You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

clarfb.f 22 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733
  1. *> \brief \b CLARFB applies a block reflector or its conjugate-transpose to a general rectangular matrix.
  2. *
  3. * =========== DOCUMENTATION ===========
  4. *
  5. * Online html documentation available at
  6. * http://www.netlib.org/lapack/explore-html/
  7. *
  8. *> \htmlonly
  9. *> Download CLARFB + dependencies
  10. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/clarfb.f">
  11. *> [TGZ]</a>
  12. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/clarfb.f">
  13. *> [ZIP]</a>
  14. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/clarfb.f">
  15. *> [TXT]</a>
  16. *> \endhtmlonly
  17. *
  18. * Definition:
  19. * ===========
  20. *
  21. * SUBROUTINE CLARFB( SIDE, TRANS, DIRECT, STOREV, M, N, K, V, LDV,
  22. * T, LDT, C, LDC, WORK, LDWORK )
  23. *
  24. * .. Scalar Arguments ..
  25. * CHARACTER DIRECT, SIDE, STOREV, TRANS
  26. * INTEGER K, LDC, LDT, LDV, LDWORK, M, N
  27. * ..
  28. * .. Array Arguments ..
  29. * COMPLEX C( LDC, * ), T( LDT, * ), V( LDV, * ),
  30. * $ WORK( LDWORK, * )
  31. * ..
  32. *
  33. *
  34. *> \par Purpose:
  35. * =============
  36. *>
  37. *> \verbatim
  38. *>
  39. *> CLARFB applies a complex block reflector H or its transpose H**H to a
  40. *> complex M-by-N matrix C, from either the left or the right.
  41. *> \endverbatim
  42. *
  43. * Arguments:
  44. * ==========
  45. *
  46. *> \param[in] SIDE
  47. *> \verbatim
  48. *> SIDE is CHARACTER*1
  49. *> = 'L': apply H or H**H from the Left
  50. *> = 'R': apply H or H**H from the Right
  51. *> \endverbatim
  52. *>
  53. *> \param[in] TRANS
  54. *> \verbatim
  55. *> TRANS is CHARACTER*1
  56. *> = 'N': apply H (No transpose)
  57. *> = 'C': apply H**H (Conjugate transpose)
  58. *> \endverbatim
  59. *>
  60. *> \param[in] DIRECT
  61. *> \verbatim
  62. *> DIRECT is CHARACTER*1
  63. *> Indicates how H is formed from a product of elementary
  64. *> reflectors
  65. *> = 'F': H = H(1) H(2) . . . H(k) (Forward)
  66. *> = 'B': H = H(k) . . . H(2) H(1) (Backward)
  67. *> \endverbatim
  68. *>
  69. *> \param[in] STOREV
  70. *> \verbatim
  71. *> STOREV is CHARACTER*1
  72. *> Indicates how the vectors which define the elementary
  73. *> reflectors are stored:
  74. *> = 'C': Columnwise
  75. *> = 'R': Rowwise
  76. *> \endverbatim
  77. *>
  78. *> \param[in] M
  79. *> \verbatim
  80. *> M is INTEGER
  81. *> The number of rows of the matrix C.
  82. *> \endverbatim
  83. *>
  84. *> \param[in] N
  85. *> \verbatim
  86. *> N is INTEGER
  87. *> The number of columns of the matrix C.
  88. *> \endverbatim
  89. *>
  90. *> \param[in] K
  91. *> \verbatim
  92. *> K is INTEGER
  93. *> The order of the matrix T (= the number of elementary
  94. *> reflectors whose product defines the block reflector).
  95. *> If SIDE = 'L', M >= K >= 0;
  96. *> if SIDE = 'R', N >= K >= 0.
  97. *> \endverbatim
  98. *>
  99. *> \param[in] V
  100. *> \verbatim
  101. *> V is COMPLEX array, dimension
  102. *> (LDV,K) if STOREV = 'C'
  103. *> (LDV,M) if STOREV = 'R' and SIDE = 'L'
  104. *> (LDV,N) if STOREV = 'R' and SIDE = 'R'
  105. *> The matrix V. See Further Details.
  106. *> \endverbatim
  107. *>
  108. *> \param[in] LDV
  109. *> \verbatim
  110. *> LDV is INTEGER
  111. *> The leading dimension of the array V.
  112. *> If STOREV = 'C' and SIDE = 'L', LDV >= max(1,M);
  113. *> if STOREV = 'C' and SIDE = 'R', LDV >= max(1,N);
  114. *> if STOREV = 'R', LDV >= K.
  115. *> \endverbatim
  116. *>
  117. *> \param[in] T
  118. *> \verbatim
  119. *> T is COMPLEX array, dimension (LDT,K)
  120. *> The triangular K-by-K matrix T in the representation of the
  121. *> block reflector.
  122. *> \endverbatim
  123. *>
  124. *> \param[in] LDT
  125. *> \verbatim
  126. *> LDT is INTEGER
  127. *> The leading dimension of the array T. LDT >= K.
  128. *> \endverbatim
  129. *>
  130. *> \param[in,out] C
  131. *> \verbatim
  132. *> C is COMPLEX array, dimension (LDC,N)
  133. *> On entry, the M-by-N matrix C.
  134. *> On exit, C is overwritten by H*C or H**H*C or C*H or C*H**H.
  135. *> \endverbatim
  136. *>
  137. *> \param[in] LDC
  138. *> \verbatim
  139. *> LDC is INTEGER
  140. *> The leading dimension of the array C. LDC >= max(1,M).
  141. *> \endverbatim
  142. *>
  143. *> \param[out] WORK
  144. *> \verbatim
  145. *> WORK is COMPLEX array, dimension (LDWORK,K)
  146. *> \endverbatim
  147. *>
  148. *> \param[in] LDWORK
  149. *> \verbatim
  150. *> LDWORK is INTEGER
  151. *> The leading dimension of the array WORK.
  152. *> If SIDE = 'L', LDWORK >= max(1,N);
  153. *> if SIDE = 'R', LDWORK >= max(1,M).
  154. *> \endverbatim
  155. *
  156. * Authors:
  157. * ========
  158. *
  159. *> \author Univ. of Tennessee
  160. *> \author Univ. of California Berkeley
  161. *> \author Univ. of Colorado Denver
  162. *> \author NAG Ltd.
  163. *
  164. *> \date June 2013
  165. *
  166. *> \ingroup complexOTHERauxiliary
  167. *
  168. *> \par Further Details:
  169. * =====================
  170. *>
  171. *> \verbatim
  172. *>
  173. *> The shape of the matrix V and the storage of the vectors which define
  174. *> the H(i) is best illustrated by the following example with n = 5 and
  175. *> k = 3. The elements equal to 1 are not stored; the corresponding
  176. *> array elements are modified but restored on exit. The rest of the
  177. *> array is not used.
  178. *>
  179. *> DIRECT = 'F' and STOREV = 'C': DIRECT = 'F' and STOREV = 'R':
  180. *>
  181. *> V = ( 1 ) V = ( 1 v1 v1 v1 v1 )
  182. *> ( v1 1 ) ( 1 v2 v2 v2 )
  183. *> ( v1 v2 1 ) ( 1 v3 v3 )
  184. *> ( v1 v2 v3 )
  185. *> ( v1 v2 v3 )
  186. *>
  187. *> DIRECT = 'B' and STOREV = 'C': DIRECT = 'B' and STOREV = 'R':
  188. *>
  189. *> V = ( v1 v2 v3 ) V = ( v1 v1 1 )
  190. *> ( v1 v2 v3 ) ( v2 v2 v2 1 )
  191. *> ( 1 v2 v3 ) ( v3 v3 v3 v3 1 )
  192. *> ( 1 v3 )
  193. *> ( 1 )
  194. *> \endverbatim
  195. *>
  196. * =====================================================================
  197. SUBROUTINE CLARFB( SIDE, TRANS, DIRECT, STOREV, M, N, K, V, LDV,
  198. $ T, LDT, C, LDC, WORK, LDWORK )
  199. *
  200. * -- LAPACK auxiliary routine (version 3.7.0) --
  201. * -- LAPACK is a software package provided by Univ. of Tennessee, --
  202. * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
  203. * June 2013
  204. *
  205. * .. Scalar Arguments ..
  206. CHARACTER DIRECT, SIDE, STOREV, TRANS
  207. INTEGER K, LDC, LDT, LDV, LDWORK, M, N
  208. * ..
  209. * .. Array Arguments ..
  210. COMPLEX C( LDC, * ), T( LDT, * ), V( LDV, * ),
  211. $ WORK( LDWORK, * )
  212. * ..
  213. *
  214. * =====================================================================
  215. *
  216. * .. Parameters ..
  217. COMPLEX ONE
  218. PARAMETER ( ONE = ( 1.0E+0, 0.0E+0 ) )
  219. * ..
  220. * .. Local Scalars ..
  221. CHARACTER TRANST
  222. INTEGER I, J
  223. * ..
  224. * .. External Functions ..
  225. LOGICAL LSAME
  226. EXTERNAL LSAME
  227. * ..
  228. * .. External Subroutines ..
  229. EXTERNAL CCOPY, CGEMM, CLACGV, CTRMM
  230. * ..
  231. * .. Intrinsic Functions ..
  232. INTRINSIC CONJG
  233. * ..
  234. * .. Executable Statements ..
  235. *
  236. * Quick return if possible
  237. *
  238. IF( M.LE.0 .OR. N.LE.0 )
  239. $ RETURN
  240. *
  241. IF( LSAME( TRANS, 'N' ) ) THEN
  242. TRANST = 'C'
  243. ELSE
  244. TRANST = 'N'
  245. END IF
  246. *
  247. IF( LSAME( STOREV, 'C' ) ) THEN
  248. *
  249. IF( LSAME( DIRECT, 'F' ) ) THEN
  250. *
  251. * Let V = ( V1 ) (first K rows)
  252. * ( V2 )
  253. * where V1 is unit lower triangular.
  254. *
  255. IF( LSAME( SIDE, 'L' ) ) THEN
  256. *
  257. * Form H * C or H**H * C where C = ( C1 )
  258. * ( C2 )
  259. *
  260. * W := C**H * V = (C1**H * V1 + C2**H * V2) (stored in WORK)
  261. *
  262. * W := C1**H
  263. *
  264. DO 10 J = 1, K
  265. CALL CCOPY( N, C( J, 1 ), LDC, WORK( 1, J ), 1 )
  266. CALL CLACGV( N, WORK( 1, J ), 1 )
  267. 10 CONTINUE
  268. *
  269. * W := W * V1
  270. *
  271. CALL CTRMM( 'Right', 'Lower', 'No transpose', 'Unit', N,
  272. $ K, ONE, V, LDV, WORK, LDWORK )
  273. IF( M.GT.K ) THEN
  274. *
  275. * W := W + C2**H *V2
  276. *
  277. CALL CGEMM( 'Conjugate transpose', 'No transpose', N,
  278. $ K, M-K, ONE, C( K+1, 1 ), LDC,
  279. $ V( K+1, 1 ), LDV, ONE, WORK, LDWORK )
  280. END IF
  281. *
  282. * W := W * T**H or W * T
  283. *
  284. CALL CTRMM( 'Right', 'Upper', TRANST, 'Non-unit', N, K,
  285. $ ONE, T, LDT, WORK, LDWORK )
  286. *
  287. * C := C - V * W**H
  288. *
  289. IF( M.GT.K ) THEN
  290. *
  291. * C2 := C2 - V2 * W**H
  292. *
  293. CALL CGEMM( 'No transpose', 'Conjugate transpose',
  294. $ M-K, N, K, -ONE, V( K+1, 1 ), LDV, WORK,
  295. $ LDWORK, ONE, C( K+1, 1 ), LDC )
  296. END IF
  297. *
  298. * W := W * V1**H
  299. *
  300. CALL CTRMM( 'Right', 'Lower', 'Conjugate transpose',
  301. $ 'Unit', N, K, ONE, V, LDV, WORK, LDWORK )
  302. *
  303. * C1 := C1 - W**H
  304. *
  305. DO 30 J = 1, K
  306. DO 20 I = 1, N
  307. C( J, I ) = C( J, I ) - CONJG( WORK( I, J ) )
  308. 20 CONTINUE
  309. 30 CONTINUE
  310. *
  311. ELSE IF( LSAME( SIDE, 'R' ) ) THEN
  312. *
  313. * Form C * H or C * H**H where C = ( C1 C2 )
  314. *
  315. * W := C * V = (C1*V1 + C2*V2) (stored in WORK)
  316. *
  317. * W := C1
  318. *
  319. DO 40 J = 1, K
  320. CALL CCOPY( M, C( 1, J ), 1, WORK( 1, J ), 1 )
  321. 40 CONTINUE
  322. *
  323. * W := W * V1
  324. *
  325. CALL CTRMM( 'Right', 'Lower', 'No transpose', 'Unit', M,
  326. $ K, ONE, V, LDV, WORK, LDWORK )
  327. IF( N.GT.K ) THEN
  328. *
  329. * W := W + C2 * V2
  330. *
  331. CALL CGEMM( 'No transpose', 'No transpose', M, K, N-K,
  332. $ ONE, C( 1, K+1 ), LDC, V( K+1, 1 ), LDV,
  333. $ ONE, WORK, LDWORK )
  334. END IF
  335. *
  336. * W := W * T or W * T**H
  337. *
  338. CALL CTRMM( 'Right', 'Upper', TRANS, 'Non-unit', M, K,
  339. $ ONE, T, LDT, WORK, LDWORK )
  340. *
  341. * C := C - W * V**H
  342. *
  343. IF( N.GT.K ) THEN
  344. *
  345. * C2 := C2 - W * V2**H
  346. *
  347. CALL CGEMM( 'No transpose', 'Conjugate transpose', M,
  348. $ N-K, K, -ONE, WORK, LDWORK, V( K+1, 1 ),
  349. $ LDV, ONE, C( 1, K+1 ), LDC )
  350. END IF
  351. *
  352. * W := W * V1**H
  353. *
  354. CALL CTRMM( 'Right', 'Lower', 'Conjugate transpose',
  355. $ 'Unit', M, K, ONE, V, LDV, WORK, LDWORK )
  356. *
  357. * C1 := C1 - W
  358. *
  359. DO 60 J = 1, K
  360. DO 50 I = 1, M
  361. C( I, J ) = C( I, J ) - WORK( I, J )
  362. 50 CONTINUE
  363. 60 CONTINUE
  364. END IF
  365. *
  366. ELSE
  367. *
  368. * Let V = ( V1 )
  369. * ( V2 ) (last K rows)
  370. * where V2 is unit upper triangular.
  371. *
  372. IF( LSAME( SIDE, 'L' ) ) THEN
  373. *
  374. * Form H * C or H**H * C where C = ( C1 )
  375. * ( C2 )
  376. *
  377. * W := C**H * V = (C1**H * V1 + C2**H * V2) (stored in WORK)
  378. *
  379. * W := C2**H
  380. *
  381. DO 70 J = 1, K
  382. CALL CCOPY( N, C( M-K+J, 1 ), LDC, WORK( 1, J ), 1 )
  383. CALL CLACGV( N, WORK( 1, J ), 1 )
  384. 70 CONTINUE
  385. *
  386. * W := W * V2
  387. *
  388. CALL CTRMM( 'Right', 'Upper', 'No transpose', 'Unit', N,
  389. $ K, ONE, V( M-K+1, 1 ), LDV, WORK, LDWORK )
  390. IF( M.GT.K ) THEN
  391. *
  392. * W := W + C1**H * V1
  393. *
  394. CALL CGEMM( 'Conjugate transpose', 'No transpose', N,
  395. $ K, M-K, ONE, C, LDC, V, LDV, ONE, WORK,
  396. $ LDWORK )
  397. END IF
  398. *
  399. * W := W * T**H or W * T
  400. *
  401. CALL CTRMM( 'Right', 'Lower', TRANST, 'Non-unit', N, K,
  402. $ ONE, T, LDT, WORK, LDWORK )
  403. *
  404. * C := C - V * W**H
  405. *
  406. IF( M.GT.K ) THEN
  407. *
  408. * C1 := C1 - V1 * W**H
  409. *
  410. CALL CGEMM( 'No transpose', 'Conjugate transpose',
  411. $ M-K, N, K, -ONE, V, LDV, WORK, LDWORK,
  412. $ ONE, C, LDC )
  413. END IF
  414. *
  415. * W := W * V2**H
  416. *
  417. CALL CTRMM( 'Right', 'Upper', 'Conjugate transpose',
  418. $ 'Unit', N, K, ONE, V( M-K+1, 1 ), LDV, WORK,
  419. $ LDWORK )
  420. *
  421. * C2 := C2 - W**H
  422. *
  423. DO 90 J = 1, K
  424. DO 80 I = 1, N
  425. C( M-K+J, I ) = C( M-K+J, I ) -
  426. $ CONJG( WORK( I, J ) )
  427. 80 CONTINUE
  428. 90 CONTINUE
  429. *
  430. ELSE IF( LSAME( SIDE, 'R' ) ) THEN
  431. *
  432. * Form C * H or C * H**H where C = ( C1 C2 )
  433. *
  434. * W := C * V = (C1*V1 + C2*V2) (stored in WORK)
  435. *
  436. * W := C2
  437. *
  438. DO 100 J = 1, K
  439. CALL CCOPY( M, C( 1, N-K+J ), 1, WORK( 1, J ), 1 )
  440. 100 CONTINUE
  441. *
  442. * W := W * V2
  443. *
  444. CALL CTRMM( 'Right', 'Upper', 'No transpose', 'Unit', M,
  445. $ K, ONE, V( N-K+1, 1 ), LDV, WORK, LDWORK )
  446. IF( N.GT.K ) THEN
  447. *
  448. * W := W + C1 * V1
  449. *
  450. CALL CGEMM( 'No transpose', 'No transpose', M, K, N-K,
  451. $ ONE, C, LDC, V, LDV, ONE, WORK, LDWORK )
  452. END IF
  453. *
  454. * W := W * T or W * T**H
  455. *
  456. CALL CTRMM( 'Right', 'Lower', TRANS, 'Non-unit', M, K,
  457. $ ONE, T, LDT, WORK, LDWORK )
  458. *
  459. * C := C - W * V**H
  460. *
  461. IF( N.GT.K ) THEN
  462. *
  463. * C1 := C1 - W * V1**H
  464. *
  465. CALL CGEMM( 'No transpose', 'Conjugate transpose', M,
  466. $ N-K, K, -ONE, WORK, LDWORK, V, LDV, ONE,
  467. $ C, LDC )
  468. END IF
  469. *
  470. * W := W * V2**H
  471. *
  472. CALL CTRMM( 'Right', 'Upper', 'Conjugate transpose',
  473. $ 'Unit', M, K, ONE, V( N-K+1, 1 ), LDV, WORK,
  474. $ LDWORK )
  475. *
  476. * C2 := C2 - W
  477. *
  478. DO 120 J = 1, K
  479. DO 110 I = 1, M
  480. C( I, N-K+J ) = C( I, N-K+J ) - WORK( I, J )
  481. 110 CONTINUE
  482. 120 CONTINUE
  483. END IF
  484. END IF
  485. *
  486. ELSE IF( LSAME( STOREV, 'R' ) ) THEN
  487. *
  488. IF( LSAME( DIRECT, 'F' ) ) THEN
  489. *
  490. * Let V = ( V1 V2 ) (V1: first K columns)
  491. * where V1 is unit upper triangular.
  492. *
  493. IF( LSAME( SIDE, 'L' ) ) THEN
  494. *
  495. * Form H * C or H**H * C where C = ( C1 )
  496. * ( C2 )
  497. *
  498. * W := C**H * V**H = (C1**H * V1**H + C2**H * V2**H) (stored in WORK)
  499. *
  500. * W := C1**H
  501. *
  502. DO 130 J = 1, K
  503. CALL CCOPY( N, C( J, 1 ), LDC, WORK( 1, J ), 1 )
  504. CALL CLACGV( N, WORK( 1, J ), 1 )
  505. 130 CONTINUE
  506. *
  507. * W := W * V1**H
  508. *
  509. CALL CTRMM( 'Right', 'Upper', 'Conjugate transpose',
  510. $ 'Unit', N, K, ONE, V, LDV, WORK, LDWORK )
  511. IF( M.GT.K ) THEN
  512. *
  513. * W := W + C2**H * V2**H
  514. *
  515. CALL CGEMM( 'Conjugate transpose',
  516. $ 'Conjugate transpose', N, K, M-K, ONE,
  517. $ C( K+1, 1 ), LDC, V( 1, K+1 ), LDV, ONE,
  518. $ WORK, LDWORK )
  519. END IF
  520. *
  521. * W := W * T**H or W * T
  522. *
  523. CALL CTRMM( 'Right', 'Upper', TRANST, 'Non-unit', N, K,
  524. $ ONE, T, LDT, WORK, LDWORK )
  525. *
  526. * C := C - V**H * W**H
  527. *
  528. IF( M.GT.K ) THEN
  529. *
  530. * C2 := C2 - V2**H * W**H
  531. *
  532. CALL CGEMM( 'Conjugate transpose',
  533. $ 'Conjugate transpose', M-K, N, K, -ONE,
  534. $ V( 1, K+1 ), LDV, WORK, LDWORK, ONE,
  535. $ C( K+1, 1 ), LDC )
  536. END IF
  537. *
  538. * W := W * V1
  539. *
  540. CALL CTRMM( 'Right', 'Upper', 'No transpose', 'Unit', N,
  541. $ K, ONE, V, LDV, WORK, LDWORK )
  542. *
  543. * C1 := C1 - W**H
  544. *
  545. DO 150 J = 1, K
  546. DO 140 I = 1, N
  547. C( J, I ) = C( J, I ) - CONJG( WORK( I, J ) )
  548. 140 CONTINUE
  549. 150 CONTINUE
  550. *
  551. ELSE IF( LSAME( SIDE, 'R' ) ) THEN
  552. *
  553. * Form C * H or C * H**H where C = ( C1 C2 )
  554. *
  555. * W := C * V**H = (C1*V1**H + C2*V2**H) (stored in WORK)
  556. *
  557. * W := C1
  558. *
  559. DO 160 J = 1, K
  560. CALL CCOPY( M, C( 1, J ), 1, WORK( 1, J ), 1 )
  561. 160 CONTINUE
  562. *
  563. * W := W * V1**H
  564. *
  565. CALL CTRMM( 'Right', 'Upper', 'Conjugate transpose',
  566. $ 'Unit', M, K, ONE, V, LDV, WORK, LDWORK )
  567. IF( N.GT.K ) THEN
  568. *
  569. * W := W + C2 * V2**H
  570. *
  571. CALL CGEMM( 'No transpose', 'Conjugate transpose', M,
  572. $ K, N-K, ONE, C( 1, K+1 ), LDC,
  573. $ V( 1, K+1 ), LDV, ONE, WORK, LDWORK )
  574. END IF
  575. *
  576. * W := W * T or W * T**H
  577. *
  578. CALL CTRMM( 'Right', 'Upper', TRANS, 'Non-unit', M, K,
  579. $ ONE, T, LDT, WORK, LDWORK )
  580. *
  581. * C := C - W * V
  582. *
  583. IF( N.GT.K ) THEN
  584. *
  585. * C2 := C2 - W * V2
  586. *
  587. CALL CGEMM( 'No transpose', 'No transpose', M, N-K, K,
  588. $ -ONE, WORK, LDWORK, V( 1, K+1 ), LDV, ONE,
  589. $ C( 1, K+1 ), LDC )
  590. END IF
  591. *
  592. * W := W * V1
  593. *
  594. CALL CTRMM( 'Right', 'Upper', 'No transpose', 'Unit', M,
  595. $ K, ONE, V, LDV, WORK, LDWORK )
  596. *
  597. * C1 := C1 - W
  598. *
  599. DO 180 J = 1, K
  600. DO 170 I = 1, M
  601. C( I, J ) = C( I, J ) - WORK( I, J )
  602. 170 CONTINUE
  603. 180 CONTINUE
  604. *
  605. END IF
  606. *
  607. ELSE
  608. *
  609. * Let V = ( V1 V2 ) (V2: last K columns)
  610. * where V2 is unit lower triangular.
  611. *
  612. IF( LSAME( SIDE, 'L' ) ) THEN
  613. *
  614. * Form H * C or H**H * C where C = ( C1 )
  615. * ( C2 )
  616. *
  617. * W := C**H * V**H = (C1**H * V1**H + C2**H * V2**H) (stored in WORK)
  618. *
  619. * W := C2**H
  620. *
  621. DO 190 J = 1, K
  622. CALL CCOPY( N, C( M-K+J, 1 ), LDC, WORK( 1, J ), 1 )
  623. CALL CLACGV( N, WORK( 1, J ), 1 )
  624. 190 CONTINUE
  625. *
  626. * W := W * V2**H
  627. *
  628. CALL CTRMM( 'Right', 'Lower', 'Conjugate transpose',
  629. $ 'Unit', N, K, ONE, V( 1, M-K+1 ), LDV, WORK,
  630. $ LDWORK )
  631. IF( M.GT.K ) THEN
  632. *
  633. * W := W + C1**H * V1**H
  634. *
  635. CALL CGEMM( 'Conjugate transpose',
  636. $ 'Conjugate transpose', N, K, M-K, ONE, C,
  637. $ LDC, V, LDV, ONE, WORK, LDWORK )
  638. END IF
  639. *
  640. * W := W * T**H or W * T
  641. *
  642. CALL CTRMM( 'Right', 'Lower', TRANST, 'Non-unit', N, K,
  643. $ ONE, T, LDT, WORK, LDWORK )
  644. *
  645. * C := C - V**H * W**H
  646. *
  647. IF( M.GT.K ) THEN
  648. *
  649. * C1 := C1 - V1**H * W**H
  650. *
  651. CALL CGEMM( 'Conjugate transpose',
  652. $ 'Conjugate transpose', M-K, N, K, -ONE, V,
  653. $ LDV, WORK, LDWORK, ONE, C, LDC )
  654. END IF
  655. *
  656. * W := W * V2
  657. *
  658. CALL CTRMM( 'Right', 'Lower', 'No transpose', 'Unit', N,
  659. $ K, ONE, V( 1, M-K+1 ), LDV, WORK, LDWORK )
  660. *
  661. * C2 := C2 - W**H
  662. *
  663. DO 210 J = 1, K
  664. DO 200 I = 1, N
  665. C( M-K+J, I ) = C( M-K+J, I ) -
  666. $ CONJG( WORK( I, J ) )
  667. 200 CONTINUE
  668. 210 CONTINUE
  669. *
  670. ELSE IF( LSAME( SIDE, 'R' ) ) THEN
  671. *
  672. * Form C * H or C * H**H where C = ( C1 C2 )
  673. *
  674. * W := C * V**H = (C1*V1**H + C2*V2**H) (stored in WORK)
  675. *
  676. * W := C2
  677. *
  678. DO 220 J = 1, K
  679. CALL CCOPY( M, C( 1, N-K+J ), 1, WORK( 1, J ), 1 )
  680. 220 CONTINUE
  681. *
  682. * W := W * V2**H
  683. *
  684. CALL CTRMM( 'Right', 'Lower', 'Conjugate transpose',
  685. $ 'Unit', M, K, ONE, V( 1, N-K+1 ), LDV, WORK,
  686. $ LDWORK )
  687. IF( N.GT.K ) THEN
  688. *
  689. * W := W + C1 * V1**H
  690. *
  691. CALL CGEMM( 'No transpose', 'Conjugate transpose', M,
  692. $ K, N-K, ONE, C, LDC, V, LDV, ONE, WORK,
  693. $ LDWORK )
  694. END IF
  695. *
  696. * W := W * T or W * T**H
  697. *
  698. CALL CTRMM( 'Right', 'Lower', TRANS, 'Non-unit', M, K,
  699. $ ONE, T, LDT, WORK, LDWORK )
  700. *
  701. * C := C - W * V
  702. *
  703. IF( N.GT.K ) THEN
  704. *
  705. * C1 := C1 - W * V1
  706. *
  707. CALL CGEMM( 'No transpose', 'No transpose', M, N-K, K,
  708. $ -ONE, WORK, LDWORK, V, LDV, ONE, C, LDC )
  709. END IF
  710. *
  711. * W := W * V2
  712. *
  713. CALL CTRMM( 'Right', 'Lower', 'No transpose', 'Unit', M,
  714. $ K, ONE, V( 1, N-K+1 ), LDV, WORK, LDWORK )
  715. *
  716. * C1 := C1 - W
  717. *
  718. DO 240 J = 1, K
  719. DO 230 I = 1, M
  720. C( I, N-K+J ) = C( I, N-K+J ) - WORK( I, J )
  721. 230 CONTINUE
  722. 240 CONTINUE
  723. *
  724. END IF
  725. *
  726. END IF
  727. END IF
  728. *
  729. RETURN
  730. *
  731. * End of CLARFB
  732. *
  733. END