You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

dstebz.f 24 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771
  1. *> \brief \b DSTEBZ
  2. *
  3. * =========== DOCUMENTATION ===========
  4. *
  5. * Online html documentation available at
  6. * http://www.netlib.org/lapack/explore-html/
  7. *
  8. *> \htmlonly
  9. *> Download DSTEBZ + dependencies
  10. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dstebz.f">
  11. *> [TGZ]</a>
  12. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dstebz.f">
  13. *> [ZIP]</a>
  14. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dstebz.f">
  15. *> [TXT]</a>
  16. *> \endhtmlonly
  17. *
  18. * Definition:
  19. * ===========
  20. *
  21. * SUBROUTINE DSTEBZ( RANGE, ORDER, N, VL, VU, IL, IU, ABSTOL, D, E,
  22. * M, NSPLIT, W, IBLOCK, ISPLIT, WORK, IWORK,
  23. * INFO )
  24. *
  25. * .. Scalar Arguments ..
  26. * CHARACTER ORDER, RANGE
  27. * INTEGER IL, INFO, IU, M, N, NSPLIT
  28. * DOUBLE PRECISION ABSTOL, VL, VU
  29. * ..
  30. * .. Array Arguments ..
  31. * INTEGER IBLOCK( * ), ISPLIT( * ), IWORK( * )
  32. * DOUBLE PRECISION D( * ), E( * ), W( * ), WORK( * )
  33. * ..
  34. *
  35. *
  36. *> \par Purpose:
  37. * =============
  38. *>
  39. *> \verbatim
  40. *>
  41. *> DSTEBZ computes the eigenvalues of a symmetric tridiagonal
  42. *> matrix T. The user may ask for all eigenvalues, all eigenvalues
  43. *> in the half-open interval (VL, VU], or the IL-th through IU-th
  44. *> eigenvalues.
  45. *>
  46. *> To avoid overflow, the matrix must be scaled so that its
  47. *> largest element is no greater than overflow**(1/2) * underflow**(1/4) in absolute value, and for greatest
  48. *> accuracy, it should not be much smaller than that.
  49. *>
  50. *> See W. Kahan "Accurate Eigenvalues of a Symmetric Tridiagonal
  51. *> Matrix", Report CS41, Computer Science Dept., Stanford
  52. *> University, July 21, 1966.
  53. *> \endverbatim
  54. *
  55. * Arguments:
  56. * ==========
  57. *
  58. *> \param[in] RANGE
  59. *> \verbatim
  60. *> RANGE is CHARACTER*1
  61. *> = 'A': ("All") all eigenvalues will be found.
  62. *> = 'V': ("Value") all eigenvalues in the half-open interval
  63. *> (VL, VU] will be found.
  64. *> = 'I': ("Index") the IL-th through IU-th eigenvalues (of the
  65. *> entire matrix) will be found.
  66. *> \endverbatim
  67. *>
  68. *> \param[in] ORDER
  69. *> \verbatim
  70. *> ORDER is CHARACTER*1
  71. *> = 'B': ("By Block") the eigenvalues will be grouped by
  72. *> split-off block (see IBLOCK, ISPLIT) and
  73. *> ordered from smallest to largest within
  74. *> the block.
  75. *> = 'E': ("Entire matrix")
  76. *> the eigenvalues for the entire matrix
  77. *> will be ordered from smallest to
  78. *> largest.
  79. *> \endverbatim
  80. *>
  81. *> \param[in] N
  82. *> \verbatim
  83. *> N is INTEGER
  84. *> The order of the tridiagonal matrix T. N >= 0.
  85. *> \endverbatim
  86. *>
  87. *> \param[in] VL
  88. *> \verbatim
  89. *> VL is DOUBLE PRECISION
  90. *>
  91. *> If RANGE='V', the lower bound of the interval to
  92. *> be searched for eigenvalues. Eigenvalues less than or equal
  93. *> to VL, or greater than VU, will not be returned. VL < VU.
  94. *> Not referenced if RANGE = 'A' or 'I'.
  95. *> \endverbatim
  96. *>
  97. *> \param[in] VU
  98. *> \verbatim
  99. *> VU is DOUBLE PRECISION
  100. *>
  101. *> If RANGE='V', the upper bound of the interval to
  102. *> be searched for eigenvalues. Eigenvalues less than or equal
  103. *> to VL, or greater than VU, will not be returned. VL < VU.
  104. *> Not referenced if RANGE = 'A' or 'I'.
  105. *> \endverbatim
  106. *>
  107. *> \param[in] IL
  108. *> \verbatim
  109. *> IL is INTEGER
  110. *>
  111. *> If RANGE='I', the index of the
  112. *> smallest eigenvalue to be returned.
  113. *> 1 <= IL <= IU <= N, if N > 0; IL = 1 and IU = 0 if N = 0.
  114. *> Not referenced if RANGE = 'A' or 'V'.
  115. *> \endverbatim
  116. *>
  117. *> \param[in] IU
  118. *> \verbatim
  119. *> IU is INTEGER
  120. *>
  121. *> If RANGE='I', the index of the
  122. *> largest eigenvalue to be returned.
  123. *> 1 <= IL <= IU <= N, if N > 0; IL = 1 and IU = 0 if N = 0.
  124. *> Not referenced if RANGE = 'A' or 'V'.
  125. *> \endverbatim
  126. *>
  127. *> \param[in] ABSTOL
  128. *> \verbatim
  129. *> ABSTOL is DOUBLE PRECISION
  130. *> The absolute tolerance for the eigenvalues. An eigenvalue
  131. *> (or cluster) is considered to be located if it has been
  132. *> determined to lie in an interval whose width is ABSTOL or
  133. *> less. If ABSTOL is less than or equal to zero, then ULP*|T|
  134. *> will be used, where |T| means the 1-norm of T.
  135. *>
  136. *> Eigenvalues will be computed most accurately when ABSTOL is
  137. *> set to twice the underflow threshold 2*DLAMCH('S'), not zero.
  138. *> \endverbatim
  139. *>
  140. *> \param[in] D
  141. *> \verbatim
  142. *> D is DOUBLE PRECISION array, dimension (N)
  143. *> The n diagonal elements of the tridiagonal matrix T.
  144. *> \endverbatim
  145. *>
  146. *> \param[in] E
  147. *> \verbatim
  148. *> E is DOUBLE PRECISION array, dimension (N-1)
  149. *> The (n-1) off-diagonal elements of the tridiagonal matrix T.
  150. *> \endverbatim
  151. *>
  152. *> \param[out] M
  153. *> \verbatim
  154. *> M is INTEGER
  155. *> The actual number of eigenvalues found. 0 <= M <= N.
  156. *> (See also the description of INFO=2,3.)
  157. *> \endverbatim
  158. *>
  159. *> \param[out] NSPLIT
  160. *> \verbatim
  161. *> NSPLIT is INTEGER
  162. *> The number of diagonal blocks in the matrix T.
  163. *> 1 <= NSPLIT <= N.
  164. *> \endverbatim
  165. *>
  166. *> \param[out] W
  167. *> \verbatim
  168. *> W is DOUBLE PRECISION array, dimension (N)
  169. *> On exit, the first M elements of W will contain the
  170. *> eigenvalues. (DSTEBZ may use the remaining N-M elements as
  171. *> workspace.)
  172. *> \endverbatim
  173. *>
  174. *> \param[out] IBLOCK
  175. *> \verbatim
  176. *> IBLOCK is INTEGER array, dimension (N)
  177. *> At each row/column j where E(j) is zero or small, the
  178. *> matrix T is considered to split into a block diagonal
  179. *> matrix. On exit, if INFO = 0, IBLOCK(i) specifies to which
  180. *> block (from 1 to the number of blocks) the eigenvalue W(i)
  181. *> belongs. (DSTEBZ may use the remaining N-M elements as
  182. *> workspace.)
  183. *> \endverbatim
  184. *>
  185. *> \param[out] ISPLIT
  186. *> \verbatim
  187. *> ISPLIT is INTEGER array, dimension (N)
  188. *> The splitting points, at which T breaks up into submatrices.
  189. *> The first submatrix consists of rows/columns 1 to ISPLIT(1),
  190. *> the second of rows/columns ISPLIT(1)+1 through ISPLIT(2),
  191. *> etc., and the NSPLIT-th consists of rows/columns
  192. *> ISPLIT(NSPLIT-1)+1 through ISPLIT(NSPLIT)=N.
  193. *> (Only the first NSPLIT elements will actually be used, but
  194. *> since the user cannot know a priori what value NSPLIT will
  195. *> have, N words must be reserved for ISPLIT.)
  196. *> \endverbatim
  197. *>
  198. *> \param[out] WORK
  199. *> \verbatim
  200. *> WORK is DOUBLE PRECISION array, dimension (4*N)
  201. *> \endverbatim
  202. *>
  203. *> \param[out] IWORK
  204. *> \verbatim
  205. *> IWORK is INTEGER array, dimension (3*N)
  206. *> \endverbatim
  207. *>
  208. *> \param[out] INFO
  209. *> \verbatim
  210. *> INFO is INTEGER
  211. *> = 0: successful exit
  212. *> < 0: if INFO = -i, the i-th argument had an illegal value
  213. *> > 0: some or all of the eigenvalues failed to converge or
  214. *> were not computed:
  215. *> =1 or 3: Bisection failed to converge for some
  216. *> eigenvalues; these eigenvalues are flagged by a
  217. *> negative block number. The effect is that the
  218. *> eigenvalues may not be as accurate as the
  219. *> absolute and relative tolerances. This is
  220. *> generally caused by unexpectedly inaccurate
  221. *> arithmetic.
  222. *> =2 or 3: RANGE='I' only: Not all of the eigenvalues
  223. *> IL:IU were found.
  224. *> Effect: M < IU+1-IL
  225. *> Cause: non-monotonic arithmetic, causing the
  226. *> Sturm sequence to be non-monotonic.
  227. *> Cure: recalculate, using RANGE='A', and pick
  228. *> out eigenvalues IL:IU. In some cases,
  229. *> increasing the PARAMETER "FUDGE" may
  230. *> make things work.
  231. *> = 4: RANGE='I', and the Gershgorin interval
  232. *> initially used was too small. No eigenvalues
  233. *> were computed.
  234. *> Probable cause: your machine has sloppy
  235. *> floating-point arithmetic.
  236. *> Cure: Increase the PARAMETER "FUDGE",
  237. *> recompile, and try again.
  238. *> \endverbatim
  239. *
  240. *> \par Internal Parameters:
  241. * =========================
  242. *>
  243. *> \verbatim
  244. *> RELFAC DOUBLE PRECISION, default = 2.0e0
  245. *> The relative tolerance. An interval (a,b] lies within
  246. *> "relative tolerance" if b-a < RELFAC*ulp*max(|a|,|b|),
  247. *> where "ulp" is the machine precision (distance from 1 to
  248. *> the next larger floating point number.)
  249. *>
  250. *> FUDGE DOUBLE PRECISION, default = 2
  251. *> A "fudge factor" to widen the Gershgorin intervals. Ideally,
  252. *> a value of 1 should work, but on machines with sloppy
  253. *> arithmetic, this needs to be larger. The default for
  254. *> publicly released versions should be large enough to handle
  255. *> the worst machine around. Note that this has no effect
  256. *> on accuracy of the solution.
  257. *> \endverbatim
  258. *
  259. * Authors:
  260. * ========
  261. *
  262. *> \author Univ. of Tennessee
  263. *> \author Univ. of California Berkeley
  264. *> \author Univ. of Colorado Denver
  265. *> \author NAG Ltd.
  266. *
  267. *> \date June 2016
  268. *
  269. *> \ingroup auxOTHERcomputational
  270. *
  271. * =====================================================================
  272. SUBROUTINE DSTEBZ( RANGE, ORDER, N, VL, VU, IL, IU, ABSTOL, D, E,
  273. $ M, NSPLIT, W, IBLOCK, ISPLIT, WORK, IWORK,
  274. $ INFO )
  275. *
  276. * -- LAPACK computational routine (version 3.7.0) --
  277. * -- LAPACK is a software package provided by Univ. of Tennessee, --
  278. * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
  279. * June 2016
  280. *
  281. * .. Scalar Arguments ..
  282. CHARACTER ORDER, RANGE
  283. INTEGER IL, INFO, IU, M, N, NSPLIT
  284. DOUBLE PRECISION ABSTOL, VL, VU
  285. * ..
  286. * .. Array Arguments ..
  287. INTEGER IBLOCK( * ), ISPLIT( * ), IWORK( * )
  288. DOUBLE PRECISION D( * ), E( * ), W( * ), WORK( * )
  289. * ..
  290. *
  291. * =====================================================================
  292. *
  293. * .. Parameters ..
  294. DOUBLE PRECISION ZERO, ONE, TWO, HALF
  295. PARAMETER ( ZERO = 0.0D0, ONE = 1.0D0, TWO = 2.0D0,
  296. $ HALF = 1.0D0 / TWO )
  297. DOUBLE PRECISION FUDGE, RELFAC
  298. PARAMETER ( FUDGE = 2.1D0, RELFAC = 2.0D0 )
  299. * ..
  300. * .. Local Scalars ..
  301. LOGICAL NCNVRG, TOOFEW
  302. INTEGER IB, IBEGIN, IDISCL, IDISCU, IE, IEND, IINFO,
  303. $ IM, IN, IOFF, IORDER, IOUT, IRANGE, ITMAX,
  304. $ ITMP1, IW, IWOFF, J, JB, JDISC, JE, NB, NWL,
  305. $ NWU
  306. DOUBLE PRECISION ATOLI, BNORM, GL, GU, PIVMIN, RTOLI, SAFEMN,
  307. $ TMP1, TMP2, TNORM, ULP, WKILL, WL, WLU, WU, WUL
  308. * ..
  309. * .. Local Arrays ..
  310. INTEGER IDUMMA( 1 )
  311. * ..
  312. * .. External Functions ..
  313. LOGICAL LSAME
  314. INTEGER ILAENV
  315. DOUBLE PRECISION DLAMCH
  316. EXTERNAL LSAME, ILAENV, DLAMCH
  317. * ..
  318. * .. External Subroutines ..
  319. EXTERNAL DLAEBZ, XERBLA
  320. * ..
  321. * .. Intrinsic Functions ..
  322. INTRINSIC ABS, INT, LOG, MAX, MIN, SQRT
  323. * ..
  324. * .. Executable Statements ..
  325. *
  326. INFO = 0
  327. *
  328. * Decode RANGE
  329. *
  330. IF( LSAME( RANGE, 'A' ) ) THEN
  331. IRANGE = 1
  332. ELSE IF( LSAME( RANGE, 'V' ) ) THEN
  333. IRANGE = 2
  334. ELSE IF( LSAME( RANGE, 'I' ) ) THEN
  335. IRANGE = 3
  336. ELSE
  337. IRANGE = 0
  338. END IF
  339. *
  340. * Decode ORDER
  341. *
  342. IF( LSAME( ORDER, 'B' ) ) THEN
  343. IORDER = 2
  344. ELSE IF( LSAME( ORDER, 'E' ) ) THEN
  345. IORDER = 1
  346. ELSE
  347. IORDER = 0
  348. END IF
  349. *
  350. * Check for Errors
  351. *
  352. IF( IRANGE.LE.0 ) THEN
  353. INFO = -1
  354. ELSE IF( IORDER.LE.0 ) THEN
  355. INFO = -2
  356. ELSE IF( N.LT.0 ) THEN
  357. INFO = -3
  358. ELSE IF( IRANGE.EQ.2 ) THEN
  359. IF( VL.GE.VU )
  360. $ INFO = -5
  361. ELSE IF( IRANGE.EQ.3 .AND. ( IL.LT.1 .OR. IL.GT.MAX( 1, N ) ) )
  362. $ THEN
  363. INFO = -6
  364. ELSE IF( IRANGE.EQ.3 .AND. ( IU.LT.MIN( N, IL ) .OR. IU.GT.N ) )
  365. $ THEN
  366. INFO = -7
  367. END IF
  368. *
  369. IF( INFO.NE.0 ) THEN
  370. CALL XERBLA( 'DSTEBZ', -INFO )
  371. RETURN
  372. END IF
  373. *
  374. * Initialize error flags
  375. *
  376. INFO = 0
  377. NCNVRG = .FALSE.
  378. TOOFEW = .FALSE.
  379. *
  380. * Quick return if possible
  381. *
  382. M = 0
  383. IF( N.EQ.0 )
  384. $ RETURN
  385. *
  386. * Simplifications:
  387. *
  388. IF( IRANGE.EQ.3 .AND. IL.EQ.1 .AND. IU.EQ.N )
  389. $ IRANGE = 1
  390. *
  391. * Get machine constants
  392. * NB is the minimum vector length for vector bisection, or 0
  393. * if only scalar is to be done.
  394. *
  395. SAFEMN = DLAMCH( 'S' )
  396. ULP = DLAMCH( 'P' )
  397. RTOLI = ULP*RELFAC
  398. NB = ILAENV( 1, 'DSTEBZ', ' ', N, -1, -1, -1 )
  399. IF( NB.LE.1 )
  400. $ NB = 0
  401. *
  402. * Special Case when N=1
  403. *
  404. IF( N.EQ.1 ) THEN
  405. NSPLIT = 1
  406. ISPLIT( 1 ) = 1
  407. IF( IRANGE.EQ.2 .AND. ( VL.GE.D( 1 ) .OR. VU.LT.D( 1 ) ) ) THEN
  408. M = 0
  409. ELSE
  410. W( 1 ) = D( 1 )
  411. IBLOCK( 1 ) = 1
  412. M = 1
  413. END IF
  414. RETURN
  415. END IF
  416. *
  417. * Compute Splitting Points
  418. *
  419. NSPLIT = 1
  420. WORK( N ) = ZERO
  421. PIVMIN = ONE
  422. *
  423. DO 10 J = 2, N
  424. TMP1 = E( J-1 )**2
  425. IF( ABS( D( J )*D( J-1 ) )*ULP**2+SAFEMN.GT.TMP1 ) THEN
  426. ISPLIT( NSPLIT ) = J - 1
  427. NSPLIT = NSPLIT + 1
  428. WORK( J-1 ) = ZERO
  429. ELSE
  430. WORK( J-1 ) = TMP1
  431. PIVMIN = MAX( PIVMIN, TMP1 )
  432. END IF
  433. 10 CONTINUE
  434. ISPLIT( NSPLIT ) = N
  435. PIVMIN = PIVMIN*SAFEMN
  436. *
  437. * Compute Interval and ATOLI
  438. *
  439. IF( IRANGE.EQ.3 ) THEN
  440. *
  441. * RANGE='I': Compute the interval containing eigenvalues
  442. * IL through IU.
  443. *
  444. * Compute Gershgorin interval for entire (split) matrix
  445. * and use it as the initial interval
  446. *
  447. GU = D( 1 )
  448. GL = D( 1 )
  449. TMP1 = ZERO
  450. *
  451. DO 20 J = 1, N - 1
  452. TMP2 = SQRT( WORK( J ) )
  453. GU = MAX( GU, D( J )+TMP1+TMP2 )
  454. GL = MIN( GL, D( J )-TMP1-TMP2 )
  455. TMP1 = TMP2
  456. 20 CONTINUE
  457. *
  458. GU = MAX( GU, D( N )+TMP1 )
  459. GL = MIN( GL, D( N )-TMP1 )
  460. TNORM = MAX( ABS( GL ), ABS( GU ) )
  461. GL = GL - FUDGE*TNORM*ULP*N - FUDGE*TWO*PIVMIN
  462. GU = GU + FUDGE*TNORM*ULP*N + FUDGE*PIVMIN
  463. *
  464. * Compute Iteration parameters
  465. *
  466. ITMAX = INT( ( LOG( TNORM+PIVMIN )-LOG( PIVMIN ) ) /
  467. $ LOG( TWO ) ) + 2
  468. IF( ABSTOL.LE.ZERO ) THEN
  469. ATOLI = ULP*TNORM
  470. ELSE
  471. ATOLI = ABSTOL
  472. END IF
  473. *
  474. WORK( N+1 ) = GL
  475. WORK( N+2 ) = GL
  476. WORK( N+3 ) = GU
  477. WORK( N+4 ) = GU
  478. WORK( N+5 ) = GL
  479. WORK( N+6 ) = GU
  480. IWORK( 1 ) = -1
  481. IWORK( 2 ) = -1
  482. IWORK( 3 ) = N + 1
  483. IWORK( 4 ) = N + 1
  484. IWORK( 5 ) = IL - 1
  485. IWORK( 6 ) = IU
  486. *
  487. CALL DLAEBZ( 3, ITMAX, N, 2, 2, NB, ATOLI, RTOLI, PIVMIN, D, E,
  488. $ WORK, IWORK( 5 ), WORK( N+1 ), WORK( N+5 ), IOUT,
  489. $ IWORK, W, IBLOCK, IINFO )
  490. *
  491. IF( IWORK( 6 ).EQ.IU ) THEN
  492. WL = WORK( N+1 )
  493. WLU = WORK( N+3 )
  494. NWL = IWORK( 1 )
  495. WU = WORK( N+4 )
  496. WUL = WORK( N+2 )
  497. NWU = IWORK( 4 )
  498. ELSE
  499. WL = WORK( N+2 )
  500. WLU = WORK( N+4 )
  501. NWL = IWORK( 2 )
  502. WU = WORK( N+3 )
  503. WUL = WORK( N+1 )
  504. NWU = IWORK( 3 )
  505. END IF
  506. *
  507. IF( NWL.LT.0 .OR. NWL.GE.N .OR. NWU.LT.1 .OR. NWU.GT.N ) THEN
  508. INFO = 4
  509. RETURN
  510. END IF
  511. ELSE
  512. *
  513. * RANGE='A' or 'V' -- Set ATOLI
  514. *
  515. TNORM = MAX( ABS( D( 1 ) )+ABS( E( 1 ) ),
  516. $ ABS( D( N ) )+ABS( E( N-1 ) ) )
  517. *
  518. DO 30 J = 2, N - 1
  519. TNORM = MAX( TNORM, ABS( D( J ) )+ABS( E( J-1 ) )+
  520. $ ABS( E( J ) ) )
  521. 30 CONTINUE
  522. *
  523. IF( ABSTOL.LE.ZERO ) THEN
  524. ATOLI = ULP*TNORM
  525. ELSE
  526. ATOLI = ABSTOL
  527. END IF
  528. *
  529. IF( IRANGE.EQ.2 ) THEN
  530. WL = VL
  531. WU = VU
  532. ELSE
  533. WL = ZERO
  534. WU = ZERO
  535. END IF
  536. END IF
  537. *
  538. * Find Eigenvalues -- Loop Over Blocks and recompute NWL and NWU.
  539. * NWL accumulates the number of eigenvalues .le. WL,
  540. * NWU accumulates the number of eigenvalues .le. WU
  541. *
  542. M = 0
  543. IEND = 0
  544. INFO = 0
  545. NWL = 0
  546. NWU = 0
  547. *
  548. DO 70 JB = 1, NSPLIT
  549. IOFF = IEND
  550. IBEGIN = IOFF + 1
  551. IEND = ISPLIT( JB )
  552. IN = IEND - IOFF
  553. *
  554. IF( IN.EQ.1 ) THEN
  555. *
  556. * Special Case -- IN=1
  557. *
  558. IF( IRANGE.EQ.1 .OR. WL.GE.D( IBEGIN )-PIVMIN )
  559. $ NWL = NWL + 1
  560. IF( IRANGE.EQ.1 .OR. WU.GE.D( IBEGIN )-PIVMIN )
  561. $ NWU = NWU + 1
  562. IF( IRANGE.EQ.1 .OR. ( WL.LT.D( IBEGIN )-PIVMIN .AND. WU.GE.
  563. $ D( IBEGIN )-PIVMIN ) ) THEN
  564. M = M + 1
  565. W( M ) = D( IBEGIN )
  566. IBLOCK( M ) = JB
  567. END IF
  568. ELSE
  569. *
  570. * General Case -- IN > 1
  571. *
  572. * Compute Gershgorin Interval
  573. * and use it as the initial interval
  574. *
  575. GU = D( IBEGIN )
  576. GL = D( IBEGIN )
  577. TMP1 = ZERO
  578. *
  579. DO 40 J = IBEGIN, IEND - 1
  580. TMP2 = ABS( E( J ) )
  581. GU = MAX( GU, D( J )+TMP1+TMP2 )
  582. GL = MIN( GL, D( J )-TMP1-TMP2 )
  583. TMP1 = TMP2
  584. 40 CONTINUE
  585. *
  586. GU = MAX( GU, D( IEND )+TMP1 )
  587. GL = MIN( GL, D( IEND )-TMP1 )
  588. BNORM = MAX( ABS( GL ), ABS( GU ) )
  589. GL = GL - FUDGE*BNORM*ULP*IN - FUDGE*PIVMIN
  590. GU = GU + FUDGE*BNORM*ULP*IN + FUDGE*PIVMIN
  591. *
  592. * Compute ATOLI for the current submatrix
  593. *
  594. IF( ABSTOL.LE.ZERO ) THEN
  595. ATOLI = ULP*MAX( ABS( GL ), ABS( GU ) )
  596. ELSE
  597. ATOLI = ABSTOL
  598. END IF
  599. *
  600. IF( IRANGE.GT.1 ) THEN
  601. IF( GU.LT.WL ) THEN
  602. NWL = NWL + IN
  603. NWU = NWU + IN
  604. GO TO 70
  605. END IF
  606. GL = MAX( GL, WL )
  607. GU = MIN( GU, WU )
  608. IF( GL.GE.GU )
  609. $ GO TO 70
  610. END IF
  611. *
  612. * Set Up Initial Interval
  613. *
  614. WORK( N+1 ) = GL
  615. WORK( N+IN+1 ) = GU
  616. CALL DLAEBZ( 1, 0, IN, IN, 1, NB, ATOLI, RTOLI, PIVMIN,
  617. $ D( IBEGIN ), E( IBEGIN ), WORK( IBEGIN ),
  618. $ IDUMMA, WORK( N+1 ), WORK( N+2*IN+1 ), IM,
  619. $ IWORK, W( M+1 ), IBLOCK( M+1 ), IINFO )
  620. *
  621. NWL = NWL + IWORK( 1 )
  622. NWU = NWU + IWORK( IN+1 )
  623. IWOFF = M - IWORK( 1 )
  624. *
  625. * Compute Eigenvalues
  626. *
  627. ITMAX = INT( ( LOG( GU-GL+PIVMIN )-LOG( PIVMIN ) ) /
  628. $ LOG( TWO ) ) + 2
  629. CALL DLAEBZ( 2, ITMAX, IN, IN, 1, NB, ATOLI, RTOLI, PIVMIN,
  630. $ D( IBEGIN ), E( IBEGIN ), WORK( IBEGIN ),
  631. $ IDUMMA, WORK( N+1 ), WORK( N+2*IN+1 ), IOUT,
  632. $ IWORK, W( M+1 ), IBLOCK( M+1 ), IINFO )
  633. *
  634. * Copy Eigenvalues Into W and IBLOCK
  635. * Use -JB for block number for unconverged eigenvalues.
  636. *
  637. DO 60 J = 1, IOUT
  638. TMP1 = HALF*( WORK( J+N )+WORK( J+IN+N ) )
  639. *
  640. * Flag non-convergence.
  641. *
  642. IF( J.GT.IOUT-IINFO ) THEN
  643. NCNVRG = .TRUE.
  644. IB = -JB
  645. ELSE
  646. IB = JB
  647. END IF
  648. DO 50 JE = IWORK( J ) + 1 + IWOFF,
  649. $ IWORK( J+IN ) + IWOFF
  650. W( JE ) = TMP1
  651. IBLOCK( JE ) = IB
  652. 50 CONTINUE
  653. 60 CONTINUE
  654. *
  655. M = M + IM
  656. END IF
  657. 70 CONTINUE
  658. *
  659. * If RANGE='I', then (WL,WU) contains eigenvalues NWL+1,...,NWU
  660. * If NWL+1 < IL or NWU > IU, discard extra eigenvalues.
  661. *
  662. IF( IRANGE.EQ.3 ) THEN
  663. IM = 0
  664. IDISCL = IL - 1 - NWL
  665. IDISCU = NWU - IU
  666. *
  667. IF( IDISCL.GT.0 .OR. IDISCU.GT.0 ) THEN
  668. DO 80 JE = 1, M
  669. IF( W( JE ).LE.WLU .AND. IDISCL.GT.0 ) THEN
  670. IDISCL = IDISCL - 1
  671. ELSE IF( W( JE ).GE.WUL .AND. IDISCU.GT.0 ) THEN
  672. IDISCU = IDISCU - 1
  673. ELSE
  674. IM = IM + 1
  675. W( IM ) = W( JE )
  676. IBLOCK( IM ) = IBLOCK( JE )
  677. END IF
  678. 80 CONTINUE
  679. M = IM
  680. END IF
  681. IF( IDISCL.GT.0 .OR. IDISCU.GT.0 ) THEN
  682. *
  683. * Code to deal with effects of bad arithmetic:
  684. * Some low eigenvalues to be discarded are not in (WL,WLU],
  685. * or high eigenvalues to be discarded are not in (WUL,WU]
  686. * so just kill off the smallest IDISCL/largest IDISCU
  687. * eigenvalues, by simply finding the smallest/largest
  688. * eigenvalue(s).
  689. *
  690. * (If N(w) is monotone non-decreasing, this should never
  691. * happen.)
  692. *
  693. IF( IDISCL.GT.0 ) THEN
  694. WKILL = WU
  695. DO 100 JDISC = 1, IDISCL
  696. IW = 0
  697. DO 90 JE = 1, M
  698. IF( IBLOCK( JE ).NE.0 .AND.
  699. $ ( W( JE ).LT.WKILL .OR. IW.EQ.0 ) ) THEN
  700. IW = JE
  701. WKILL = W( JE )
  702. END IF
  703. 90 CONTINUE
  704. IBLOCK( IW ) = 0
  705. 100 CONTINUE
  706. END IF
  707. IF( IDISCU.GT.0 ) THEN
  708. *
  709. WKILL = WL
  710. DO 120 JDISC = 1, IDISCU
  711. IW = 0
  712. DO 110 JE = 1, M
  713. IF( IBLOCK( JE ).NE.0 .AND.
  714. $ ( W( JE ).GT.WKILL .OR. IW.EQ.0 ) ) THEN
  715. IW = JE
  716. WKILL = W( JE )
  717. END IF
  718. 110 CONTINUE
  719. IBLOCK( IW ) = 0
  720. 120 CONTINUE
  721. END IF
  722. IM = 0
  723. DO 130 JE = 1, M
  724. IF( IBLOCK( JE ).NE.0 ) THEN
  725. IM = IM + 1
  726. W( IM ) = W( JE )
  727. IBLOCK( IM ) = IBLOCK( JE )
  728. END IF
  729. 130 CONTINUE
  730. M = IM
  731. END IF
  732. IF( IDISCL.LT.0 .OR. IDISCU.LT.0 ) THEN
  733. TOOFEW = .TRUE.
  734. END IF
  735. END IF
  736. *
  737. * If ORDER='B', do nothing -- the eigenvalues are already sorted
  738. * by block.
  739. * If ORDER='E', sort the eigenvalues from smallest to largest
  740. *
  741. IF( IORDER.EQ.1 .AND. NSPLIT.GT.1 ) THEN
  742. DO 150 JE = 1, M - 1
  743. IE = 0
  744. TMP1 = W( JE )
  745. DO 140 J = JE + 1, M
  746. IF( W( J ).LT.TMP1 ) THEN
  747. IE = J
  748. TMP1 = W( J )
  749. END IF
  750. 140 CONTINUE
  751. *
  752. IF( IE.NE.0 ) THEN
  753. ITMP1 = IBLOCK( IE )
  754. W( IE ) = W( JE )
  755. IBLOCK( IE ) = IBLOCK( JE )
  756. W( JE ) = TMP1
  757. IBLOCK( JE ) = ITMP1
  758. END IF
  759. 150 CONTINUE
  760. END IF
  761. *
  762. INFO = 0
  763. IF( NCNVRG )
  764. $ INFO = INFO + 1
  765. IF( TOOFEW )
  766. $ INFO = INFO + 2
  767. RETURN
  768. *
  769. * End of DSTEBZ
  770. *
  771. END