIDE is CHARACTER*1
  39. *> = 'L': apply Q or Q**T from the Left;
  40. *> = 'R': apply Q or Q**T from the Right.
  41. *> \endverbatim
  42. *>
  43. *> \param[in] TRANS
  44. *> \verbatim
  45. *> TRANS is CHARACTER*1
  46. *> = 'N': No transpose, apply Q;
  47. *> = 'T': Transpose, apply Q**T.
  48. *> \endverbatim
  49. *>
  50. *> \param[in] M
  51. *> \verbatim
  52. *> M is INTEGER
  53. *> The number of rows of the matrix A. M >=0.
  54. *> \endverbatim
  55. *>
  56. *> \param[in] N
  57. *> \verbatim
  58. *> N is INTEGER
  59. *> The number of columns of the matrix C. N >= 0.
  60. *> \endverbatim
  61. *>
  62. *> \param[in] K
  63. *> \verbatim
  64. *> K is INTEGER
  65. *> The number of elementary reflectors whose product defines
  66. *> the matrix Q.
  67. *> If SIDE = 'L', M >= K >= 0;
  68. *> if SIDE = 'R', N >= K >= 0.
  69. *> \endverbatim
  70. *>
  71. *> \param[in] A
  72. *> \verbatim
  73. *> A is COMPLEX array, dimension
  74. *> (LDA,M) if SIDE = 'L',
  75. *> (LDA,N) if SIDE = 'R'
  76. *> Part of the data structure to represent Q as returned by CGELQ.
  77. *> \endverbatim
  78. *>
  79. *> \param[in] LDA
  80. *> \verbatim
  81. *> LDA is INTEGER
  82. *> The leading dimension of the array A. LDA >= max(1,K).
  83. *> \endverbatim
  84. *>
  85. *> \param[in] T
  86. *> \verbatim
  87. *> T is COMPLEX array, dimension (MAX(5,TSIZE)).
  88. *> Part of the data structure to represent Q as returned by CGELQ.
  89. *> \endverbatim
  90. *>
  91. *> \param[in] TSIZE
  92. *> \verbatim
  93. *> TSIZE is INTEGER
  94. *> The dimension of the array T. TSIZE >= 5.
  95. *> \endverbatim
  96. *>
  97. *> \param[in,out] C
  98. *> \verbatim
  99. *> C is COMPLEX array, dimension (LDC,N)
  100. *> On entry, the M-by-N matrix C.
  101. *> On exit, C is overwritten by Q*C or Q**T*C or C*Q**T or C*Q.
  102. *> \endverbatim
  103. *>
  104. *> \param[in] LDC
  105. *> \verbatim
  106. *> LDC is INTEGER
  107. *> The leading dimension of the array C. LDC >= max(1,M).
  108. *> \endverbatim
  109. *>
  110. *> \param[out] WORK
  111. *> \verbatim
  112. *> (workspace) COMPLEX array, dimension (MAX(1,LWORK))
  113. *> \endverbatim
  114. *>
  115. *> \param[in] LWORK
  116. *> \verbatim
  117. *> LWORK is INTEGER
  118. *> The dimension of the array WORK.
  119. *> If LWORK = -1, then a workspace query is assumed. The routine
  120. *> only calculates the size of the WORK array, returns this
  121. *> value as WORK(1), and no error message related to WORK
  122. *> is issued by XERBLA.
  123. *> \endverbatim
  124. *>
  125. *> \param[out] INFO
  126. *> \verbatim
  127. *> INFO is INTEGER
  128. *> = 0: successful exit
  129. *> < 0: if INFO = -i, the i-th argument had an illegal value
  130. *> \endverbatim
  131. *
  132. * Authors:
  133. * ========
  134. *
  135. *> \author Univ. of Tennessee
  136. *> \author Univ. of California Berkeley
  137. *> \author Univ. of Colorado Denver
  138. *> \author NAG Ltd.
  139. *
  140. *> \par Further Details
  141. * ====================
  142. *>
  143. *> \verbatim
  144. *>
  145. *> These details are particular for this LAPACK implementation. Users should not
  146. *> take them for granted. These details may change in the future, and are unlikely not
  147. *> true for another LAPACK implementation. These details are relevant if one wants
  148. *> to try to understand the code. They are not part of the interface.
  149. *>
  150. *> In this version,
  151. *>
  152. *> T(2): row block size (MB)
  153. *> T(3): column block size (NB)
  154. *> T(6:TSIZE): data structure needed for Q, computed by
  155. *> CLASWQR or CGELQT
  156. *>
  157. *> Depending on the matrix dimensions M and N, and row and column
  158. *> block sizes MB and NB returned by ILAENV, CGELQ will use either
  159. *> CLASWLQ (if the matrix is wide-and-short) or CGELQT to compute
  160. *> the LQ factorization.
  161. *> This version of CGEMLQ will use either CLAMSWLQ or CGEMLQT to
  162. *> multiply matrix Q by another matrix.
  163. *> Further Details in CLAMSWLQ or CGEMLQT.
  164. *> \endverbatim
  165. *>
  166. * =====================================================================
  167. SUBROUTINE CGEMLQ( SIDE, TRANS, M, N, K, A, LDA, T, TSIZE,
  168. $ C, LDC, WORK, LWORK, INFO )
  169. *
  170. * -- LAPACK computational routine (version 3.7.0) --
  171. * -- LAPACK is a software package provided by Univ. of Tennessee, --
  172. * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
  173. * December 2016
  174. *
  175. * .. Scalar Arguments ..
  176. CHARACTER SIDE, TRANS
  177. INTEGER INFO, LDA, M, N, K, TSIZE, LWORK, LDC
  178. * ..
  179. * .. Array Arguments ..
  180. COMPLEX A( LDA, * ), T( * ), C( LDC, * ), WORK( * )
  181. * ..
  182. *
  183. * =====================================================================
  184. *
  185. * ..
  186. * .. Local Scalars ..
  187. LOGICAL LEFT, RIGHT, TRAN, NOTRAN, LQUERY
  188. INTEGER MB, NB, LW, NBLCKS, MN
  189. * ..
  190. * .. External Functions ..
  191. LOGICAL LSAME
  192. EXTERNAL LSAME
  193. * ..
  194. * .. External Subroutines ..
  195. EXTERNAL CLAMSWLQ, CGEMLQT, XERBLA
  196. * ..
  197. * .. Intrinsic Functions ..
  198. INTRINSIC INT, MAX, MIN, MOD
  199. * ..
  200. * .. Executable Statements ..
  201. *
  202. * Test the input arguments
  203. *
  204. LQUERY = LWORK.EQ.-1
  205. NOTRAN = LSAME( TRANS, 'N' )
  206. TRAN = LSAME( TRANS, 'C' )
  207. LEFT = LSAME( SIDE, 'L' )
  208. RIGHT = LSAME( SIDE, 'R' )
  209. *
  210. MB = INT( T( 2 ) )
  211. NB = INT( T( 3 ) )
  212. IF( LEFT ) THEN
  213. LW = N * MB
  214. MN = M
  215. ELSE
  216. LW = M * MB
  217. MN = N
  218. END IF
  219. *
  220. IF( ( NB.GT.K ) .AND. ( MN.GT.K ) ) THEN
  221. IF( MOD( MN - K, NB - K ) .EQ. 0 ) THEN
  222. NBLCKS = ( MN - K ) / ( NB - K )
  223. ELSE
  224. NBLCKS = ( MN - K ) / ( NB - K ) + 1
  225. END IF
  226. ELSE
  227. NBLCKS = 1
  228. END IF
  229. *
  230. INFO = 0
  231. IF( .NOT.LEFT .AND. .NOT.RIGHT ) THEN
  232. INFO = -1
  233. ELSE IF( .NOT.TRAN .AND. .NOT.NOTRAN ) THEN
  234. INFO = -2
  235. ELSE IF( M.LT.0 ) THEN
  236. INFO = -3
  237. ELSE IF( N.LT.0 ) THEN
  238. INFO = -4
  239. ELSE IF( K.LT.0 .OR. K.GT.MN ) THEN
  240. INFO = -5
  241. ELSE IF( LDA.LT.MAX( 1, K ) ) THEN
  242. INFO = -7
  243. ELSE IF( TSIZE.LT.5 ) THEN
  244. INFO = -9
  245. ELSE IF( LDC.LT.MAX( 1, M ) ) THEN
  246. INFO = -11
  247. ELSE IF( ( LWORK.LT.MAX( 1, LW ) ) .AND. ( .NOT.LQUERY ) ) THEN
  248. INFO = -13
  249. END IF
  250. *
  251. IF( INFO.EQ.0 ) THEN
  252. WORK( 1 ) = REAL( LW )
  253. END IF
  254. *
  255. IF( INFO.NE.0 ) THEN
  256. CALL XERBLA( 'CGEMLQ', -INFO )
  257. RETURN
  258. ELSE IF( LQUERY ) THEN
  259. RETURN
  260. END IF
  261. *
  262. * Quick return if possible
  263. *
  264. IF( MIN( M, N, K ).EQ.0 ) THEN
  265. RETURN
  266. END IF
  267. *
  268. IF( ( LEFT .AND. M.LE.K ) .OR. ( RIGHT .AND. N.LE.K )
  269. $ .OR. ( NB.LE.K ) .OR. ( NB.GE.MAX( M, N, K ) ) ) THEN
  270. CALL CGEMLQT( SIDE, TRANS, M, N, K, MB, A, LDA,
  271. $ T( 6 ), MB, C, LDC, WORK, INFO )
  272. ELSE
  273. CALL CLAMSWLQ( SIDE, TRANS, M, N, K, MB, NB, A, LDA, T( 6 ),
  274. $ MB, C, LDC, WORK, LWORK, INFO )
  275. END IF
  276. *
  277. WORK( 1 ) = REAL( LW )
  278. *
  279. RETURN
  280. *
  281. * End of CGEMLQ
  282. *
  283. END